nghttp2/src/shrpx_worker.cc

748 lines
22 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_worker.h"
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif // HAVE_UNISTD_H
#include <memory>
#include "shrpx_tls.h"
#include "shrpx_log.h"
#include "shrpx_client_handler.h"
#include "shrpx_http2_session.h"
#include "shrpx_log_config.h"
#include "shrpx_memcached_dispatcher.h"
#ifdef HAVE_MRUBY
# include "shrpx_mruby.h"
#endif // HAVE_MRUBY
#include "util.h"
#include "template.h"
namespace shrpx {
namespace {
void eventcb(struct ev_loop *loop, ev_async *w, int revents) {
auto worker = static_cast<Worker *>(w->data);
worker->process_events();
}
} // namespace
namespace {
void mcpool_clear_cb(struct ev_loop *loop, ev_timer *w, int revents) {
auto worker = static_cast<Worker *>(w->data);
if (worker->get_worker_stat()->num_connections != 0) {
return;
}
worker->get_mcpool()->clear();
}
} // namespace
namespace {
void proc_wev_cb(struct ev_loop *loop, ev_timer *w, int revents) {
auto worker = static_cast<Worker *>(w->data);
worker->process_events();
}
} // namespace
DownstreamAddrGroup::DownstreamAddrGroup() : retired{false} {}
DownstreamAddrGroup::~DownstreamAddrGroup() {}
// DownstreamKey is used to index SharedDownstreamAddr in order to
// find the same configuration.
using DownstreamKey =
std::tuple<std::vector<std::tuple<StringRef, StringRef, StringRef, size_t,
size_t, Proto, uint32_t, uint32_t,
uint32_t, bool, bool, bool, bool>>,
bool, SessionAffinity, StringRef, StringRef,
SessionAffinityCookieSecure, int64_t, int64_t, StringRef>;
namespace {
DownstreamKey
create_downstream_key(const std::shared_ptr<SharedDownstreamAddr> &shared_addr,
const StringRef &mruby_file) {
DownstreamKey dkey;
auto &addrs = std::get<0>(dkey);
addrs.resize(shared_addr->addrs.size());
auto p = std::begin(addrs);
for (auto &a : shared_addr->addrs) {
std::get<0>(*p) = a.host;
std::get<1>(*p) = a.sni;
std::get<2>(*p) = a.group;
std::get<3>(*p) = a.fall;
std::get<4>(*p) = a.rise;
std::get<5>(*p) = a.proto;
std::get<6>(*p) = a.port;
std::get<7>(*p) = a.weight;
std::get<8>(*p) = a.group_weight;
std::get<9>(*p) = a.host_unix;
std::get<10>(*p) = a.tls;
std::get<11>(*p) = a.dns;
std::get<12>(*p) = a.upgrade_scheme;
++p;
}
std::sort(std::begin(addrs), std::end(addrs));
std::get<1>(dkey) = shared_addr->redirect_if_not_tls;
auto &affinity = shared_addr->affinity;
std::get<2>(dkey) = affinity.type;
std::get<3>(dkey) = affinity.cookie.name;
std::get<4>(dkey) = affinity.cookie.path;
std::get<5>(dkey) = affinity.cookie.secure;
auto &timeout = shared_addr->timeout;
std::get<6>(dkey) = timeout.read;
std::get<7>(dkey) = timeout.write;
std::get<8>(dkey) = mruby_file;
return dkey;
}
} // namespace
Worker::Worker(struct ev_loop *loop, SSL_CTX *sv_ssl_ctx, SSL_CTX *cl_ssl_ctx,
SSL_CTX *tls_session_cache_memcached_ssl_ctx,
tls::CertLookupTree *cert_tree,
const std::shared_ptr<TicketKeys> &ticket_keys,
ConnectionHandler *conn_handler,
std::shared_ptr<DownstreamConfig> downstreamconf)
: randgen_(util::make_mt19937()),
worker_stat_{},
dns_tracker_(loop),
loop_(loop),
sv_ssl_ctx_(sv_ssl_ctx),
cl_ssl_ctx_(cl_ssl_ctx),
cert_tree_(cert_tree),
conn_handler_(conn_handler),
ticket_keys_(ticket_keys),
connect_blocker_(
std::make_unique<ConnectBlocker>(randgen_, loop_, nullptr, nullptr)),
graceful_shutdown_(false) {
ev_async_init(&w_, eventcb);
w_.data = this;
ev_async_start(loop_, &w_);
ev_timer_init(&mcpool_clear_timer_, mcpool_clear_cb, 0., 0.);
mcpool_clear_timer_.data = this;
ev_timer_init(&proc_wev_timer_, proc_wev_cb, 0., 0.);
proc_wev_timer_.data = this;
auto &session_cacheconf = get_config()->tls.session_cache;
if (!session_cacheconf.memcached.host.empty()) {
session_cache_memcached_dispatcher_ = std::make_unique<MemcachedDispatcher>(
&session_cacheconf.memcached.addr, loop,
tls_session_cache_memcached_ssl_ctx,
StringRef{session_cacheconf.memcached.host}, &mcpool_, randgen_);
}
replace_downstream_config(std::move(downstreamconf));
}
namespace {
void ensure_enqueue_addr(
std::priority_queue<WeightGroupEntry, std::vector<WeightGroupEntry>,
WeightGroupEntryGreater> &wgpq,
WeightGroup *wg, DownstreamAddr *addr) {
uint32_t cycle;
if (!wg->pq.empty()) {
auto &top = wg->pq.top();
cycle = top.cycle;
} else {
cycle = 0;
}
addr->cycle = cycle;
addr->pending_penalty = 0;
wg->pq.push(DownstreamAddrEntry{addr, addr->seq, addr->cycle});
addr->queued = true;
if (!wg->queued) {
if (!wgpq.empty()) {
auto &top = wgpq.top();
cycle = top.cycle;
} else {
cycle = 0;
}
wg->cycle = cycle;
wg->pending_penalty = 0;
wgpq.push(WeightGroupEntry{wg, wg->seq, wg->cycle});
wg->queued = true;
}
}
} // namespace
void Worker::replace_downstream_config(
std::shared_ptr<DownstreamConfig> downstreamconf) {
for (auto &g : downstream_addr_groups_) {
g->retired = true;
auto &shared_addr = g->shared_addr;
for (auto &addr : shared_addr->addrs) {
addr.dconn_pool->remove_all();
}
}
downstreamconf_ = downstreamconf;
// Making a copy is much faster with multiple thread on
// backendconfig API call.
auto groups = downstreamconf->addr_groups;
downstream_addr_groups_ =
std::vector<std::shared_ptr<DownstreamAddrGroup>>(groups.size());
std::map<DownstreamKey, size_t> addr_groups_indexer;
#ifdef HAVE_MRUBY
// TODO It is a bit less efficient because
// mruby::create_mruby_context returns std::unique_ptr and we cannot
// use std::make_shared.
std::map<StringRef, std::shared_ptr<mruby::MRubyContext>> shared_mruby_ctxs;
#endif // HAVE_MRUBY
for (size_t i = 0; i < groups.size(); ++i) {
auto &src = groups[i];
auto &dst = downstream_addr_groups_[i];
dst = std::make_shared<DownstreamAddrGroup>();
dst->pattern =
ImmutableString{std::begin(src.pattern), std::end(src.pattern)};
auto shared_addr = std::make_shared<SharedDownstreamAddr>();
shared_addr->addrs.resize(src.addrs.size());
shared_addr->affinity.type = src.affinity.type;
if (src.affinity.type == SessionAffinity::COOKIE) {
shared_addr->affinity.cookie.name =
make_string_ref(shared_addr->balloc, src.affinity.cookie.name);
if (!src.affinity.cookie.path.empty()) {
shared_addr->affinity.cookie.path =
make_string_ref(shared_addr->balloc, src.affinity.cookie.path);
}
shared_addr->affinity.cookie.secure = src.affinity.cookie.secure;
}
shared_addr->affinity_hash = src.affinity_hash;
shared_addr->redirect_if_not_tls = src.redirect_if_not_tls;
shared_addr->timeout.read = src.timeout.read;
shared_addr->timeout.write = src.timeout.write;
for (size_t j = 0; j < src.addrs.size(); ++j) {
auto &src_addr = src.addrs[j];
auto &dst_addr = shared_addr->addrs[j];
dst_addr.addr = src_addr.addr;
dst_addr.host = make_string_ref(shared_addr->balloc, src_addr.host);
dst_addr.hostport =
make_string_ref(shared_addr->balloc, src_addr.hostport);
dst_addr.port = src_addr.port;
dst_addr.host_unix = src_addr.host_unix;
dst_addr.weight = src_addr.weight;
dst_addr.group = make_string_ref(shared_addr->balloc, src_addr.group);
dst_addr.group_weight = src_addr.group_weight;
dst_addr.proto = src_addr.proto;
dst_addr.tls = src_addr.tls;
dst_addr.sni = make_string_ref(shared_addr->balloc, src_addr.sni);
dst_addr.fall = src_addr.fall;
dst_addr.rise = src_addr.rise;
dst_addr.dns = src_addr.dns;
dst_addr.upgrade_scheme = src_addr.upgrade_scheme;
auto shared_addr_ptr = shared_addr.get();
dst_addr.connect_blocker = std::make_unique<ConnectBlocker>(
randgen_, loop_, nullptr, [shared_addr_ptr, &dst_addr]() {
if (!dst_addr.queued) {
if (!dst_addr.wg) {
return;
}
ensure_enqueue_addr(shared_addr_ptr->pq, dst_addr.wg, &dst_addr);
}
});
dst_addr.live_check = std::make_unique<LiveCheck>(
loop_, cl_ssl_ctx_, this, &dst_addr, randgen_);
}
#ifdef HAVE_MRUBY
auto mruby_ctx_it = shared_mruby_ctxs.find(src.mruby_file);
if (mruby_ctx_it == std::end(shared_mruby_ctxs)) {
shared_addr->mruby_ctx = mruby::create_mruby_context(src.mruby_file);
assert(shared_addr->mruby_ctx);
shared_mruby_ctxs.emplace(src.mruby_file, shared_addr->mruby_ctx);
} else {
shared_addr->mruby_ctx = (*mruby_ctx_it).second;
}
#endif // HAVE_MRUBY
// share the connection if patterns have the same set of backend
// addresses.
auto dkey = create_downstream_key(shared_addr, src.mruby_file);
auto it = addr_groups_indexer.find(dkey);
if (it == std::end(addr_groups_indexer)) {
std::shuffle(std::begin(shared_addr->addrs), std::end(shared_addr->addrs),
randgen_);
size_t seq = 0;
for (auto &addr : shared_addr->addrs) {
addr.dconn_pool = std::make_unique<DownstreamConnectionPool>();
addr.seq = seq++;
}
if (shared_addr->affinity.type == SessionAffinity::NONE) {
std::map<StringRef, WeightGroup *> wgs;
size_t num_wgs = 0;
for (auto &addr : shared_addr->addrs) {
if (wgs.find(addr.group) == std::end(wgs)) {
++num_wgs;
wgs.emplace(addr.group, nullptr);
}
}
shared_addr->wgs = std::vector<WeightGroup>(num_wgs);
for (auto &addr : shared_addr->addrs) {
auto &wg = wgs[addr.group];
if (wg == nullptr) {
wg = &shared_addr->wgs[--num_wgs];
wg->seq = num_wgs;
}
wg->weight = addr.group_weight;
wg->pq.push(DownstreamAddrEntry{&addr, addr.seq, addr.cycle});
addr.queued = true;
addr.wg = wg;
}
assert(num_wgs == 0);
for (auto &kv : wgs) {
shared_addr->pq.push(
WeightGroupEntry{kv.second, kv.second->seq, kv.second->cycle});
kv.second->queued = true;
}
}
dst->shared_addr = shared_addr;
addr_groups_indexer.emplace(std::move(dkey), i);
} else {
auto &g = *(std::begin(downstream_addr_groups_) + (*it).second);
if (LOG_ENABLED(INFO)) {
LOG(INFO) << dst->pattern << " shares the same backend group with "
<< g->pattern;
}
dst->shared_addr = g->shared_addr;
}
}
}
Worker::~Worker() {
ev_async_stop(loop_, &w_);
ev_timer_stop(loop_, &mcpool_clear_timer_);
ev_timer_stop(loop_, &proc_wev_timer_);
}
void Worker::schedule_clear_mcpool() {
// libev manual says: "If the watcher is already active nothing will
// happen." Since we don't change any timeout here, we don't have
// to worry about querying ev_is_active.
ev_timer_start(loop_, &mcpool_clear_timer_);
}
void Worker::wait() {
#ifndef NOTHREADS
fut_.get();
#endif // !NOTHREADS
}
void Worker::run_async() {
#ifndef NOTHREADS
fut_ = std::async(std::launch::async, [this] {
(void)reopen_log_files(get_config()->logging);
ev_run(loop_);
delete_log_config();
});
#endif // !NOTHREADS
}
void Worker::send(const WorkerEvent &event) {
{
std::lock_guard<std::mutex> g(m_);
q_.push_back(event);
}
ev_async_send(loop_, &w_);
}
void Worker::process_events() {
WorkerEvent wev;
{
std::lock_guard<std::mutex> g(m_);
// Process event one at a time. This is important for
// WorkerEventType::NEW_CONNECTION event since accepting large
// number of new connections at once may delay time to 1st byte
// for existing connections.
if (q_.empty()) {
ev_timer_stop(loop_, &proc_wev_timer_);
return;
}
wev = q_.front();
q_.pop_front();
}
ev_timer_start(loop_, &proc_wev_timer_);
auto config = get_config();
auto worker_connections = config->conn.upstream.worker_connections;
switch (wev.type) {
case WorkerEventType::NEW_CONNECTION: {
if (LOG_ENABLED(INFO)) {
WLOG(INFO, this) << "WorkerEvent: client_fd=" << wev.client_fd
<< ", addrlen=" << wev.client_addrlen;
}
if (worker_stat_.num_connections >= worker_connections) {
if (LOG_ENABLED(INFO)) {
WLOG(INFO, this) << "Too many connections >= " << worker_connections;
}
close(wev.client_fd);
break;
}
auto client_handler =
tls::accept_connection(this, wev.client_fd, &wev.client_addr.sa,
wev.client_addrlen, wev.faddr);
if (!client_handler) {
if (LOG_ENABLED(INFO)) {
WLOG(ERROR, this) << "ClientHandler creation failed";
}
close(wev.client_fd);
break;
}
if (LOG_ENABLED(INFO)) {
WLOG(INFO, this) << "CLIENT_HANDLER:" << client_handler << " created ";
}
break;
}
case WorkerEventType::REOPEN_LOG:
WLOG(NOTICE, this) << "Reopening log files: worker process (thread " << this
<< ")";
reopen_log_files(config->logging);
break;
case WorkerEventType::GRACEFUL_SHUTDOWN:
WLOG(NOTICE, this) << "Graceful shutdown commencing";
graceful_shutdown_ = true;
if (worker_stat_.num_connections == 0) {
ev_break(loop_);
return;
}
break;
case WorkerEventType::REPLACE_DOWNSTREAM:
WLOG(NOTICE, this) << "Replace downstream";
replace_downstream_config(wev.downstreamconf);
break;
default:
if (LOG_ENABLED(INFO)) {
WLOG(INFO, this) << "unknown event type " << static_cast<int>(wev.type);
}
}
}
tls::CertLookupTree *Worker::get_cert_lookup_tree() const { return cert_tree_; }
std::shared_ptr<TicketKeys> Worker::get_ticket_keys() {
#ifdef HAVE_ATOMIC_STD_SHARED_PTR
return std::atomic_load_explicit(&ticket_keys_, std::memory_order_acquire);
#else // !HAVE_ATOMIC_STD_SHARED_PTR
std::lock_guard<std::mutex> g(ticket_keys_m_);
return ticket_keys_;
#endif // !HAVE_ATOMIC_STD_SHARED_PTR
}
void Worker::set_ticket_keys(std::shared_ptr<TicketKeys> ticket_keys) {
#ifdef HAVE_ATOMIC_STD_SHARED_PTR
// This is single writer
std::atomic_store_explicit(&ticket_keys_, std::move(ticket_keys),
std::memory_order_release);
#else // !HAVE_ATOMIC_STD_SHARED_PTR
std::lock_guard<std::mutex> g(ticket_keys_m_);
ticket_keys_ = std::move(ticket_keys);
#endif // !HAVE_ATOMIC_STD_SHARED_PTR
}
WorkerStat *Worker::get_worker_stat() { return &worker_stat_; }
struct ev_loop *Worker::get_loop() const {
return loop_;
}
SSL_CTX *Worker::get_sv_ssl_ctx() const { return sv_ssl_ctx_; }
SSL_CTX *Worker::get_cl_ssl_ctx() const { return cl_ssl_ctx_; }
void Worker::set_graceful_shutdown(bool f) { graceful_shutdown_ = f; }
bool Worker::get_graceful_shutdown() const { return graceful_shutdown_; }
MemchunkPool *Worker::get_mcpool() { return &mcpool_; }
MemcachedDispatcher *Worker::get_session_cache_memcached_dispatcher() {
return session_cache_memcached_dispatcher_.get();
}
std::mt19937 &Worker::get_randgen() { return randgen_; }
#ifdef HAVE_MRUBY
int Worker::create_mruby_context() {
mruby_ctx_ = mruby::create_mruby_context(StringRef{get_config()->mruby_file});
if (!mruby_ctx_) {
return -1;
}
return 0;
}
mruby::MRubyContext *Worker::get_mruby_context() const {
return mruby_ctx_.get();
}
#endif // HAVE_MRUBY
std::vector<std::shared_ptr<DownstreamAddrGroup>> &
Worker::get_downstream_addr_groups() {
return downstream_addr_groups_;
}
ConnectBlocker *Worker::get_connect_blocker() const {
return connect_blocker_.get();
}
const DownstreamConfig *Worker::get_downstream_config() const {
return downstreamconf_.get();
}
ConnectionHandler *Worker::get_connection_handler() const {
return conn_handler_;
}
DNSTracker *Worker::get_dns_tracker() { return &dns_tracker_; }
namespace {
size_t match_downstream_addr_group_host(
const RouterConfig &routerconf, const StringRef &host,
const StringRef &path,
const std::vector<std::shared_ptr<DownstreamAddrGroup>> &groups,
size_t catch_all, BlockAllocator &balloc) {
const auto &router = routerconf.router;
const auto &rev_wildcard_router = routerconf.rev_wildcard_router;
const auto &wildcard_patterns = routerconf.wildcard_patterns;
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Perform mapping selection, using host=" << host
<< ", path=" << path;
}
auto group = router.match(host, path);
if (group != -1) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Found pattern with query " << host << path
<< ", matched pattern=" << groups[group]->pattern;
}
return group;
}
if (!wildcard_patterns.empty() && !host.empty()) {
auto rev_host_src = make_byte_ref(balloc, host.size() - 1);
auto ep =
std::copy(std::begin(host) + 1, std::end(host), rev_host_src.base);
std::reverse(rev_host_src.base, ep);
auto rev_host = StringRef{rev_host_src.base, ep};
ssize_t best_group = -1;
const RNode *last_node = nullptr;
for (;;) {
size_t nread = 0;
auto wcidx =
rev_wildcard_router.match_prefix(&nread, &last_node, rev_host);
if (wcidx == -1) {
break;
}
rev_host = StringRef{std::begin(rev_host) + nread, std::end(rev_host)};
auto &wc = wildcard_patterns[wcidx];
auto group = wc.router.match(StringRef{}, path);
if (group != -1) {
// We sorted wildcard_patterns in a way that first match is the
// longest host pattern.
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Found wildcard pattern with query " << host << path
<< ", matched pattern=" << groups[group]->pattern;
}
best_group = group;
}
}
if (best_group != -1) {
return best_group;
}
}
group = router.match(StringRef::from_lit(""), path);
if (group != -1) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Found pattern with query " << path
<< ", matched pattern=" << groups[group]->pattern;
}
return group;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "None match. Use catch-all pattern";
}
return catch_all;
}
} // namespace
size_t match_downstream_addr_group(
const RouterConfig &routerconf, const StringRef &hostport,
const StringRef &raw_path,
const std::vector<std::shared_ptr<DownstreamAddrGroup>> &groups,
size_t catch_all, BlockAllocator &balloc) {
if (std::find(std::begin(hostport), std::end(hostport), '/') !=
std::end(hostport)) {
// We use '/' specially, and if '/' is included in host, it breaks
// our code. Select catch-all case.
return catch_all;
}
auto fragment = std::find(std::begin(raw_path), std::end(raw_path), '#');
auto query = std::find(std::begin(raw_path), fragment, '?');
auto path = StringRef{std::begin(raw_path), query};
if (path.empty() || path[0] != '/') {
path = StringRef::from_lit("/");
}
if (hostport.empty()) {
return match_downstream_addr_group_host(routerconf, hostport, path, groups,
catch_all, balloc);
}
StringRef host;
if (hostport[0] == '[') {
// assume this is IPv6 numeric address
auto p = std::find(std::begin(hostport), std::end(hostport), ']');
if (p == std::end(hostport)) {
return catch_all;
}
if (p + 1 < std::end(hostport) && *(p + 1) != ':') {
return catch_all;
}
host = StringRef{std::begin(hostport), p + 1};
} else {
auto p = std::find(std::begin(hostport), std::end(hostport), ':');
if (p == std::begin(hostport)) {
return catch_all;
}
host = StringRef{std::begin(hostport), p};
}
if (std::find_if(std::begin(host), std::end(host), [](char c) {
return 'A' <= c || c <= 'Z';
}) != std::end(host)) {
auto low_host = make_byte_ref(balloc, host.size() + 1);
auto ep = std::copy(std::begin(host), std::end(host), low_host.base);
*ep = '\0';
util::inp_strlower(low_host.base, ep);
host = StringRef{low_host.base, ep};
}
return match_downstream_addr_group_host(routerconf, host, path, groups,
catch_all, balloc);
}
void downstream_failure(DownstreamAddr *addr, const Address *raddr) {
const auto &connect_blocker = addr->connect_blocker;
if (connect_blocker->in_offline()) {
return;
}
connect_blocker->on_failure();
if (addr->fall == 0) {
return;
}
auto fail_count = connect_blocker->get_fail_count();
if (fail_count >= addr->fall) {
if (raddr) {
LOG(WARN) << "Could not connect to " << util::to_numeric_addr(raddr)
<< " " << fail_count
<< " times in a row; considered as offline";
} else {
LOG(WARN) << "Could not connect to " << addr->host << ":" << addr->port
<< " " << fail_count
<< " times in a row; considered as offline";
}
connect_blocker->offline();
if (addr->rise) {
addr->live_check->schedule();
}
}
}
} // namespace shrpx