nghttp2/src/shrpx_ssl.cc

1398 lines
41 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_ssl.h"
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif // HAVE_SYS_SOCKET_H
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif // HAVE_NETDB_H
#include <netinet/tcp.h>
#include <pthread.h>
#include <sys/types.h>
#include <vector>
#include <string>
#include <iomanip>
#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/rand.h>
#include <openssl/dh.h>
#include <nghttp2/nghttp2.h>
#ifdef HAVE_SPDYLAY
#include <spdylay/spdylay.h>
#endif // HAVE_SPDYLAY
#include "shrpx_log.h"
#include "shrpx_client_handler.h"
#include "shrpx_config.h"
#include "shrpx_worker.h"
#include "shrpx_downstream_connection_pool.h"
#include "shrpx_http2_session.h"
#include "shrpx_memcached_request.h"
#include "shrpx_memcached_dispatcher.h"
#include "util.h"
#include "ssl.h"
#include "template.h"
using namespace nghttp2;
namespace shrpx {
namespace ssl {
namespace {
int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
void *arg) {
auto &prefs = get_config()->tls.alpn_prefs;
*data = prefs.data();
*len = prefs.size();
return SSL_TLSEXT_ERR_OK;
}
} // namespace
namespace {
int verify_callback(int preverify_ok, X509_STORE_CTX *ctx) {
if (!preverify_ok) {
int err = X509_STORE_CTX_get_error(ctx);
int depth = X509_STORE_CTX_get_error_depth(ctx);
LOG(ERROR) << "client certificate verify error:num=" << err << ":"
<< X509_verify_cert_error_string(err) << ":depth=" << depth;
}
return preverify_ok;
}
} // namespace
// This function is meant be called from master process, hence the
// call exit(3).
std::vector<unsigned char>
set_alpn_prefs(const std::vector<std::string> &protos) {
size_t len = 0;
for (const auto &proto : protos) {
if (proto.size() > 255) {
LOG(FATAL) << "Too long ALPN identifier: " << proto.size();
exit(EXIT_FAILURE);
}
len += 1 + proto.size();
}
if (len > (1 << 16) - 1) {
LOG(FATAL) << "Too long ALPN identifier list: " << len;
exit(EXIT_FAILURE);
}
auto out = std::vector<unsigned char>(len);
auto ptr = out.data();
for (const auto &proto : protos) {
*ptr++ = proto.size();
memcpy(ptr, proto.c_str(), proto.size());
ptr += proto.size();
}
return out;
}
namespace {
int ssl_pem_passwd_cb(char *buf, int size, int rwflag, void *user_data) {
auto config = static_cast<Config *>(user_data);
auto len = static_cast<int>(config->tls.private_key_passwd.size());
if (size < len + 1) {
LOG(ERROR) << "ssl_pem_passwd_cb: buf is too small " << size;
return 0;
}
// Copy string including last '\0'.
memcpy(buf, config->tls.private_key_passwd.c_str(), len + 1);
return len;
}
} // namespace
namespace {
int servername_callback(SSL *ssl, int *al, void *arg) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
auto handler = static_cast<ClientHandler *>(conn->data);
auto worker = handler->get_worker();
auto cert_tree = worker->get_cert_lookup_tree();
if (cert_tree) {
const char *hostname = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (hostname) {
auto ssl_ctx = cert_tree->lookup(hostname, strlen(hostname));
if (ssl_ctx) {
SSL_set_SSL_CTX(ssl, ssl_ctx);
}
}
}
return SSL_TLSEXT_ERR_OK;
}
} // namespace
#ifndef OPENSSL_IS_BORINGSSL
namespace {
std::shared_ptr<std::vector<uint8_t>>
get_ocsp_data(TLSContextData *tls_ctx_data) {
std::lock_guard<std::mutex> g(tls_ctx_data->mu);
return tls_ctx_data->ocsp_data;
}
} // namespace
namespace {
int ocsp_resp_cb(SSL *ssl, void *arg) {
auto ssl_ctx = SSL_get_SSL_CTX(ssl);
auto tls_ctx_data =
static_cast<TLSContextData *>(SSL_CTX_get_app_data(ssl_ctx));
auto data = get_ocsp_data(tls_ctx_data);
if (!data) {
return SSL_TLSEXT_ERR_OK;
}
auto buf =
static_cast<uint8_t *>(CRYPTO_malloc(data->size(), __FILE__, __LINE__));
if (!buf) {
return SSL_TLSEXT_ERR_OK;
}
std::copy(std::begin(*data), std::end(*data), buf);
SSL_set_tlsext_status_ocsp_resp(ssl, buf, data->size());
return SSL_TLSEXT_ERR_OK;
}
} // namespace
#endif // OPENSSL_IS_BORINGSSL
constexpr char MEMCACHED_SESSION_CACHE_KEY_PREFIX[] =
"nghttpx:tls-session-cache:";
namespace {
int tls_session_new_cb(SSL *ssl, SSL_SESSION *session) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
auto handler = static_cast<ClientHandler *>(conn->data);
auto worker = handler->get_worker();
auto dispatcher = worker->get_session_cache_memcached_dispatcher();
const unsigned char *id;
unsigned int idlen;
id = SSL_SESSION_get_id(session, &idlen);
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Memached: cache session, id=" << util::format_hex(id, idlen);
}
auto req = make_unique<MemcachedRequest>();
req->op = MEMCACHED_OP_ADD;
req->key = MEMCACHED_SESSION_CACHE_KEY_PREFIX;
req->key += util::format_hex(id, idlen);
auto sessionlen = i2d_SSL_SESSION(session, nullptr);
req->value.resize(sessionlen);
auto buf = &req->value[0];
i2d_SSL_SESSION(session, &buf);
req->expiry = 12_h;
req->cb = [](MemcachedRequest *req, MemcachedResult res) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Memcached: session cache done. key=" << req->key
<< ", status_code=" << res.status_code << ", value="
<< std::string(std::begin(res.value), std::end(res.value));
}
if (res.status_code != 0) {
LOG(WARN) << "Memcached: failed to cache session key=" << req->key
<< ", status_code=" << res.status_code << ", value="
<< std::string(std::begin(res.value), std::end(res.value));
}
};
assert(!req->canceled);
dispatcher->add_request(std::move(req));
return 0;
}
} // namespace
namespace {
SSL_SESSION *tls_session_get_cb(SSL *ssl, unsigned char *id, int idlen,
int *copy) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
auto handler = static_cast<ClientHandler *>(conn->data);
auto worker = handler->get_worker();
auto dispatcher = worker->get_session_cache_memcached_dispatcher();
if (conn->tls.cached_session) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Memcached: found cached session, id="
<< util::format_hex(id, idlen);
}
// This is required, without this, memory leak occurs.
*copy = 0;
auto session = conn->tls.cached_session;
conn->tls.cached_session = nullptr;
return session;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Memcached: get cached session, id="
<< util::format_hex(id, idlen);
}
auto req = make_unique<MemcachedRequest>();
req->op = MEMCACHED_OP_GET;
req->key = MEMCACHED_SESSION_CACHE_KEY_PREFIX;
req->key += util::format_hex(id, idlen);
req->cb = [conn](MemcachedRequest *, MemcachedResult res) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Memcached: returned status code " << res.status_code;
}
// We might stop reading, so start it again
conn->rlimit.startw();
ev_timer_again(conn->loop, &conn->rt);
conn->wlimit.startw();
ev_timer_again(conn->loop, &conn->wt);
conn->tls.cached_session_lookup_req = nullptr;
if (res.status_code != 0) {
conn->tls.handshake_state = TLS_CONN_CANCEL_SESSION_CACHE;
return;
}
const uint8_t *p = res.value.data();
auto session = d2i_SSL_SESSION(nullptr, &p, res.value.size());
if (!session) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "cannot materialize session";
}
conn->tls.handshake_state = TLS_CONN_CANCEL_SESSION_CACHE;
return;
}
conn->tls.cached_session = session;
conn->tls.handshake_state = TLS_CONN_GOT_SESSION_CACHE;
};
conn->tls.handshake_state = TLS_CONN_WAIT_FOR_SESSION_CACHE;
conn->tls.cached_session_lookup_req = req.get();
dispatcher->add_request(std::move(req));
return nullptr;
}
} // namespace
namespace {
int ticket_key_cb(SSL *ssl, unsigned char *key_name, unsigned char *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
auto handler = static_cast<ClientHandler *>(conn->data);
auto worker = handler->get_worker();
auto ticket_keys = worker->get_ticket_keys();
if (!ticket_keys) {
// No ticket keys available.
return -1;
}
auto &keys = ticket_keys->keys;
assert(!keys.empty());
if (enc) {
if (RAND_bytes(iv, EVP_MAX_IV_LENGTH) == 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "session ticket key: RAND_bytes failed";
}
return -1;
}
auto &key = keys[0];
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "encrypt session ticket key: "
<< util::format_hex(key.data.name);
}
std::copy(std::begin(key.data.name), std::end(key.data.name), key_name);
EVP_EncryptInit_ex(ctx, get_config()->tls.ticket.cipher, nullptr,
key.data.enc_key.data(), iv);
HMAC_Init_ex(hctx, key.data.hmac_key.data(), key.hmac_keylen, key.hmac,
nullptr);
return 1;
}
size_t i;
for (i = 0; i < keys.size(); ++i) {
auto &key = keys[i];
if (std::equal(std::begin(key.data.name), std::end(key.data.name),
key_name)) {
break;
}
}
if (i == keys.size()) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "session ticket key "
<< util::format_hex(key_name, 16) << " not found";
}
return 0;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "decrypt session ticket key: "
<< util::format_hex(key_name, 16);
}
auto &key = keys[i];
HMAC_Init_ex(hctx, key.data.hmac_key.data(), key.hmac_keylen, key.hmac,
nullptr);
EVP_DecryptInit_ex(ctx, key.cipher, nullptr, key.data.enc_key.data(), iv);
return i == 0 ? 1 : 2;
}
} // namespace
namespace {
void info_callback(const SSL *ssl, int where, int ret) {
// To mitigate possible DOS attack using lots of renegotiations, we
// disable renegotiation. Since OpenSSL does not provide an easy way
// to disable it, we check that renegotiation is started in this
// callback.
if (where & SSL_CB_HANDSHAKE_START) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
if (conn && conn->tls.initial_handshake_done) {
auto handler = static_cast<ClientHandler *>(conn->data);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "TLS renegotiation started";
}
handler->start_immediate_shutdown();
}
}
}
} // namespace
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
namespace {
int alpn_select_proto_cb(SSL *ssl, const unsigned char **out,
unsigned char *outlen, const unsigned char *in,
unsigned int inlen, void *arg) {
// We assume that get_config()->npn_list contains ALPN protocol
// identifier sorted by preference order. So we just break when we
// found the first overlap.
for (const auto &target_proto_id : get_config()->tls.npn_list) {
for (auto p = in, end = in + inlen; p < end;) {
auto proto_id = p + 1;
auto proto_len = *p;
if (proto_id + proto_len <= end &&
util::streq(target_proto_id.c_str(), target_proto_id.size(), proto_id,
proto_len)) {
*out = reinterpret_cast<const unsigned char *>(proto_id);
*outlen = proto_len;
return SSL_TLSEXT_ERR_OK;
}
p += 1 + proto_len;
}
}
return SSL_TLSEXT_ERR_NOACK;
}
} // namespace
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
namespace {
constexpr const char *tls_names[] = {"TLSv1.2", "TLSv1.1", "TLSv1.0"};
constexpr size_t tls_namelen = array_size(tls_names);
constexpr long int tls_masks[] = {SSL_OP_NO_TLSv1_2, SSL_OP_NO_TLSv1_1,
SSL_OP_NO_TLSv1};
} // namespace
long int create_tls_proto_mask(const std::vector<std::string> &tls_proto_list) {
long int res = 0;
for (size_t i = 0; i < tls_namelen; ++i) {
size_t j;
for (j = 0; j < tls_proto_list.size(); ++j) {
if (util::strieq(tls_names[i], tls_proto_list[j])) {
break;
}
}
if (j == tls_proto_list.size()) {
res |= tls_masks[i];
}
}
return res;
}
SSL_CTX *create_ssl_context(const char *private_key_file, const char *cert_file
#ifdef HAVE_NEVERBLEED
,
neverbleed_t *nb
#endif // HAVE_NEVERBLEED
) {
auto ssl_ctx = SSL_CTX_new(SSLv23_server_method());
if (!ssl_ctx) {
LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
constexpr auto ssl_opts =
(SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) | SSL_OP_NO_SSLv2 |
SSL_OP_NO_SSLv3 | SSL_OP_NO_COMPRESSION |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | SSL_OP_SINGLE_ECDH_USE |
SSL_OP_SINGLE_DH_USE | SSL_OP_CIPHER_SERVER_PREFERENCE;
auto &tlsconf = get_config()->tls;
SSL_CTX_set_options(ssl_ctx, ssl_opts | tlsconf.tls_proto_mask);
const unsigned char sid_ctx[] = "shrpx";
SSL_CTX_set_session_id_context(ssl_ctx, sid_ctx, sizeof(sid_ctx) - 1);
SSL_CTX_set_session_cache_mode(ssl_ctx, SSL_SESS_CACHE_SERVER);
if (!tlsconf.session_cache.memcached.host.empty()) {
SSL_CTX_sess_set_new_cb(ssl_ctx, tls_session_new_cb);
SSL_CTX_sess_set_get_cb(ssl_ctx, tls_session_get_cb);
}
SSL_CTX_set_timeout(ssl_ctx, tlsconf.session_timeout.count());
const char *ciphers;
if (!tlsconf.ciphers.empty()) {
ciphers = tlsconf.ciphers.c_str();
} else {
ciphers = nghttp2::ssl::DEFAULT_CIPHER_LIST;
}
if (SSL_CTX_set_cipher_list(ssl_ctx, ciphers) == 0) {
LOG(FATAL) << "SSL_CTX_set_cipher_list " << ciphers
<< " failed: " << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
#ifndef OPENSSL_NO_EC
// Disabled SSL_CTX_set_ecdh_auto, because computational cost of
// chosen curve is much higher than P-256.
// #if OPENSSL_VERSION_NUMBER >= 0x10002000L
// SSL_CTX_set_ecdh_auto(ssl_ctx, 1);
// #else // OPENSSL_VERSION_NUBMER < 0x10002000L
// Use P-256, which is sufficiently secure at the time of this
// writing.
auto ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
if (ecdh == nullptr) {
LOG(FATAL) << "EC_KEY_new_by_curv_name failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_tmp_ecdh(ssl_ctx, ecdh);
EC_KEY_free(ecdh);
// #endif // OPENSSL_VERSION_NUBMER < 0x10002000L
#endif // OPENSSL_NO_EC
if (!tlsconf.dh_param_file.empty()) {
// Read DH parameters from file
auto bio = BIO_new_file(tlsconf.dh_param_file.c_str(), "r");
if (bio == nullptr) {
LOG(FATAL) << "BIO_new_file() failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
auto dh = PEM_read_bio_DHparams(bio, nullptr, nullptr, nullptr);
if (dh == nullptr) {
LOG(FATAL) << "PEM_read_bio_DHparams() failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_tmp_dh(ssl_ctx, dh);
DH_free(dh);
BIO_free(bio);
}
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
if (!tlsconf.private_key_passwd.empty()) {
SSL_CTX_set_default_passwd_cb(ssl_ctx, ssl_pem_passwd_cb);
SSL_CTX_set_default_passwd_cb_userdata(ssl_ctx, (void *)get_config());
}
#ifndef HAVE_NEVERBLEED
if (SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file,
SSL_FILETYPE_PEM) != 1) {
LOG(FATAL) << "SSL_CTX_use_PrivateKey_file failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
}
#else // HAVE_NEVERBLEED
std::array<char, NEVERBLEED_ERRBUF_SIZE> errbuf;
if (neverbleed_load_private_key_file(nb, ssl_ctx, private_key_file,
errbuf.data()) != 1) {
LOG(FATAL) << "neverbleed_load_private_key_file failed: " << errbuf.data();
DIE();
}
#endif // HAVE_NEVERBLEED
if (SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) {
LOG(FATAL) << "SSL_CTX_use_certificate_file failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
if (SSL_CTX_check_private_key(ssl_ctx) != 1) {
LOG(FATAL) << "SSL_CTX_check_private_key failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
if (tlsconf.client_verify.enabled) {
if (!tlsconf.client_verify.cacert.empty()) {
if (SSL_CTX_load_verify_locations(
ssl_ctx, tlsconf.client_verify.cacert.c_str(), nullptr) != 1) {
LOG(FATAL) << "Could not load trusted ca certificates from "
<< tlsconf.client_verify.cacert << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
// It is heard that SSL_CTX_load_verify_locations() may leave
// error even though it returns success. See
// http://forum.nginx.org/read.php?29,242540
ERR_clear_error();
auto list = SSL_load_client_CA_file(tlsconf.client_verify.cacert.c_str());
if (!list) {
LOG(FATAL) << "Could not load ca certificates from "
<< tlsconf.client_verify.cacert << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_client_CA_list(ssl_ctx, list);
}
SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE |
SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
verify_callback);
}
SSL_CTX_set_tlsext_servername_callback(ssl_ctx, servername_callback);
SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx, ticket_key_cb);
#ifndef OPENSSL_IS_BORINGSSL
SSL_CTX_set_tlsext_status_cb(ssl_ctx, ocsp_resp_cb);
#endif // OPENSSL_IS_BORINGSSL
SSL_CTX_set_info_callback(ssl_ctx, info_callback);
// NPN advertisement
SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, nullptr);
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
// ALPN selection callback
SSL_CTX_set_alpn_select_cb(ssl_ctx, alpn_select_proto_cb, nullptr);
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
auto tls_ctx_data = new TLSContextData();
tls_ctx_data->cert_file = cert_file;
SSL_CTX_set_app_data(ssl_ctx, tls_ctx_data);
return ssl_ctx;
}
namespace {
int select_h2_next_proto_cb(SSL *ssl, unsigned char **out,
unsigned char *outlen, const unsigned char *in,
unsigned int inlen, void *arg) {
if (!util::select_h2(const_cast<const unsigned char **>(out), outlen, in,
inlen)) {
return SSL_TLSEXT_ERR_NOACK;
}
return SSL_TLSEXT_ERR_OK;
}
} // namespace
namespace {
int select_h1_next_proto_cb(SSL *ssl, unsigned char **out,
unsigned char *outlen, const unsigned char *in,
unsigned int inlen, void *arg) {
auto end = in + inlen;
for (; in < end;) {
if (util::streq_l(NGHTTP2_H1_1_ALPN, in, in[0] + 1)) {
*out = const_cast<unsigned char *>(in) + 1;
*outlen = in[0];
return SSL_TLSEXT_ERR_OK;
}
in += in[0] + 1;
}
return SSL_TLSEXT_ERR_NOACK;
}
} // namespace
namespace {
int select_next_proto_cb(SSL *ssl, unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg) {
auto conn = static_cast<Connection *>(SSL_get_app_data(ssl));
switch (conn->proto) {
case PROTO_HTTP1:
return select_h1_next_proto_cb(ssl, out, outlen, in, inlen, arg);
case PROTO_HTTP2:
return select_h2_next_proto_cb(ssl, out, outlen, in, inlen, arg);
default:
return SSL_TLSEXT_ERR_NOACK;
}
}
} // namespace
SSL_CTX *create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
neverbleed_t *nb,
#endif // HAVE_NEVERBLEED
const StringRef &cacert, const StringRef &cert_file,
const StringRef &private_key_file,
int (*next_proto_select_cb)(SSL *s, unsigned char **out,
unsigned char *outlen, const unsigned char *in,
unsigned int inlen, void *arg)) {
auto ssl_ctx = SSL_CTX_new(SSLv23_client_method());
if (!ssl_ctx) {
LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
constexpr auto ssl_opts = (SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) |
SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 |
SSL_OP_NO_COMPRESSION |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION;
auto &tlsconf = get_config()->tls;
SSL_CTX_set_options(ssl_ctx, ssl_opts | tlsconf.tls_proto_mask);
const char *ciphers;
if (!tlsconf.ciphers.empty()) {
ciphers = tlsconf.ciphers.c_str();
} else {
ciphers = nghttp2::ssl::DEFAULT_CIPHER_LIST;
}
if (SSL_CTX_set_cipher_list(ssl_ctx, ciphers) == 0) {
LOG(FATAL) << "SSL_CTX_set_cipher_list " << ciphers
<< " failed: " << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
if (SSL_CTX_set_default_verify_paths(ssl_ctx) != 1) {
LOG(WARN) << "Could not load system trusted ca certificates: "
<< ERR_error_string(ERR_get_error(), nullptr);
}
if (!cacert.empty()) {
if (SSL_CTX_load_verify_locations(ssl_ctx, cacert.c_str(), nullptr) != 1) {
LOG(FATAL) << "Could not load trusted ca certificates from " << cacert
<< ": " << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
}
if (!cert_file.empty()) {
if (SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file.c_str()) != 1) {
LOG(FATAL) << "Could not load client certificate from " << cert_file
<< ": " << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
}
if (!private_key_file.empty()) {
#ifndef HAVE_NEVERBLEED
if (SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file.c_str(),
SSL_FILETYPE_PEM) != 1) {
LOG(FATAL) << "Could not load client private key from "
<< private_key_file << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
#else // HAVE_NEVERBLEED
std::array<char, NEVERBLEED_ERRBUF_SIZE> errbuf;
if (neverbleed_load_private_key_file(nb, ssl_ctx, private_key_file.c_str(),
errbuf.data()) != 1) {
LOG(FATAL) << "neverbleed_load_private_key_file: could not load client "
"private key from " << private_key_file << ": "
<< errbuf.data();
DIE();
}
#endif // HAVE_NEVERBLEED
}
// NPN selection callback. This is required to set SSL_CTX because
// OpenSSL does not offer SSL_set_next_proto_select_cb.
SSL_CTX_set_next_proto_select_cb(ssl_ctx, next_proto_select_cb, nullptr);
return ssl_ctx;
}
SSL *create_ssl(SSL_CTX *ssl_ctx) {
auto ssl = SSL_new(ssl_ctx);
if (!ssl) {
LOG(ERROR) << "SSL_new() failed: " << ERR_error_string(ERR_get_error(),
nullptr);
return nullptr;
}
return ssl;
}
ClientHandler *accept_connection(Worker *worker, int fd, sockaddr *addr,
int addrlen, const UpstreamAddr *faddr) {
char host[NI_MAXHOST];
char service[NI_MAXSERV];
int rv;
if (addr->sa_family == AF_UNIX) {
std::copy_n("localhost", sizeof("localhost"), host);
service[0] = '\0';
} else {
rv = getnameinfo(addr, addrlen, host, sizeof(host), service,
sizeof(service), NI_NUMERICHOST | NI_NUMERICSERV);
if (rv != 0) {
LOG(ERROR) << "getnameinfo() failed: " << gai_strerror(rv);
return nullptr;
}
rv = util::make_socket_nodelay(fd);
if (rv == -1) {
LOG(WARN) << "Setting option TCP_NODELAY failed: errno=" << errno;
}
}
SSL *ssl = nullptr;
auto ssl_ctx = worker->get_sv_ssl_ctx();
if (ssl_ctx) {
ssl = create_ssl(ssl_ctx);
if (!ssl) {
return nullptr;
}
// Disable TLS session ticket if we don't have working ticket
// keys.
if (!worker->get_ticket_keys()) {
SSL_set_options(ssl, SSL_OP_NO_TICKET);
}
}
return new ClientHandler(worker, fd, ssl, host, service, addr->sa_family,
faddr);
}
bool tls_hostname_match(const char *pattern, size_t plen, const char *hostname,
size_t hlen) {
auto pend = pattern + plen;
auto ptWildcard = std::find(pattern, pend, '*');
if (ptWildcard == pend) {
return util::strieq(pattern, plen, hostname, hlen);
}
auto ptLeftLabelEnd = std::find(pattern, pend, '.');
auto wildcardEnabled = true;
// Do case-insensitive match. At least 2 dots are required to enable
// wildcard match. Also wildcard must be in the left-most label.
// Don't attempt to match a presented identifier where the wildcard
// character is embedded within an A-label.
if (ptLeftLabelEnd == pend ||
std::find(ptLeftLabelEnd + 1, pend, '.') == pend ||
ptLeftLabelEnd < ptWildcard ||
util::istarts_with(pattern, plen, "xn--")) {
wildcardEnabled = false;
}
if (!wildcardEnabled) {
return util::strieq(pattern, plen, hostname, hlen);
}
auto hend = hostname + hlen;
auto hnLeftLabelEnd = std::find(hostname, hend, '.');
if (hnLeftLabelEnd == hend ||
!util::strieq(ptLeftLabelEnd, pend, hnLeftLabelEnd, hend)) {
return false;
}
// Perform wildcard match. Here '*' must match at least one
// character.
if (hnLeftLabelEnd - hostname < ptLeftLabelEnd - pattern) {
return false;
}
return util::istarts_with(hostname, hnLeftLabelEnd, pattern, ptWildcard) &&
util::iends_with(hostname, hnLeftLabelEnd, ptWildcard + 1,
ptLeftLabelEnd);
}
namespace {
ssize_t get_common_name(unsigned char **out_ptr, X509 *cert) {
auto subjectname = X509_get_subject_name(cert);
if (!subjectname) {
LOG(WARN) << "Could not get X509 name object from the certificate.";
return -1;
}
int lastpos = -1;
for (;;) {
lastpos = X509_NAME_get_index_by_NID(subjectname, NID_commonName, lastpos);
if (lastpos == -1) {
break;
}
auto entry = X509_NAME_get_entry(subjectname, lastpos);
auto outlen = ASN1_STRING_to_UTF8(out_ptr, X509_NAME_ENTRY_get_data(entry));
if (outlen < 0) {
continue;
}
if (std::find(*out_ptr, *out_ptr + outlen, '\0') != *out_ptr + outlen) {
// Embedded NULL is not permitted.
continue;
}
return outlen;
}
return -1;
}
} // namespace
namespace {
int verify_numeric_hostname(X509 *cert, const char *hostname, size_t hlen,
const Address *addr) {
const void *saddr;
switch (addr->su.storage.ss_family) {
case AF_INET:
saddr = &addr->su.in.sin_addr;
break;
case AF_INET6:
saddr = &addr->su.in6.sin6_addr;
break;
default:
return -1;
}
auto altnames = static_cast<GENERAL_NAMES *>(
X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr));
if (altnames) {
auto altnames_deleter = defer(GENERAL_NAMES_free, altnames);
size_t n = sk_GENERAL_NAME_num(altnames);
for (size_t i = 0; i < n; ++i) {
auto altname = sk_GENERAL_NAME_value(altnames, i);
if (altname->type != GEN_IPADD) {
continue;
}
auto ip_addr = altname->d.iPAddress->data;
if (!ip_addr) {
continue;
}
size_t ip_addrlen = altname->d.iPAddress->length;
if (addr->len == ip_addrlen && memcmp(saddr, ip_addr, ip_addrlen) == 0) {
return 0;
}
}
}
unsigned char *cn;
auto cnlen = get_common_name(&cn, cert);
if (cnlen == -1) {
return -1;
}
// cn is not NULL terminated
auto rv = util::streq(hostname, hlen, cn, cnlen);
OPENSSL_free(cn);
if (rv) {
return 0;
}
return -1;
}
} // namespace
namespace {
int verify_hostname(X509 *cert, const char *hostname, size_t hlen,
const Address *addr) {
if (util::numeric_host(hostname)) {
return verify_numeric_hostname(cert, hostname, hlen, addr);
}
auto altnames = static_cast<GENERAL_NAMES *>(
X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr));
if (altnames) {
auto altnames_deleter = defer(GENERAL_NAMES_free, altnames);
size_t n = sk_GENERAL_NAME_num(altnames);
for (size_t i = 0; i < n; ++i) {
auto altname = sk_GENERAL_NAME_value(altnames, i);
if (altname->type != GEN_DNS) {
continue;
}
auto name = reinterpret_cast<char *>(ASN1_STRING_data(altname->d.ia5));
if (!name) {
continue;
}
auto len = ASN1_STRING_length(altname->d.ia5);
if (std::find(name, name + len, '\0') != name + len) {
// Embedded NULL is not permitted.
continue;
}
if (tls_hostname_match(name, len, hostname, hlen)) {
return 0;
}
}
}
unsigned char *cn;
auto cnlen = get_common_name(&cn, cert);
if (cnlen == -1) {
return -1;
}
auto rv = util::strieq(hostname, hlen, cn, cnlen);
OPENSSL_free(cn);
if (rv) {
return 0;
}
return -1;
}
} // namespace
int check_cert(SSL *ssl, const Address *addr, const StringRef &host) {
auto cert = SSL_get_peer_certificate(ssl);
if (!cert) {
LOG(ERROR) << "No certificate found";
return -1;
}
auto cert_deleter = defer(X509_free, cert);
auto verify_res = SSL_get_verify_result(ssl);
if (verify_res != X509_V_OK) {
LOG(ERROR) << "Certificate verification failed: "
<< X509_verify_cert_error_string(verify_res);
return -1;
}
if (verify_hostname(cert, host.c_str(), host.size(), addr) != 0) {
LOG(ERROR) << "Certificate verification failed: hostname does not match";
return -1;
}
return 0;
}
int check_cert(SSL *ssl, const DownstreamAddr *addr) {
auto &backend_sni_name = get_config()->tls.backend_sni_name;
auto hostname = !backend_sni_name.empty() ? StringRef(backend_sni_name)
: StringRef(addr->host);
return check_cert(ssl, &addr->addr, hostname);
}
CertLookupTree::CertLookupTree() {
root_.ssl_ctx = nullptr;
root_.str = nullptr;
root_.first = root_.last = 0;
}
namespace {
// The |offset| is the index in the hostname we are examining. We are
// going to scan from |offset| in backwards.
void cert_lookup_tree_add_cert(CertNode *node, SSL_CTX *ssl_ctx, char *hostname,
size_t len, int offset) {
int i, next_len = node->next.size();
char c = hostname[offset];
CertNode *cn = nullptr;
for (i = 0; i < next_len; ++i) {
cn = node->next[i].get();
if (cn->str[cn->first] == c) {
break;
}
}
if (i == next_len) {
if (c == '*') {
// We assume hostname as wildcard hostname when first '*' is
// encountered. Note that as per RFC 6125 (6.4.3), there are
// some restrictions for wildcard hostname. We just ignore
// these rules here but do the proper check when we do the
// match.
node->wildcard_certs.push_back({ssl_ctx, hostname, len});
return;
}
int j;
auto new_node = make_unique<CertNode>();
new_node->str = hostname;
new_node->first = offset;
// If wildcard is found, set the region before it because we
// don't include it in [first, last).
for (j = offset; j >= 0 && hostname[j] != '*'; --j)
;
new_node->last = j;
if (j == -1) {
new_node->ssl_ctx = ssl_ctx;
} else {
new_node->ssl_ctx = nullptr;
new_node->wildcard_certs.push_back({ssl_ctx, hostname, len});
}
node->next.push_back(std::move(new_node));
return;
}
int j;
for (i = cn->first, j = offset;
i > cn->last && j >= 0 && cn->str[i] == hostname[j]; --i, --j)
;
if (i == cn->last) {
if (j == -1) {
// If the same hostname already exists, we don't overwrite
// exiting ssl_ctx
if (!cn->ssl_ctx) {
cn->ssl_ctx = ssl_ctx;
}
return;
}
// The existing hostname is a suffix of this hostname. Continue
// matching at potion j.
cert_lookup_tree_add_cert(cn, ssl_ctx, hostname, len, j);
return;
}
{
auto new_node = make_unique<CertNode>();
new_node->ssl_ctx = cn->ssl_ctx;
new_node->str = cn->str;
new_node->first = i;
new_node->last = cn->last;
new_node->wildcard_certs.swap(cn->wildcard_certs);
new_node->next.swap(cn->next);
cn->next.push_back(std::move(new_node));
}
cn->last = i;
if (j == -1) {
// This hostname is a suffix of the existing hostname.
cn->ssl_ctx = ssl_ctx;
return;
}
// This hostname and existing one share suffix.
cn->ssl_ctx = nullptr;
cert_lookup_tree_add_cert(cn, ssl_ctx, hostname, len, j);
}
} // namespace
void CertLookupTree::add_cert(SSL_CTX *ssl_ctx, const char *hostname,
size_t len) {
if (len == 0) {
return;
}
// Copy hostname including terminal NULL
hosts_.push_back(make_unique<char[]>(len + 1));
const auto &host_copy = hosts_.back();
for (size_t i = 0; i < len; ++i) {
host_copy[i] = util::lowcase(hostname[i]);
}
host_copy[len] = '\0';
cert_lookup_tree_add_cert(&root_, ssl_ctx, host_copy.get(), len, len - 1);
}
namespace {
SSL_CTX *cert_lookup_tree_lookup(CertNode *node, const char *hostname,
size_t len, int offset) {
int i, j;
for (i = node->first, j = offset;
i > node->last && j >= 0 && node->str[i] == util::lowcase(hostname[j]);
--i, --j)
;
if (i != node->last) {
return nullptr;
}
if (j == -1) {
if (node->ssl_ctx) {
// exact match
return node->ssl_ctx;
}
// Do not perform wildcard-match because '*' must match at least
// one character.
return nullptr;
}
for (const auto &wildcert : node->wildcard_certs) {
if (tls_hostname_match(wildcert.hostname, wildcert.hostnamelen, hostname,
len)) {
return wildcert.ssl_ctx;
}
}
auto c = util::lowcase(hostname[j]);
for (const auto &next_node : node->next) {
if (next_node->str[next_node->first] == c) {
return cert_lookup_tree_lookup(next_node.get(), hostname, len, j);
}
}
return nullptr;
}
} // namespace
SSL_CTX *CertLookupTree::lookup(const char *hostname, size_t len) {
return cert_lookup_tree_lookup(&root_, hostname, len, len - 1);
}
int cert_lookup_tree_add_cert_from_file(CertLookupTree *lt, SSL_CTX *ssl_ctx,
const char *certfile) {
auto bio = BIO_new(BIO_s_file());
if (!bio) {
LOG(ERROR) << "BIO_new failed";
return -1;
}
auto bio_deleter = defer(BIO_vfree, bio);
if (!BIO_read_filename(bio, certfile)) {
LOG(ERROR) << "Could not read certificate file '" << certfile << "'";
return -1;
}
auto cert = PEM_read_bio_X509(bio, nullptr, nullptr, nullptr);
if (!cert) {
LOG(ERROR) << "Could not read X509 structure from file '" << certfile
<< "'";
return -1;
}
auto cert_deleter = defer(X509_free, cert);
auto altnames = static_cast<GENERAL_NAMES *>(
X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr));
if (altnames) {
auto altnames_deleter = defer(GENERAL_NAMES_free, altnames);
size_t n = sk_GENERAL_NAME_num(altnames);
for (size_t i = 0; i < n; ++i) {
auto altname = sk_GENERAL_NAME_value(altnames, i);
if (altname->type != GEN_DNS) {
continue;
}
auto name = reinterpret_cast<char *>(ASN1_STRING_data(altname->d.ia5));
if (!name) {
continue;
}
auto len = ASN1_STRING_length(altname->d.ia5);
if (std::find(name, name + len, '\0') != name + len) {
// Embedded NULL is not permitted.
continue;
}
lt->add_cert(ssl_ctx, name, len);
}
}
unsigned char *cn;
auto cnlen = get_common_name(&cn, cert);
if (cnlen == -1) {
return 0;
}
lt->add_cert(ssl_ctx, reinterpret_cast<char *>(cn), cnlen);
OPENSSL_free(cn);
return 0;
}
bool in_proto_list(const std::vector<std::string> &protos,
const unsigned char *needle, size_t len) {
for (auto &proto : protos) {
if (util::streq(proto.c_str(), proto.size(), needle, len)) {
return true;
}
}
return false;
}
SSL_CTX *setup_server_ssl_context(std::vector<SSL_CTX *> &all_ssl_ctx,
CertLookupTree *cert_tree
#ifdef HAVE_NEVERBLEED
,
neverbleed_t *nb
#endif // HAVE_NEVERBLEED
) {
if (get_config()->conn.upstream.no_tls) {
return nullptr;
}
auto &tlsconf = get_config()->tls;
auto ssl_ctx = ssl::create_ssl_context(tlsconf.private_key_file.c_str(),
tlsconf.cert_file.c_str()
#ifdef HAVE_NEVERBLEED
,
nb
#endif // HAVE_NEVERBLEED
);
all_ssl_ctx.push_back(ssl_ctx);
if (tlsconf.subcerts.empty()) {
return ssl_ctx;
}
if (!cert_tree) {
LOG(WARN) << "We have multiple additional certificates (--subcert), but "
"cert_tree is not given. SNI may not work.";
return ssl_ctx;
}
for (auto &keycert : tlsconf.subcerts) {
auto ssl_ctx =
ssl::create_ssl_context(keycert.first.c_str(), keycert.second.c_str()
#ifdef HAVE_NEVERBLEED
,
nb
#endif // HAVE_NEVERBLEED
);
all_ssl_ctx.push_back(ssl_ctx);
if (ssl::cert_lookup_tree_add_cert_from_file(
cert_tree, ssl_ctx, keycert.second.c_str()) == -1) {
LOG(FATAL) << "Failed to add sub certificate.";
DIE();
}
}
if (ssl::cert_lookup_tree_add_cert_from_file(
cert_tree, ssl_ctx, tlsconf.cert_file.c_str()) == -1) {
LOG(FATAL) << "Failed to add default certificate.";
DIE();
}
return ssl_ctx;
}
bool downstream_tls_enabled() { return !get_config()->conn.downstream.no_tls; }
SSL_CTX *setup_downstream_client_ssl_context(
#ifdef HAVE_NEVERBLEED
neverbleed_t *nb
#endif // HAVE_NEVERBLEED
) {
if (!downstream_tls_enabled()) {
return nullptr;
}
auto &tlsconf = get_config()->tls;
return ssl::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb,
#endif // HAVE_NEVERBLEED
StringRef{tlsconf.cacert}, StringRef{tlsconf.client.cert_file},
StringRef{tlsconf.client.private_key_file}, select_next_proto_cb);
}
void setup_downstream_http2_alpn(SSL *ssl) {
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
// ALPN advertisement
auto alpn = util::get_default_alpn();
SSL_set_alpn_protos(ssl, alpn.data(), alpn.size());
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
}
void setup_downstream_http1_alpn(SSL *ssl) {
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
// ALPN advertisement
auto alpn = StringRef::from_lit(NGHTTP2_H1_1_ALPN);
SSL_set_alpn_protos(ssl, alpn.byte(), alpn.size());
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
}
CertLookupTree *create_cert_lookup_tree() {
if (get_config()->conn.upstream.no_tls ||
get_config()->tls.subcerts.empty()) {
return nullptr;
}
return new ssl::CertLookupTree();
}
namespace {
std::vector<uint8_t> serialize_ssl_session(SSL_SESSION *session) {
auto len = i2d_SSL_SESSION(session, nullptr);
auto buf = std::vector<uint8_t>(len);
auto p = buf.data();
i2d_SSL_SESSION(session, &p);
return buf;
}
} // namespace
void try_cache_tls_session(DownstreamAddr *addr, SSL_SESSION *session,
ev_tstamp t) {
auto &cache = addr->tls_session_cache;
if (cache.last_updated + 1_min > t) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Cache for addr=" << util::to_numeric_addr(&addr->addr)
<< " is still host. Not updating.";
}
return;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Update cache entry for SSL_SESSION=" << session
<< ", addr=" << util::to_numeric_addr(&addr->addr)
<< ", timestamp=" << std::fixed << std::setprecision(6) << t;
}
cache.session_data = serialize_ssl_session(session);
cache.last_updated = t;
}
SSL_SESSION *reuse_tls_session(const DownstreamAddr *addr) {
auto &cache = addr->tls_session_cache;
if (cache.session_data.empty()) {
return nullptr;
}
auto p = cache.session_data.data();
return d2i_SSL_SESSION(nullptr, &p, cache.session_data.size());
}
} // namespace ssl
} // namespace shrpx