nghttp2/src/spdylay_ssl.cc

925 lines
22 KiB
C++

/*
* Spdylay - SPDY Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <poll.h>
#include <cassert>
#include <cstdio>
#include <cerrno>
#include <cstdlib>
#include <cstring>
#include <string>
#include <iostream>
#include <string>
#include <set>
#include <iomanip>
#include <fstream>
#include "spdylay_ssl.h"
#include "util.h"
namespace spdylay {
bool ssl_debug = false;
Spdylay::Spdylay(int fd, SSL *ssl, uint16_t version,
const spdylay_session_callbacks *callbacks,
void *user_data)
: fd_(fd), ssl_(ssl), version_(version), user_data_(user_data),
io_flags_(0)
{
int r = spdylay_session_client_new(&session_, version_, callbacks, this);
assert(r == 0);
}
Spdylay::~Spdylay()
{
spdylay_session_del(session_);
}
int Spdylay::recv()
{
return spdylay_session_recv(session_);
}
int Spdylay::send()
{
return spdylay_session_send(session_);
}
ssize_t Spdylay::send_data(const uint8_t *data, size_t len, int flags)
{
ssize_t r;
io_flags_ = 0;
if(ssl_) {
ERR_clear_error();
r = SSL_write(ssl_, data, len);
if(r < 0) {
io_flags_ = get_ssl_io_demand(ssl_, r);
}
} else {
while((r = ::send(fd_, data, len, 0)) == -1 && errno == EINTR);
if(r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
io_flags_ |= WANT_WRITE;
}
}
return r;
}
ssize_t Spdylay::recv_data(uint8_t *data, size_t len, int flags)
{
ssize_t r;
io_flags_ = 0;
if(ssl_) {
ERR_clear_error();
r = SSL_read(ssl_, data, len);
if(r < 0) {
io_flags_ = get_ssl_io_demand(ssl_, r);
}
} else {
while((r = ::recv(fd_, data, len, 0)) == -1 && errno == EINTR);
if(r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
io_flags_ |= WANT_READ;
}
}
return r;
}
bool Spdylay::want_read()
{
return spdylay_session_want_read(session_) || (io_flags_ & WANT_READ);
}
bool Spdylay::want_write()
{
return spdylay_session_want_write(session_) || (io_flags_ & WANT_WRITE);
}
bool Spdylay::finish()
{
return !spdylay_session_want_read(session_) &&
!spdylay_session_want_write(session_);
}
int Spdylay::fd() const
{
return fd_;
}
void* Spdylay::user_data()
{
return user_data_;
}
int Spdylay::submit_request(const std::string& scheme,
const std::string& hostport,
const std::string& path,
const std::map<std::string,std::string> &headers,
uint8_t pri,
const spdylay_data_provider *data_prd,
int64_t data_length,
void *stream_user_data)
{
enum eStaticHeaderPosition
{
POS_METHOD = 0,
POS_PATH,
POS_VERSION,
POS_SCHEME,
POS_HOST,
POS_ACCEPT,
POS_USERAGENT
};
const char *static_nv[] = {
":method", data_prd ? "POST" : "GET",
":path", path.c_str(),
":version", "HTTP/1.1",
":scheme", scheme.c_str(),
":host", hostport.c_str(),
"accept", "*/*",
"accept-encoding", "gzip, deflate",
"user-agent", "spdylay/" SPDYLAY_VERSION
};
int hardcoded_entry_count = sizeof(static_nv) / sizeof(*static_nv);
int header_count = headers.size();
int total_entry_count = hardcoded_entry_count + header_count * 2;
if(data_prd) {
++total_entry_count;
}
const char **nv = new const char*[total_entry_count + 1];
memcpy(nv, static_nv, hardcoded_entry_count * sizeof(*static_nv));
std::map<std::string,std::string>::const_iterator i = headers.begin();
std::map<std::string,std::string>::const_iterator end = headers.end();
int pos = hardcoded_entry_count;
std::string content_length_str;
if(data_prd) {
std::stringstream ss;
ss << data_length;
content_length_str = ss.str();
nv[pos++] = "content-length";
nv[pos++] = content_length_str.c_str();
}
while( i != end ) {
const char *key = (*i).first.c_str();
const char *value = (*i).second.c_str();
if ( util::strieq( key, "accept" ) ) {
nv[POS_ACCEPT*2+1] = value;
}
else if ( util::strieq( key, "user-agent" ) ) {
nv[POS_USERAGENT*2+1] = value;
}
else if ( util::strieq( key, "host" ) ) {
nv[POS_HOST*2+1] = value;
}
else {
nv[pos] = key;
nv[pos+1] = value;
pos += 2;
}
++i;
}
nv[pos] = NULL;
int r = spdylay_submit_request(session_, pri, nv, data_prd,
stream_user_data);
delete [] nv;
return r;
}
int Spdylay::submit_settings(int flags, spdylay_settings_entry *iv, size_t niv)
{
return spdylay_submit_settings(session_, flags, iv, niv);
}
bool Spdylay::would_block()
{
return io_flags_;
}
int connect_to(const std::string& host, uint16_t port)
{
struct addrinfo hints;
int fd = -1;
int r;
char service[10];
snprintf(service, sizeof(service), "%u", port);
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
struct addrinfo *res;
r = getaddrinfo(host.c_str(), service, &hints, &res);
if(r != 0) {
std::cerr << "getaddrinfo: " << gai_strerror(r) << std::endl;
return -1;
}
for(struct addrinfo *rp = res; rp; rp = rp->ai_next) {
fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if(fd == -1) {
continue;
}
while((r = connect(fd, rp->ai_addr, rp->ai_addrlen)) == -1 &&
errno == EINTR);
if(r == 0) {
break;
}
close(fd);
fd = -1;
}
freeaddrinfo(res);
return fd;
}
int nonblock_connect_to(const std::string& host, uint16_t port, int timeout)
{
struct addrinfo hints;
int fd = -1;
int r;
char service[10];
snprintf(service, sizeof(service), "%u", port);
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
struct addrinfo *res;
r = getaddrinfo(host.c_str(), service, &hints, &res);
if(r != 0) {
std::cerr << "getaddrinfo: " << gai_strerror(r) << std::endl;
return -1;
}
for(struct addrinfo *rp = res; rp; rp = rp->ai_next) {
fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if(fd == -1) {
continue;
}
if(make_non_block(fd) == -1) {
close(fd);
fd = -1;
continue;
}
while((r = connect(fd, rp->ai_addr, rp->ai_addrlen)) == -1 &&
errno == EINTR);
if(r == 0) {
break;
} else if(errno == EINPROGRESS) {
struct timeval tv1, tv2;
struct pollfd pfd = {fd, POLLOUT, 0};
if(timeout != -1) {
get_time(&tv1);
}
r = poll(&pfd, 1, timeout);
if(r == 0) {
return -2;
} else if(r == -1) {
return -1;
} else {
if(timeout != -1) {
get_time(&tv2);
timeout -= time_delta(tv2, tv1);
if(timeout <= 0) {
return -2;
}
}
int socket_error;
socklen_t optlen = sizeof(socket_error);
r = getsockopt(fd, SOL_SOCKET, SO_ERROR, &socket_error, &optlen);
if(r == 0 && socket_error == 0) {
break;
} else {
close(fd);
fd = -1;
}
}
} else {
close(fd);
fd = -1;
}
}
freeaddrinfo(res);
return fd;
}
int make_listen_socket(const std::string& host, uint16_t port, int family)
{
addrinfo hints;
int fd = -1;
int r;
char service[10];
snprintf(service, sizeof(service), "%u", port);
memset(&hints, 0, sizeof(addrinfo));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
#ifdef AI_ADDRCONFIG
hints.ai_flags |= AI_ADDRCONFIG;
#endif // AI_ADDRCONFIG
addrinfo *res, *rp;
const char* host_ptr;
if(host.empty()) {
host_ptr = 0;
} else {
host_ptr = host.c_str();
}
r = getaddrinfo(host_ptr, service, &hints, &res);
if(r != 0) {
std::cerr << "getaddrinfo: " << gai_strerror(r) << std::endl;
return -1;
}
for(rp = res; rp; rp = rp->ai_next) {
fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if(fd == -1) {
continue;
}
int val = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val,
static_cast<socklen_t>(sizeof(val))) == -1) {
close(fd);
continue;
}
#ifdef IPV6_V6ONLY
if(family == AF_INET6) {
if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val,
static_cast<socklen_t>(sizeof(val))) == -1) {
close(fd);
continue;
}
}
#endif // IPV6_V6ONLY
if(bind(fd, rp->ai_addr, rp->ai_addrlen) == 0) {
break;
}
close(fd);
}
freeaddrinfo(res);
if(rp == 0) {
return -1;
} else {
if(listen(fd, 16) == -1) {
close(fd);
return -1;
} else {
return fd;
}
}
}
int make_non_block(int fd)
{
int flags, r;
while((flags = fcntl(fd, F_GETFL, 0)) == -1 && errno == EINTR);
if(flags == -1) {
return -1;
}
while((r = fcntl(fd, F_SETFL, flags | O_NONBLOCK)) == -1 && errno == EINTR);
if(r == -1) {
return -1;
}
return 0;
}
int set_tcp_nodelay(int fd)
{
int val = 1;
return setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, (socklen_t)sizeof(val));
}
ssize_t send_callback(spdylay_session *session,
const uint8_t *data, size_t len, int flags,
void *user_data)
{
Spdylay *sc = (Spdylay*)user_data;
ssize_t r = sc->send_data(data, len, flags);
if(r < 0) {
if(sc->would_block()) {
r = SPDYLAY_ERR_WOULDBLOCK;
} else {
r = SPDYLAY_ERR_CALLBACK_FAILURE;
}
} else if(r == 0) {
// In OpenSSL, r == 0 means EOF because SSL_write may do read.
r = SPDYLAY_ERR_CALLBACK_FAILURE;
}
return r;
}
ssize_t recv_callback(spdylay_session *session,
uint8_t *data, size_t len, int flags, void *user_data)
{
Spdylay *sc = (Spdylay*)user_data;
ssize_t r = sc->recv_data(data, len, flags);
if(r < 0) {
if(sc->would_block()) {
r = SPDYLAY_ERR_WOULDBLOCK;
} else {
r = SPDYLAY_ERR_CALLBACK_FAILURE;
}
} else if(r == 0) {
r = SPDYLAY_ERR_EOF;
}
return r;
}
namespace {
const char *ctrl_names[] = {
"SYN_STREAM",
"SYN_REPLY",
"RST_STREAM",
"SETTINGS",
"NOOP",
"PING",
"GOAWAY",
"HEADERS",
"WINDOW_UPDATE"
};
} // namespace
namespace {
void print_frame_attr_indent()
{
printf(" ");
}
} // namespace
namespace {
bool color_output = false;
} // namespace
void set_color_output(bool f)
{
color_output = f;
}
namespace {
const char* ansi_esc(const char *code)
{
return color_output ? code : "";
}
} // namespace
namespace {
const char* ansi_escend()
{
return color_output ? "\033[0m" : "";
}
} // namespace
void print_nv(char **nv)
{
int i;
for(i = 0; nv[i]; i += 2) {
print_frame_attr_indent();
printf("%s%s%s: %s\n",
ansi_esc("\033[1;34m"), nv[i],
ansi_escend(), nv[i+1]);
}
}
void print_timer()
{
timeval tv;
get_timer(&tv);
printf("%s[%3ld.%03ld]%s",
ansi_esc("\033[33m"),
tv.tv_sec, tv.tv_usec/1000,
ansi_escend());
}
namespace {
void print_ctrl_hd(const spdylay_ctrl_hd& hd)
{
printf("<version=%u, flags=%u, length=%d>\n",
hd.version, hd.flags, hd.length);
}
} // namespace
enum print_type {
PRINT_SEND,
PRINT_RECV
};
namespace {
const char* frame_name_ansi_esc(print_type ptype)
{
return ansi_esc(ptype == PRINT_SEND ? "\033[1;35m" : "\033[1;36m");
}
} // namespace
namespace {
void print_frame(print_type ptype, spdylay_frame_type type,
spdylay_frame *frame)
{
printf("%s%s%s frame ",
frame_name_ansi_esc(ptype),
ctrl_names[type-1],
ansi_escend());
print_ctrl_hd(frame->syn_stream.hd);
switch(type) {
case SPDYLAY_SYN_STREAM:
print_frame_attr_indent();
printf("(stream_id=%d, assoc_stream_id=%d, pri=%u)\n",
frame->syn_stream.stream_id, frame->syn_stream.assoc_stream_id,
frame->syn_stream.pri);
print_nv(frame->syn_stream.nv);
break;
case SPDYLAY_SYN_REPLY:
print_frame_attr_indent();
printf("(stream_id=%d)\n", frame->syn_reply.stream_id);
print_nv(frame->syn_reply.nv);
break;
case SPDYLAY_RST_STREAM:
print_frame_attr_indent();
printf("(stream_id=%d, status_code=%u)\n",
frame->rst_stream.stream_id, frame->rst_stream.status_code);
break;
case SPDYLAY_SETTINGS:
print_frame_attr_indent();
printf("(niv=%lu)\n", static_cast<unsigned long>(frame->settings.niv));
for(size_t i = 0; i < frame->settings.niv; ++i) {
print_frame_attr_indent();
printf("[%d(%u):%u]\n",
frame->settings.iv[i].settings_id,
frame->settings.iv[i].flags, frame->settings.iv[i].value);
}
break;
case SPDYLAY_PING:
print_frame_attr_indent();
printf("(unique_id=%d)\n", frame->ping.unique_id);
break;
case SPDYLAY_GOAWAY:
print_frame_attr_indent();
printf("(last_good_stream_id=%d)\n", frame->goaway.last_good_stream_id);
break;
case SPDYLAY_HEADERS:
print_frame_attr_indent();
printf("(stream_id=%d)\n", frame->headers.stream_id);
print_nv(frame->headers.nv);
break;
case SPDYLAY_WINDOW_UPDATE:
print_frame_attr_indent();
printf("(stream_id=%d, delta_window_size=%d)\n",
frame->window_update.stream_id,
frame->window_update.delta_window_size);
break;
default:
printf("\n");
break;
}
}
} // namespace
void on_ctrl_recv_callback
(spdylay_session *session, spdylay_frame_type type, spdylay_frame *frame,
void *user_data)
{
print_timer();
printf(" recv ");
print_frame(PRINT_RECV, type, frame);
fflush(stdout);
}
namespace {
const char* strstatus(uint32_t status_code)
{
switch(status_code) {
case SPDYLAY_OK:
return "OK";
case SPDYLAY_PROTOCOL_ERROR:
return "PROTOCOL_ERROR";
case SPDYLAY_INVALID_STREAM:
return "INVALID_STREAM";
case SPDYLAY_REFUSED_STREAM:
return "REFUSED_STREAM";
case SPDYLAY_UNSUPPORTED_VERSION:
return "UNSUPPORTED_VERSION";
case SPDYLAY_CANCEL:
return "CANCEL";
case SPDYLAY_INTERNAL_ERROR:
return "INTERNAL_ERROR";
case SPDYLAY_FLOW_CONTROL_ERROR:
return "FLOW_CONTROL_ERROR";
case SPDYLAY_STREAM_IN_USE:
return "STREAM_IN_USE";
case SPDYLAY_STREAM_ALREADY_CLOSED:
return "STREAM_ALREADY_CLOSED";
case SPDYLAY_INVALID_CREDENTIALS:
return "INVALID_CREDENTIALS";
case SPDYLAY_FRAME_TOO_LARGE:
return "FRAME_TOO_LARGE";
default:
return "Unknown status code";
}
}
} // namespace
void on_invalid_ctrl_recv_callback
(spdylay_session *session, spdylay_frame_type type, spdylay_frame *frame,
uint32_t status_code, void *user_data)
{
print_timer();
printf(" [INVALID; status=%s] recv ", strstatus(status_code));
print_frame(PRINT_RECV, type, frame);
fflush(stdout);
}
namespace {
void dump_header(const uint8_t *head, size_t headlen)
{
size_t i;
print_frame_attr_indent();
printf("Header dump: ");
for(i = 0; i < headlen; ++i) {
printf("%02X ", head[i]);
}
printf("\n");
}
} // namespace
void on_ctrl_recv_parse_error_callback(spdylay_session *session,
spdylay_frame_type type,
const uint8_t *head,
size_t headlen,
const uint8_t *payload,
size_t payloadlen,
int error_code, void *user_data)
{
print_timer();
printf(" [PARSE_ERROR] recv %s%s%s frame\n",
frame_name_ansi_esc(PRINT_RECV),
ctrl_names[type-1],
ansi_escend());
print_frame_attr_indent();
printf("Error: %s\n", spdylay_strerror(error_code));
dump_header(head, headlen);
fflush(stdout);
}
void on_unknown_ctrl_recv_callback(spdylay_session *session,
const uint8_t *head,
size_t headlen,
const uint8_t *payload,
size_t payloadlen,
void *user_data)
{
print_timer();
printf(" recv unknown frame\n");
dump_header(head, headlen);
fflush(stdout);
}
void on_ctrl_send_callback
(spdylay_session *session, spdylay_frame_type type, spdylay_frame *frame,
void *user_data)
{
print_timer();
printf(" send ");
print_frame(PRINT_SEND, type, frame);
fflush(stdout);
}
namespace {
void print_data_frame(print_type ptype, uint8_t flags, int32_t stream_id,
int32_t length)
{
printf("%sDATA%s frame (stream_id=%d, flags=%d, length=%d)\n",
frame_name_ansi_esc(ptype), ansi_escend(),
stream_id, flags, length);
}
} // namespace
void on_data_recv_callback
(spdylay_session *session, uint8_t flags, int32_t stream_id, int32_t length,
void *user_data)
{
print_timer();
printf(" recv ");
print_data_frame(PRINT_RECV, flags, stream_id, length);
fflush(stdout);
}
void on_data_send_callback
(spdylay_session *session, uint8_t flags, int32_t stream_id, int32_t length,
void *user_data)
{
print_timer();
printf(" send ");
print_data_frame(PRINT_SEND, flags, stream_id, length);
fflush(stdout);
}
void ctl_poll(pollfd *pollfd, Spdylay *sc)
{
pollfd->events = 0;
if(sc->want_read()) {
pollfd->events |= POLLIN;
}
if(sc->want_write()) {
pollfd->events |= POLLOUT;
}
}
int select_next_proto_cb(SSL* ssl,
unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
if(ssl_debug) {
print_timer();
std::cout << " NPN select next protocol: the remote server offers:"
<< std::endl;
}
for(unsigned int i = 0; i < inlen; i += in[i]+1) {
if(ssl_debug) {
std::cout << " * ";
std::cout.write(reinterpret_cast<const char*>(&in[i+1]), in[i]);
std::cout << std::endl;
}
}
std::string& next_proto = *(std::string*)arg;
if(next_proto.empty()) {
if(spdylay_select_next_protocol(out, outlen, in, inlen) <= 0) {
std::cerr << "Server did not advertise spdy/2 or spdy/3 protocol."
<< std::endl;
abort();
} else {
next_proto.assign(&(*out)[0], &(*out)[*outlen]);
}
} else {
*out = (unsigned char*)(next_proto.c_str());
*outlen = next_proto.size();
}
if(ssl_debug) {
std::cout << " NPN selected the protocol: "
<< std::string((const char*)*out, (size_t)*outlen) << std::endl;
}
return SSL_TLSEXT_ERR_OK;
}
void setup_ssl_ctx(SSL_CTX *ssl_ctx, void *next_proto_select_cb_arg)
{
/* Disable SSLv2 and enable all workarounds for buggy servers */
SSL_CTX_set_options(ssl_ctx, SSL_OP_ALL|SSL_OP_NO_SSLv2);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE);
SSL_CTX_set_next_proto_select_cb(ssl_ctx, select_next_proto_cb,
next_proto_select_cb_arg);
}
int ssl_handshake(SSL *ssl, int fd)
{
if(SSL_set_fd(ssl, fd) == 0) {
std::cerr << ERR_error_string(ERR_get_error(), 0) << std::endl;
return -1;
}
ERR_clear_error();
int r = SSL_connect(ssl);
if(r <= 0) {
std::cerr << ERR_error_string(ERR_get_error(), 0) << std::endl;
return -1;
}
return 0;
}
int ssl_nonblock_handshake(SSL *ssl, int fd, int& timeout)
{
if(SSL_set_fd(ssl, fd) == 0) {
std::cerr << ERR_error_string(ERR_get_error(), 0) << std::endl;
return -1;
}
ERR_clear_error();
pollfd pfd;
pfd.fd = fd;
pfd.events = POLLOUT;
timeval tv1, tv2;
while(1) {
if(timeout != -1) {
get_time(&tv1);
}
int rv = poll(&pfd, 1, timeout);
if(rv == 0) {
return -2;
} else if(rv == -1) {
return -1;
}
ERR_clear_error();
rv = SSL_connect(ssl);
if(rv == 0) {
std::cerr << ERR_error_string(ERR_get_error(), 0) << std::endl;
return -1;
} else if(rv < 0) {
if(timeout != -1) {
get_time(&tv2);
timeout -= time_delta(tv2, tv1);
if(timeout <= 0) {
return -2;
}
}
switch(SSL_get_error(ssl, rv)) {
case SSL_ERROR_WANT_READ:
pfd.events = POLLIN;
break;
case SSL_ERROR_WANT_WRITE:
pfd.events = POLLOUT;
break;
default:
std::cerr << ERR_error_string(ERR_get_error(), 0) << std::endl;
return -1;
}
} else {
break;
}
}
return 0;
}
int64_t time_delta(const timeval& a, const timeval& b)
{
int64_t res = (a.tv_sec - b.tv_sec) * 1000;
res += (a.tv_usec - b.tv_usec) / 1000;
return res;
}
uint8_t get_ssl_io_demand(SSL *ssl, ssize_t r)
{
switch(SSL_get_error(ssl, r)) {
case SSL_ERROR_WANT_WRITE:
return WANT_WRITE;
case SSL_ERROR_WANT_READ:
return WANT_READ;
default:
return 0;
}
}
namespace {
timeval base_tv;
} // namespace
void reset_timer()
{
get_time(&base_tv);
}
void get_timer(timeval* tv)
{
get_time(tv);
tv->tv_usec -= base_tv.tv_usec;
tv->tv_sec -= base_tv.tv_sec;
if(tv->tv_usec < 0) {
tv->tv_usec += 1000000;
--tv->tv_sec;
}
}
int get_time(timeval *tv)
{
int rv;
#ifdef HAVE_CLOCK_GETTIME
timespec ts;
rv = clock_gettime(CLOCK_MONOTONIC, &ts);
tv->tv_sec = ts.tv_sec;
tv->tv_usec = ts.tv_nsec/1000;
#else // !HAVE_CLOCK_GETTIME
rv = gettimeofday(&base_tv, 0);
#endif // !HAVE_CLOCK_GETTIME
return rv;
}
} // namespace spdylay