624 lines
24 KiB
ReStructuredText
624 lines
24 KiB
ReStructuredText
Tutorial: HTTP/2 server
|
|
=========================
|
|
|
|
In this tutorial, we are going to write a single-threaded, event-based
|
|
HTTP/2 web server, which supports HTTPS only. It can handle concurrent
|
|
multiple requests, but only the GET method is supported. The complete
|
|
source code, `libevent-server.c`_, is attached at the end of this
|
|
page. The source also resides in the examples directory in the
|
|
archive or repository.
|
|
|
|
This simple server takes 3 arguments: The port number to listen on,
|
|
the path to your SSL/TLS private key file, and the path to your
|
|
certificate file. The synopsis is::
|
|
|
|
$ libevent-server PORT /path/to/server.key /path/to/server.crt
|
|
|
|
We use libevent in this tutorial to handle networking I/O. Please
|
|
note that nghttp2 itself does not depend on libevent.
|
|
|
|
The server starts with some libevent and OpenSSL setup in the
|
|
``main()`` and ``run()`` functions. This setup isn't specific to
|
|
nghttp2, but one thing you should look at is setup of the NPN
|
|
callback. The NPN callback is used by the server to advertise which
|
|
application protocols the server supports to a client. In this
|
|
example program, when creating the ``SSL_CTX`` object, we store the
|
|
application protocol name in the wire format of NPN in a statically
|
|
allocated buffer. This is safe because we only create one ``SSL_CTX``
|
|
object in the program's entire lifetime.
|
|
|
|
If you are following TLS related RFC, you know that NPN is not the
|
|
standardized way to negotiate HTTP/2. NPN itself is not even
|
|
published as RFC. The standard way to negotiate HTTP/2 is ALPN,
|
|
Application-Layer Protocol Negotiation Extension, defined in `RFC 7301
|
|
<https://tools.ietf.org/html/rfc7301>`_. The one caveat of ALPN is
|
|
that OpenSSL >= 1.0.2 is required. We use macro to enable/disable
|
|
ALPN support depending on OpenSSL version. In ALPN, client sends the
|
|
list of supported application protocols, and server selects one of
|
|
them. We provide the callback for it::
|
|
|
|
static unsigned char next_proto_list[256];
|
|
static size_t next_proto_list_len;
|
|
|
|
static int next_proto_cb(SSL *s _U_, const unsigned char **data,
|
|
unsigned int *len, void *arg _U_) {
|
|
*data = next_proto_list;
|
|
*len = (unsigned int)next_proto_list_len;
|
|
return SSL_TLSEXT_ERR_OK;
|
|
}
|
|
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
static int alpn_select_proto_cb(SSL *ssl _U_, const unsigned char **out,
|
|
unsigned char *outlen, const unsigned char *in,
|
|
unsigned int inlen, void *arg _U_) {
|
|
int rv;
|
|
|
|
rv = nghttp2_select_next_protocol((unsigned char **)out, outlen, in, inlen);
|
|
|
|
if (rv != 1) {
|
|
return SSL_TLSEXT_ERR_NOACK;
|
|
}
|
|
|
|
return SSL_TLSEXT_ERR_OK;
|
|
}
|
|
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
|
|
static SSL_CTX *create_ssl_ctx(const char *key_file, const char *cert_file) {
|
|
SSL_CTX *ssl_ctx;
|
|
EC_KEY *ecdh;
|
|
|
|
ssl_ctx = SSL_CTX_new(SSLv23_server_method());
|
|
|
|
...
|
|
|
|
next_proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
|
|
memcpy(&next_proto_list[1], NGHTTP2_PROTO_VERSION_ID,
|
|
NGHTTP2_PROTO_VERSION_ID_LEN);
|
|
next_proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;
|
|
|
|
SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, NULL);
|
|
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
SSL_CTX_set_alpn_select_cb(ssl_ctx, alpn_select_proto_cb, NULL);
|
|
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
|
|
return ssl_ctx;
|
|
}
|
|
|
|
The wire format of NPN is a sequence of length prefixed strings, with
|
|
exactly one byte used to specify the length of each protocol
|
|
identifier. In this tutorial, we advertise the specific HTTP/2
|
|
protocol version the current nghttp2 library supports, which is
|
|
exported in the identifier :macro:`NGHTTP2_PROTO_VERSION_ID`. The
|
|
``next_proto_cb()`` function is the server-side NPN callback. In the
|
|
OpenSSL implementation, we just assign the pointer to the NPN buffers
|
|
we filled in earlier. The NPN callback function is set to the
|
|
``SSL_CTX`` object using ``SSL_CTX_set_next_protos_advertised_cb()``.
|
|
|
|
In ``alpn_select_proto_cb()``, we use `nghttp2_select_next_protocol()`
|
|
to select application protocol. The `nghttp2_select_next_protocol()`
|
|
returns 1 only if it selected h2 (ALPN identifier for HTTP/2), and out
|
|
parameters were assigned accordingly.
|
|
|
|
Next, let's take a look at the main structures used by the example
|
|
application:
|
|
|
|
We use the ``app_context`` structure to store application-wide data::
|
|
|
|
struct app_context {
|
|
SSL_CTX *ssl_ctx;
|
|
struct event_base *evbase;
|
|
};
|
|
|
|
We use the ``http2_session_data`` structure to store session-level
|
|
(which corresponds to one HTTP/2 connection) data::
|
|
|
|
typedef struct http2_session_data {
|
|
struct http2_stream_data root;
|
|
struct bufferevent *bev;
|
|
app_context *app_ctx;
|
|
nghttp2_session *session;
|
|
char *client_addr;
|
|
} http2_session_data;
|
|
|
|
We use the ``http2_stream_data`` structure to store stream-level data::
|
|
|
|
typedef struct http2_stream_data {
|
|
struct http2_stream_data *prev, *next;
|
|
char *request_path;
|
|
int32_t stream_id;
|
|
int fd;
|
|
} http2_stream_data;
|
|
|
|
A single HTTP/2 session can have multiple streams. To manage them, we
|
|
use a doubly linked list: The first element of this list is pointed
|
|
to by the ``root->next`` in ``http2_session_data``. Initially,
|
|
``root->next`` is ``NULL``.
|
|
|
|
libevent's bufferevent structure is used to perform network I/O, with
|
|
the pointer to the bufferevent stored in the ``http2_session_data``
|
|
structure. Note that the bufferevent object is kept in
|
|
``http2_session_data`` and not in ``http2_stream_data``. This is
|
|
because ``http2_stream_data`` is just a logical stream multiplexed
|
|
over the single connection managed by the bufferevent in
|
|
``http2_session_data``.
|
|
|
|
We first create a listener object to accept incoming connections.
|
|
libevent's ``struct evconnlistener`` is used for this purpose::
|
|
|
|
static void start_listen(struct event_base *evbase, const char *service,
|
|
app_context *app_ctx) {
|
|
int rv;
|
|
struct addrinfo hints;
|
|
struct addrinfo *res, *rp;
|
|
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_flags = AI_PASSIVE;
|
|
#ifdef AI_ADDRCONFIG
|
|
hints.ai_flags |= AI_ADDRCONFIG;
|
|
#endif /* AI_ADDRCONFIG */
|
|
|
|
rv = getaddrinfo(NULL, service, &hints, &res);
|
|
if (rv != 0) {
|
|
errx(1, NULL);
|
|
}
|
|
for (rp = res; rp; rp = rp->ai_next) {
|
|
struct evconnlistener *listener;
|
|
listener = evconnlistener_new_bind(
|
|
evbase, acceptcb, app_ctx, LEV_OPT_CLOSE_ON_FREE | LEV_OPT_REUSEABLE,
|
|
16, rp->ai_addr, (int)rp->ai_addrlen);
|
|
if (listener) {
|
|
freeaddrinfo(res);
|
|
|
|
return;
|
|
}
|
|
}
|
|
errx(1, "Could not start listener");
|
|
}
|
|
|
|
We specify the ``acceptcb`` callback, which is called when a new connection is
|
|
accepted::
|
|
|
|
static void acceptcb(struct evconnlistener *listener _U_, int fd,
|
|
struct sockaddr *addr, int addrlen, void *arg) {
|
|
app_context *app_ctx = (app_context *)arg;
|
|
http2_session_data *session_data;
|
|
|
|
session_data = create_http2_session_data(app_ctx, fd, addr, addrlen);
|
|
|
|
bufferevent_setcb(session_data->bev, readcb, writecb, eventcb, session_data);
|
|
}
|
|
|
|
Here we create the ``http2_session_data`` object. The connection's
|
|
bufferevent is initialized at the same time. We specify three
|
|
callbacks for the bufferevent: ``readcb``, ``writecb``, and
|
|
``eventcb``.
|
|
|
|
The ``eventcb()`` callback is invoked by the libevent event loop when an event
|
|
(e.g. connection has been established, timeout, etc.) occurs on the
|
|
underlying network socket::
|
|
|
|
static void eventcb(struct bufferevent *bev _U_, short events, void *ptr) {
|
|
http2_session_data *session_data = (http2_session_data *)ptr;
|
|
if (events & BEV_EVENT_CONNECTED) {
|
|
const unsigned char *alpn = NULL;
|
|
unsigned int alpnlen = 0;
|
|
SSL *ssl;
|
|
|
|
fprintf(stderr, "%s connected\n", session_data->client_addr);
|
|
|
|
ssl = bufferevent_openssl_get_ssl(session_data->bev);
|
|
|
|
SSL_get0_next_proto_negotiated(ssl, &alpn, &alpnlen);
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
if (alpn == NULL) {
|
|
SSL_get0_alpn_selected(ssl, &alpn, &alpnlen);
|
|
}
|
|
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
|
|
|
|
if (alpn == NULL || alpnlen != 2 || memcmp("h2", alpn, 2) != 0) {
|
|
fprintf(stderr, "%s h2 is not negotiated\n", session_data->client_addr);
|
|
delete_http2_session_data(session_data);
|
|
return;
|
|
}
|
|
|
|
initialize_nghttp2_session(session_data);
|
|
|
|
if (send_server_connection_header(session_data) != 0 ||
|
|
session_send(session_data) != 0) {
|
|
delete_http2_session_data(session_data);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
if (events & BEV_EVENT_EOF) {
|
|
fprintf(stderr, "%s EOF\n", session_data->client_addr);
|
|
} else if (events & BEV_EVENT_ERROR) {
|
|
fprintf(stderr, "%s network error\n", session_data->client_addr);
|
|
} else if (events & BEV_EVENT_TIMEOUT) {
|
|
fprintf(stderr, "%s timeout\n", session_data->client_addr);
|
|
}
|
|
delete_http2_session_data(session_data);
|
|
}
|
|
|
|
Here we validate that HTTP/2 is negotiated, and if not, drop
|
|
connection.
|
|
|
|
For the ``BEV_EVENT_EOF``, ``BEV_EVENT_ERROR``, and
|
|
``BEV_EVENT_TIMEOUT`` events, we just simply tear down the connection.
|
|
The ``delete_http2_session_data()`` function destroys the
|
|
``http2_session_data`` object and its associated bufferevent member.
|
|
As a result, the underlying connection is closed.
|
|
|
|
The
|
|
``BEV_EVENT_CONNECTED`` event is invoked when SSL/TLS handshake has
|
|
completed successfully. After this we are ready to begin communicating
|
|
via HTTP/2.
|
|
|
|
The ``initialize_nghttp2_session()`` function initializes the nghttp2
|
|
session object and several callbacks::
|
|
|
|
static void initialize_nghttp2_session(http2_session_data *session_data) {
|
|
nghttp2_session_callbacks *callbacks;
|
|
|
|
nghttp2_session_callbacks_new(&callbacks);
|
|
|
|
nghttp2_session_callbacks_set_send_callback(callbacks, send_callback);
|
|
|
|
nghttp2_session_callbacks_set_on_frame_recv_callback(callbacks,
|
|
on_frame_recv_callback);
|
|
|
|
nghttp2_session_callbacks_set_on_stream_close_callback(
|
|
callbacks, on_stream_close_callback);
|
|
|
|
nghttp2_session_callbacks_set_on_header_callback(callbacks,
|
|
on_header_callback);
|
|
|
|
nghttp2_session_callbacks_set_on_begin_headers_callback(
|
|
callbacks, on_begin_headers_callback);
|
|
|
|
nghttp2_session_server_new(&session_data->session, callbacks, session_data);
|
|
|
|
nghttp2_session_callbacks_del(callbacks);
|
|
}
|
|
|
|
Since we are creating a server, we use `nghttp2_session_server_new()`
|
|
to initialize the nghttp2 session object. We also setup 5 callbacks
|
|
for the nghttp2 session, these are explained later.
|
|
|
|
The server now begins by sending the server connection preface, which
|
|
always consists of a SETTINGS frame.
|
|
``send_server_connection_header()`` configures and submits it::
|
|
|
|
static int send_server_connection_header(http2_session_data *session_data) {
|
|
nghttp2_settings_entry iv[1] = {
|
|
{NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS, 100}};
|
|
int rv;
|
|
|
|
rv = nghttp2_submit_settings(session_data->session, NGHTTP2_FLAG_NONE, iv,
|
|
ARRLEN(iv));
|
|
if (rv != 0) {
|
|
warnx("Fatal error: %s", nghttp2_strerror(rv));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
In the example SETTINGS frame we've set
|
|
SETTINGS_MAX_CONCURRENT_STREAMS to 100. `nghttp2_submit_settings()`
|
|
is used to queue the frame for transmission, but note it only queues
|
|
the frame for transmission, and doesn't actually send it. All
|
|
functions in the ``nghttp2_submit_*()`` family have this property. To
|
|
actually send the frame, `nghttp2_session_send()` should be used, as
|
|
described later.
|
|
|
|
Since bufferevent may buffer more than the first 24 bytes from the client, we
|
|
have to process them here since libevent won't invoke callback functions for
|
|
this pending data. To process the received data, we call the
|
|
``session_recv()`` function::
|
|
|
|
static int session_recv(http2_session_data *session_data) {
|
|
ssize_t readlen;
|
|
struct evbuffer *input = bufferevent_get_input(session_data->bev);
|
|
size_t datalen = evbuffer_get_length(input);
|
|
unsigned char *data = evbuffer_pullup(input, -1);
|
|
|
|
readlen = nghttp2_session_mem_recv(session_data->session, data, datalen);
|
|
if (readlen < 0) {
|
|
warnx("Fatal error: %s", nghttp2_strerror((int)readlen));
|
|
return -1;
|
|
}
|
|
if (evbuffer_drain(input, (size_t)readlen) != 0) {
|
|
warnx("Fatal error: evbuffer_drain failed");
|
|
return -1;
|
|
}
|
|
if (session_send(session_data) != 0) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
In this function, we feed all unprocessed but already received data to
|
|
the nghttp2 session object using the `nghttp2_session_mem_recv()`
|
|
function. The `nghttp2_session_mem_recv()` function processes the data
|
|
and may both invoke the previously setup callbacks and also queue
|
|
outgoing frames. To send any pending outgoing frames, we immediately
|
|
call ``session_send()``.
|
|
|
|
The ``session_send()`` function is defined as follows::
|
|
|
|
static int session_send(http2_session_data *session_data) {
|
|
int rv;
|
|
rv = nghttp2_session_send(session_data->session);
|
|
if (rv != 0) {
|
|
warnx("Fatal error: %s", nghttp2_strerror(rv));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
The `nghttp2_session_send()` function serializes the frame into wire
|
|
format and calls the ``send_callback()``, which is of type
|
|
:type:`nghttp2_send_callback`. The ``send_callback()`` is defined as
|
|
follows::
|
|
|
|
static ssize_t send_callback(nghttp2_session *session _U_, const uint8_t *data,
|
|
size_t length, int flags _U_, void *user_data) {
|
|
http2_session_data *session_data = (http2_session_data *)user_data;
|
|
struct bufferevent *bev = session_data->bev;
|
|
/* Avoid excessive buffering in server side. */
|
|
if (evbuffer_get_length(bufferevent_get_output(session_data->bev)) >=
|
|
OUTPUT_WOULDBLOCK_THRESHOLD) {
|
|
return NGHTTP2_ERR_WOULDBLOCK;
|
|
}
|
|
bufferevent_write(bev, data, length);
|
|
return (ssize_t)length;
|
|
}
|
|
|
|
Since we use bufferevent to abstract network I/O, we just write the
|
|
data to the bufferevent object. Note that `nghttp2_session_send()`
|
|
continues to write all frames queued so far. If we were writing the
|
|
data to a non-blocking socket directly using the ``write()`` system
|
|
call in the ``send_callback()``, we'd soon receive an ``EAGAIN`` or
|
|
``EWOULDBLOCK`` error since sockets have a limited send buffer. If
|
|
that happens, it's possible to return :macro:`NGHTTP2_ERR_WOULDBLOCK`
|
|
to signal the nghttp2 library to stop sending further data. But here,
|
|
when writing to the bufferevent, we have to regulate the amount data
|
|
to buffered ourselves to avoid using huge amounts of memory. To
|
|
achieve this, we check the size of the output buffer and if it reaches
|
|
more than or equal to ``OUTPUT_WOULDBLOCK_THRESHOLD`` bytes, we stop
|
|
writing data and return :macro:`NGHTTP2_ERR_WOULDBLOCK`.
|
|
|
|
The next bufferevent callback is ``readcb()``, which is invoked when
|
|
data is available to read in the bufferevent input buffer::
|
|
|
|
static void readcb(struct bufferevent *bev _U_, void *ptr) {
|
|
http2_session_data *session_data = (http2_session_data *)ptr;
|
|
if (session_recv(session_data) != 0) {
|
|
delete_http2_session_data(session_data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
In this function, we just call ``session_recv()`` to process incoming
|
|
data.
|
|
|
|
The third bufferevent callback is ``writecb()``, which is invoked when all
|
|
data in the bufferevent output buffer has been sent::
|
|
|
|
static void writecb(struct bufferevent *bev, void *ptr) {
|
|
http2_session_data *session_data = (http2_session_data *)ptr;
|
|
if (evbuffer_get_length(bufferevent_get_output(bev)) > 0) {
|
|
return;
|
|
}
|
|
if (nghttp2_session_want_read(session_data->session) == 0 &&
|
|
nghttp2_session_want_write(session_data->session) == 0) {
|
|
delete_http2_session_data(session_data);
|
|
return;
|
|
}
|
|
if (session_send(session_data) != 0) {
|
|
delete_http2_session_data(session_data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
First we check whether we should drop the connection or not. The
|
|
nghttp2 session object keeps track of reception and transmission of
|
|
GOAWAY frames and other error conditions as well. Using this
|
|
information, the nghttp2 session object can state whether the
|
|
connection should be dropped or not. More specifically, if both
|
|
`nghttp2_session_want_read()` and `nghttp2_session_want_write()`
|
|
return 0, the connection is no-longer required and can be closed.
|
|
Since we are using bufferevent and its deferred callback option, the
|
|
bufferevent output buffer may still contain pending data when the
|
|
``writecb()`` is called. To handle this, we check whether the output
|
|
buffer is empty or not. If all of these conditions are met, we drop
|
|
connection.
|
|
|
|
Otherwise, we call ``session_send()`` to process the pending output
|
|
data. Remember that in ``send_callback()``, we must not write all data to
|
|
bufferevent to avoid excessive buffering. We continue processing pending data
|
|
when the output buffer becomes empty.
|
|
|
|
We have already described the nghttp2 callback ``send_callback()``. Let's
|
|
learn about the remaining nghttp2 callbacks setup in
|
|
``initialize_nghttp2_setup()`` function.
|
|
|
|
The ``on_begin_headers_callback()`` function is invoked when the reception of
|
|
a header block in HEADERS or PUSH_PROMISE frame is started::
|
|
|
|
static int on_begin_headers_callback(nghttp2_session *session,
|
|
const nghttp2_frame *frame,
|
|
void *user_data) {
|
|
http2_session_data *session_data = (http2_session_data *)user_data;
|
|
http2_stream_data *stream_data;
|
|
|
|
if (frame->hd.type != NGHTTP2_HEADERS ||
|
|
frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
|
|
return 0;
|
|
}
|
|
stream_data = create_http2_stream_data(session_data, frame->hd.stream_id);
|
|
nghttp2_session_set_stream_user_data(session, frame->hd.stream_id,
|
|
stream_data);
|
|
return 0;
|
|
}
|
|
|
|
We are only interested in the HEADERS frame in this function. Since
|
|
the HEADERS frame has several roles in the HTTP/2 protocol, we check
|
|
that it is a request HEADERS, which opens new stream. If the frame is
|
|
a request HEADERS, we create a ``http2_stream_data`` object to store
|
|
the stream related data. We associate the created
|
|
``http2_stream_data`` object with the stream in the nghttp2 session
|
|
object using `nghttp2_set_stream_user_data()`. The
|
|
``http2_stream_data`` object can later be easily retrieved from the
|
|
stream, without searching through the doubly linked list.
|
|
|
|
In this example server, we want to serve files relative to the current working
|
|
directory in which the program was invoked. Each header name/value pair is
|
|
emitted via ``on_header_callback`` function, which is called after
|
|
``on_begin_headers_callback()``::
|
|
|
|
static int on_header_callback(nghttp2_session *session,
|
|
const nghttp2_frame *frame, const uint8_t *name,
|
|
size_t namelen, const uint8_t *value,
|
|
size_t valuelen, uint8_t flags _U_,
|
|
void *user_data _U_) {
|
|
http2_stream_data *stream_data;
|
|
const char PATH[] = ":path";
|
|
switch (frame->hd.type) {
|
|
case NGHTTP2_HEADERS:
|
|
if (frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
|
|
break;
|
|
}
|
|
stream_data =
|
|
nghttp2_session_get_stream_user_data(session, frame->hd.stream_id);
|
|
if (!stream_data || stream_data->request_path) {
|
|
break;
|
|
}
|
|
if (namelen == sizeof(PATH) - 1 && memcmp(PATH, name, namelen) == 0) {
|
|
size_t j;
|
|
for (j = 0; j < valuelen && value[j] != '?'; ++j)
|
|
;
|
|
stream_data->request_path = percent_decode(value, j);
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
We search for the ``:path`` header field among the request headers and
|
|
store the requested path in the ``http2_stream_data`` object. In this
|
|
example program, we ignore the ``:method`` header field and always
|
|
treat the request as a GET request.
|
|
|
|
The ``on_frame_recv_callback()`` function is invoked when a frame is
|
|
fully received::
|
|
|
|
static int on_frame_recv_callback(nghttp2_session *session,
|
|
const nghttp2_frame *frame, void *user_data) {
|
|
http2_session_data *session_data = (http2_session_data *)user_data;
|
|
http2_stream_data *stream_data;
|
|
switch (frame->hd.type) {
|
|
case NGHTTP2_DATA:
|
|
case NGHTTP2_HEADERS:
|
|
/* Check that the client request has finished */
|
|
if (frame->hd.flags & NGHTTP2_FLAG_END_STREAM) {
|
|
stream_data =
|
|
nghttp2_session_get_stream_user_data(session, frame->hd.stream_id);
|
|
/* For DATA and HEADERS frame, this callback may be called after
|
|
on_stream_close_callback. Check that stream still alive. */
|
|
if (!stream_data) {
|
|
return 0;
|
|
}
|
|
return on_request_recv(session, session_data, stream_data);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
First we retrieve the ``http2_stream_data`` object associated with the
|
|
stream in ``on_begin_headers_callback()`` using
|
|
`nghttp2_session_get_stream_user_data()`. If the requested path
|
|
cannot be served for some reason (e.g. file is not found), we send a
|
|
404 response using ``error_reply()``. Otherwise, we open
|
|
the requested file and send its content. We send the header field
|
|
``:status`` as a single response header.
|
|
|
|
Sending the file content is performed by the ``send_response()`` function::
|
|
|
|
static int send_response(nghttp2_session *session, int32_t stream_id,
|
|
nghttp2_nv *nva, size_t nvlen, int fd) {
|
|
int rv;
|
|
nghttp2_data_provider data_prd;
|
|
data_prd.source.fd = fd;
|
|
data_prd.read_callback = file_read_callback;
|
|
|
|
rv = nghttp2_submit_response(session, stream_id, nva, nvlen, &data_prd);
|
|
if (rv != 0) {
|
|
warnx("Fatal error: %s", nghttp2_strerror(rv));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
nghttp2 uses the :type:`nghttp2_data_provider` structure to send the
|
|
entity body to the remote peer. The ``source`` member of this
|
|
structure is a union, which can be either a void pointer or an int
|
|
(which is intended to be used as file descriptor). In this example
|
|
server, we use it as a file descriptor. We also set the
|
|
``file_read_callback()`` callback function to read the contents of the
|
|
file::
|
|
|
|
static ssize_t file_read_callback(nghttp2_session *session _U_,
|
|
int32_t stream_id _U_, uint8_t *buf,
|
|
size_t length, uint32_t *data_flags,
|
|
nghttp2_data_source *source,
|
|
void *user_data _U_) {
|
|
int fd = source->fd;
|
|
ssize_t r;
|
|
while ((r = read(fd, buf, length)) == -1 && errno == EINTR)
|
|
;
|
|
if (r == -1) {
|
|
return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE;
|
|
}
|
|
if (r == 0) {
|
|
*data_flags |= NGHTTP2_DATA_FLAG_EOF;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
If an error occurs while reading the file, we return
|
|
:macro:`NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE`. This tells the
|
|
library to send RST_STREAM to the stream. When all data has been
|
|
read, the :macro:`NGHTTP2_DATA_FLAG_EOF` flag is set to signal nghttp2
|
|
that we have finished reading the file.
|
|
|
|
The `nghttp2_submit_response()` function is used to send the response to the
|
|
remote peer.
|
|
|
|
The ``on_stream_close_callback()`` function is invoked when the stream
|
|
is about to close::
|
|
|
|
static int on_stream_close_callback(nghttp2_session *session, int32_t stream_id,
|
|
uint32_t error_code _U_, void *user_data) {
|
|
http2_session_data *session_data = (http2_session_data *)user_data;
|
|
http2_stream_data *stream_data;
|
|
|
|
stream_data = nghttp2_session_get_stream_user_data(session, stream_id);
|
|
if (!stream_data) {
|
|
return 0;
|
|
}
|
|
remove_stream(session_data, stream_data);
|
|
delete_http2_stream_data(stream_data);
|
|
return 0;
|
|
}
|
|
|
|
Lastly, we destroy the ``http2_stream_data`` object in this function,
|
|
since the stream is about to close and we no longer need the object.
|