openjpeg/src/bin/jp2/converttif.c

1511 lines
50 KiB
C
Raw Normal View History

/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2006-2007, Parvatha Elangovan
2015-07-16 06:51:21 +02:00
* Copyright (c) 2015, Matthieu Darbois
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opj_apps_config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
2017-08-02 17:27:08 +02:00
#include <limits.h>
#ifndef OPJ_HAVE_LIBTIFF
# error OPJ_HAVE_LIBTIFF_NOT_DEFINED
#endif /* OPJ_HAVE_LIBTIFF */
#include <tiffio.h>
#include "openjpeg.h"
#include "convert.h"
#include "opj_inttypes.h"
/* -->> -->> -->> -->>
TIFF IMAGE FORMAT
<<-- <<-- <<-- <<-- */
#define PUTBITS2(s, nb) \
trailing <<= remaining; \
trailing |= (unsigned int)((s) >> (nb - remaining)); \
*pDst++ = (OPJ_BYTE)trailing; \
trailing = (unsigned int)((s) & ((1U << (nb - remaining)) - 1U)); \
if (nb >= (remaining + 8)) { \
*pDst++ = (OPJ_BYTE)(trailing >> (nb - (remaining + 8))); \
trailing &= (unsigned int)((1U << (nb - (remaining + 8))) - 1U); \
remaining += 16 - nb; \
} else { \
remaining += 8 - nb; \
}
#define PUTBITS(s, nb) \
if (nb >= remaining) { \
PUTBITS2(s, nb) \
} else { \
trailing <<= nb; \
trailing |= (unsigned int)(s); \
remaining -= nb; \
}
#define FLUSHBITS() \
if (remaining != 8) { \
trailing <<= remaining; \
*pDst++ = (OPJ_BYTE)trailing; \
}
static void tif_32sto3u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 << 5) | (src1 << 2) | (src2 >> 1));
*pDst++ = (OPJ_BYTE)((src2 << 7) | (src3 << 4) | (src4 << 1) | (src5 >> 2));
*pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 << 3) | (src7));
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS((OPJ_UINT32)pSrc[i + 0], 3)
if (length > 1U) {
PUTBITS((OPJ_UINT32)pSrc[i + 1], 3)
if (length > 2U) {
PUTBITS((OPJ_UINT32)pSrc[i + 2], 3)
if (length > 3U) {
PUTBITS((OPJ_UINT32)pSrc[i + 3], 3)
if (length > 4U) {
PUTBITS((OPJ_UINT32)pSrc[i + 4], 3)
if (length > 5U) {
PUTBITS((OPJ_UINT32)pSrc[i + 5], 3)
if (length > 6U) {
PUTBITS((OPJ_UINT32)pSrc[i + 6], 3)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto5u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 << 3) | (src1 >> 2));
*pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 << 1) | (src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 1));
*pDst++ = (OPJ_BYTE)((src4 << 7) | (src5 << 2) | (src6 >> 3));
*pDst++ = (OPJ_BYTE)((src6 << 5) | (src7));
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS((OPJ_UINT32)pSrc[i + 0], 5)
if (length > 1U) {
PUTBITS((OPJ_UINT32)pSrc[i + 1], 5)
if (length > 2U) {
PUTBITS((OPJ_UINT32)pSrc[i + 2], 5)
if (length > 3U) {
PUTBITS((OPJ_UINT32)pSrc[i + 3], 5)
if (length > 4U) {
PUTBITS((OPJ_UINT32)pSrc[i + 4], 5)
if (length > 5U) {
PUTBITS((OPJ_UINT32)pSrc[i + 5], 5)
if (length > 6U) {
PUTBITS((OPJ_UINT32)pSrc[i + 6], 5)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto7u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 << 1) | (src1 >> 6));
*pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 5));
*pDst++ = (OPJ_BYTE)((src2 << 3) | (src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 3));
*pDst++ = (OPJ_BYTE)((src4 << 5) | (src5 >> 2));
*pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 1));
*pDst++ = (OPJ_BYTE)((src6 << 7) | (src7));
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS((OPJ_UINT32)pSrc[i + 0], 7)
if (length > 1U) {
PUTBITS((OPJ_UINT32)pSrc[i + 1], 7)
if (length > 2U) {
PUTBITS((OPJ_UINT32)pSrc[i + 2], 7)
if (length > 3U) {
PUTBITS((OPJ_UINT32)pSrc[i + 3], 7)
if (length > 4U) {
PUTBITS((OPJ_UINT32)pSrc[i + 4], 7)
if (length > 5U) {
PUTBITS((OPJ_UINT32)pSrc[i + 5], 7)
if (length > 6U) {
PUTBITS((OPJ_UINT32)pSrc[i + 6], 7)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto9u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 >> 1));
*pDst++ = (OPJ_BYTE)((src0 << 7) | (src1 >> 2));
*pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 >> 3));
*pDst++ = (OPJ_BYTE)((src2 << 5) | (src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 5));
*pDst++ = (OPJ_BYTE)((src4 << 3) | (src5 >> 6));
*pDst++ = (OPJ_BYTE)((src5 << 2) | (src6 >> 7));
*pDst++ = (OPJ_BYTE)((src6 << 1) | (src7 >> 8));
*pDst++ = (OPJ_BYTE)(src7);
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS2((OPJ_UINT32)pSrc[i + 0], 9)
if (length > 1U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 1], 9)
if (length > 2U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 2], 9)
if (length > 3U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 3], 9)
if (length > 4U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 4], 9)
if (length > 5U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 5], 9)
if (length > 6U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 6], 9)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto10u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
*pDst++ = (OPJ_BYTE)(src0 >> 2);
*pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4));
*pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6));
*pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2) | (src3 >> 8));
*pDst++ = (OPJ_BYTE)(src3);
}
if (length & 3U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = 0U;
OPJ_UINT32 src2 = 0U;
length = length & 3U;
if (length > 1U) {
src1 = (OPJ_UINT32)pSrc[i + 1];
if (length > 2U) {
src2 = (OPJ_UINT32)pSrc[i + 2];
}
}
*pDst++ = (OPJ_BYTE)(src0 >> 2);
*pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4));
if (length > 1U) {
*pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6));
if (length > 2U) {
*pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2));
}
}
}
}
static void tif_32sto11u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 >> 3));
*pDst++ = (OPJ_BYTE)((src0 << 5) | (src1 >> 6));
*pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 9));
*pDst++ = (OPJ_BYTE)((src2 >> 1));
*pDst++ = (OPJ_BYTE)((src2 << 7) | (src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 7));
*pDst++ = (OPJ_BYTE)((src4 << 1) | (src5 >> 10));
*pDst++ = (OPJ_BYTE)((src5 >> 2));
*pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 5));
*pDst++ = (OPJ_BYTE)((src6 << 3) | (src7 >> 8));
*pDst++ = (OPJ_BYTE)(src7);
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS2((OPJ_UINT32)pSrc[i + 0], 11)
if (length > 1U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 1], 11)
if (length > 2U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 2], 11)
if (length > 3U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 3], 11)
if (length > 4U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 4], 11)
if (length > 5U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 5], 11)
if (length > 6U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 6], 11)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto12u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)1U); i += 2U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
*pDst++ = (OPJ_BYTE)(src0 >> 4);
*pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4) | (src1 >> 8));
*pDst++ = (OPJ_BYTE)(src1);
}
if (length & 1U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
*pDst++ = (OPJ_BYTE)(src0 >> 4);
*pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4));
}
}
static void tif_32sto13u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 >> 5));
*pDst++ = (OPJ_BYTE)((src0 << 3) | (src1 >> 10));
*pDst++ = (OPJ_BYTE)((src1 >> 2));
*pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 >> 7));
*pDst++ = (OPJ_BYTE)((src2 << 1) | (src3 >> 12));
*pDst++ = (OPJ_BYTE)((src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 9));
*pDst++ = (OPJ_BYTE)((src4 >> 1));
*pDst++ = (OPJ_BYTE)((src4 << 7) | (src5 >> 6));
*pDst++ = (OPJ_BYTE)((src5 << 2) | (src6 >> 11));
*pDst++ = (OPJ_BYTE)((src6 >> 3));
*pDst++ = (OPJ_BYTE)((src6 << 5) | (src7 >> 8));
*pDst++ = (OPJ_BYTE)(src7);
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS2((OPJ_UINT32)pSrc[i + 0], 13)
if (length > 1U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 1], 13)
if (length > 2U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 2], 13)
if (length > 3U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 3], 13)
if (length > 4U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 4], 13)
if (length > 5U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 5], 13)
if (length > 6U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 6], 13)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto14u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
*pDst++ = (OPJ_BYTE)(src0 >> 6);
*pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12));
*pDst++ = (OPJ_BYTE)(src1 >> 4);
*pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10));
*pDst++ = (OPJ_BYTE)(src2 >> 2);
*pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6) | (src3 >> 8));
*pDst++ = (OPJ_BYTE)(src3);
}
if (length & 3U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = 0U;
OPJ_UINT32 src2 = 0U;
length = length & 3U;
if (length > 1U) {
src1 = (OPJ_UINT32)pSrc[i + 1];
if (length > 2U) {
src2 = (OPJ_UINT32)pSrc[i + 2];
}
}
*pDst++ = (OPJ_BYTE)(src0 >> 6);
*pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12));
if (length > 1U) {
*pDst++ = (OPJ_BYTE)(src1 >> 4);
*pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10));
if (length > 2U) {
*pDst++ = (OPJ_BYTE)(src2 >> 2);
*pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6));
}
}
}
}
static void tif_32sto15u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0];
OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1];
OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2];
OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3];
OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4];
OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5];
OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6];
OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7];
*pDst++ = (OPJ_BYTE)((src0 >> 7));
*pDst++ = (OPJ_BYTE)((src0 << 1) | (src1 >> 14));
*pDst++ = (OPJ_BYTE)((src1 >> 6));
*pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 13));
*pDst++ = (OPJ_BYTE)((src2 >> 5));
*pDst++ = (OPJ_BYTE)((src2 << 3) | (src3 >> 12));
*pDst++ = (OPJ_BYTE)((src3 >> 4));
*pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 11));
*pDst++ = (OPJ_BYTE)((src4 >> 3));
*pDst++ = (OPJ_BYTE)((src4 << 5) | (src5 >> 10));
*pDst++ = (OPJ_BYTE)((src5 >> 2));
*pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 9));
*pDst++ = (OPJ_BYTE)((src6 >> 1));
*pDst++ = (OPJ_BYTE)((src6 << 7) | (src7 >> 8));
*pDst++ = (OPJ_BYTE)(src7);
}
if (length & 7U) {
unsigned int trailing = 0U;
int remaining = 8U;
length &= 7U;
PUTBITS2((OPJ_UINT32)pSrc[i + 0], 15)
if (length > 1U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 1], 15)
if (length > 2U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 2], 15)
if (length > 3U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 3], 15)
if (length > 4U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 4], 15)
if (length > 5U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 5], 15)
if (length > 6U) {
PUTBITS2((OPJ_UINT32)pSrc[i + 6], 15)
}
}
}
}
}
}
FLUSHBITS()
}
}
static void tif_32sto16u(const OPJ_INT32* pSrc, OPJ_UINT16* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < length; ++i) {
pDst[i] = (OPJ_UINT16)pSrc[i];
}
}
int imagetotif(opj_image_t * image, const char *outfile)
{
TIFF *tif;
tdata_t buf;
2017-08-11 00:06:23 +02:00
uint32 width, height;
uint16 bps, tiPhoto;
2017-07-31 13:58:08 +02:00
int adjust, sgnd;
int64_t strip_size, rowStride, TIFF_MAX;
OPJ_UINT32 i, numcomps;
OPJ_INT32* buffer32s = NULL;
OPJ_INT32 const* planes[4];
convert_32s_PXCX cvtPxToCx = NULL;
convert_32sXXx_C1R cvt32sToTif = NULL;
2017-08-11 00:06:23 +02:00
bps = (uint16)image->comps[0].prec;
planes[0] = image->comps[0].data;
numcomps = image->numcomps;
if (image->color_space == OPJ_CLRSPC_CMYK) {
if (numcomps < 4U) {
fprintf(stderr,
"imagetotif: CMYK images shall be composed of at least 4 planes.\n");
fprintf(stderr, "\tAborting\n");
return 1;
}
tiPhoto = PHOTOMETRIC_SEPARATED;
if (numcomps > 4U) {
numcomps = 4U; /* Alpha not supported */
}
} else if (numcomps > 2U) {
tiPhoto = PHOTOMETRIC_RGB;
if (numcomps > 4U) {
numcomps = 4U;
}
} else {
tiPhoto = PHOTOMETRIC_MINISBLACK;
}
for (i = 1U; i < numcomps; ++i) {
if (image->comps[0].dx != image->comps[i].dx) {
break;
}
if (image->comps[0].dy != image->comps[i].dy) {
break;
}
if (image->comps[0].prec != image->comps[i].prec) {
break;
}
if (image->comps[0].sgnd != image->comps[i].sgnd) {
break;
}
planes[i] = image->comps[i].data;
}
if (i != numcomps) {
fprintf(stderr,
"imagetotif: All components shall have the same subsampling, same bit depth.\n");
fprintf(stderr, "\tAborting\n");
return 1;
}
if (bps > 16) {
bps = 0;
}
if (bps == 0) {
fprintf(stderr, "imagetotif: Bits=%d, Only 1 to 16 bits implemented\n", bps);
fprintf(stderr, "\tAborting\n");
return 1;
}
tif = TIFFOpen(outfile, "wb");
if (!tif) {
fprintf(stderr, "imagetotif:failed to open %s for writing\n", outfile);
return 1;
}
for (i = 0U; i < numcomps; ++i) {
clip_component(&(image->comps[i]), image->comps[0].prec);
}
cvtPxToCx = convert_32s_PXCX_LUT[numcomps];
switch (bps) {
case 1:
case 2:
case 4:
case 6:
case 8:
cvt32sToTif = convert_32sXXu_C1R_LUT[bps];
break;
case 3:
cvt32sToTif = tif_32sto3u;
break;
case 5:
cvt32sToTif = tif_32sto5u;
break;
case 7:
cvt32sToTif = tif_32sto7u;
break;
case 9:
cvt32sToTif = tif_32sto9u;
break;
case 10:
cvt32sToTif = tif_32sto10u;
break;
case 11:
cvt32sToTif = tif_32sto11u;
break;
case 12:
cvt32sToTif = tif_32sto12u;
break;
case 13:
cvt32sToTif = tif_32sto13u;
break;
case 14:
cvt32sToTif = tif_32sto14u;
break;
case 15:
cvt32sToTif = tif_32sto15u;
break;
case 16:
cvt32sToTif = (convert_32sXXx_C1R)tif_32sto16u;
break;
default:
/* never here */
break;
}
sgnd = (int)image->comps[0].sgnd;
2017-07-31 13:58:08 +02:00
adjust = sgnd ? (int)(1 << (image->comps[0].prec - 1)) : 0;
width = (uint32)image->comps[0].w;
height = (uint32)image->comps[0].h;
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, height);
2017-08-11 00:06:23 +02:00
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, (uint16)numcomps);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, tiPhoto);
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, 1);
if (sizeof(tsize_t) == 4) {
TIFF_MAX = INT_MAX;
} else {
TIFF_MAX = UINT_MAX;
}
strip_size = (int64_t)TIFFStripSize(tif);
if ((int64_t)width > (int64_t)(TIFF_MAX / numcomps) ||
(int64_t)(width * numcomps) > (int64_t)(TIFF_MAX / bps) ||
(int64_t)(width * numcomps) > (int64_t)(TIFF_MAX / (int64_t)sizeof(
OPJ_INT32))) {
2017-08-02 17:27:08 +02:00
fprintf(stderr, "Buffer overflow\n");
TIFFClose(tif);
return 1;
}
rowStride = (int64_t)((width * numcomps * bps + 7U) / 8U);
2017-07-31 13:58:08 +02:00
if (rowStride != strip_size) {
fprintf(stderr, "Invalid TIFF strip size\n");
TIFFClose(tif);
return 1;
}
buf = malloc((OPJ_SIZE_T)strip_size);
if (buf == NULL) {
TIFFClose(tif);
return 1;
}
buffer32s = (OPJ_INT32 *)malloc((OPJ_SIZE_T)(width * numcomps * sizeof(
OPJ_INT32)));
if (buffer32s == NULL) {
_TIFFfree(buf);
TIFFClose(tif);
return 1;
}
for (i = 0; i < image->comps[0].h; ++i) {
cvtPxToCx(planes, buffer32s, (OPJ_SIZE_T)width, adjust);
cvt32sToTif(buffer32s, (OPJ_BYTE *)buf, (OPJ_SIZE_T)width * numcomps);
(void)TIFFWriteEncodedStrip(tif, i, (void*)buf, (tsize_t)strip_size);
planes[0] += width;
planes[1] += width;
planes[2] += width;
planes[3] += width;
}
_TIFFfree((void*)buf);
TIFFClose(tif);
free(buffer32s);
return 0;
}/* imagetotif() */
#define GETBITS(dest, nb) { \
int needed = (nb); \
unsigned int dst = 0U; \
if (available == 0) { \
val = *pSrc++; \
available = 8; \
} \
while (needed > available) { \
dst |= val & ((1U << available) - 1U); \
needed -= available; \
dst <<= needed; \
val = *pSrc++; \
available = 8; \
} \
dst |= (val >> (available - needed)) & ((1U << needed) - 1U); \
available -= needed; \
dest = (OPJ_INT32)dst; \
}
static void tif_3uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 >> 5));
pDst[i + 1] = (OPJ_INT32)(((val0 & 0x1FU) >> 2));
pDst[i + 2] = (OPJ_INT32)(((val0 & 0x3U) << 1) | (val1 >> 7));
pDst[i + 3] = (OPJ_INT32)(((val1 & 0x7FU) >> 4));
pDst[i + 4] = (OPJ_INT32)(((val1 & 0xFU) >> 1));
pDst[i + 5] = (OPJ_INT32)(((val1 & 0x1U) << 2) | (val2 >> 6));
pDst[i + 6] = (OPJ_INT32)(((val2 & 0x3FU) >> 3));
pDst[i + 7] = (OPJ_INT32)(((val2 & 0x7U)));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 3)
if (length > 1U) {
GETBITS(pDst[i + 1], 3)
if (length > 2U) {
GETBITS(pDst[i + 2], 3)
if (length > 3U) {
GETBITS(pDst[i + 3], 3)
if (length > 4U) {
GETBITS(pDst[i + 4], 3)
if (length > 5U) {
GETBITS(pDst[i + 5], 3)
if (length > 6U) {
GETBITS(pDst[i + 6], 3)
}
}
}
}
}
}
}
}
static void tif_5uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 >> 3));
pDst[i + 1] = (OPJ_INT32)(((val0 & 0x7U) << 2) | (val1 >> 6));
pDst[i + 2] = (OPJ_INT32)(((val1 & 0x3FU) >> 1));
pDst[i + 3] = (OPJ_INT32)(((val1 & 0x1U) << 4) | (val2 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val2 & 0xFU) << 1) | (val3 >> 7));
pDst[i + 5] = (OPJ_INT32)(((val3 & 0x7FU) >> 2));
pDst[i + 6] = (OPJ_INT32)(((val3 & 0x3U) << 3) | (val4 >> 5));
pDst[i + 7] = (OPJ_INT32)(((val4 & 0x1FU)));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 5)
if (length > 1U) {
GETBITS(pDst[i + 1], 5)
if (length > 2U) {
GETBITS(pDst[i + 2], 5)
if (length > 3U) {
GETBITS(pDst[i + 3], 5)
if (length > 4U) {
GETBITS(pDst[i + 4], 5)
if (length > 5U) {
GETBITS(pDst[i + 5], 5)
if (length > 6U) {
GETBITS(pDst[i + 6], 5)
}
}
}
}
}
}
}
}
static void tif_7uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 >> 1));
pDst[i + 1] = (OPJ_INT32)(((val0 & 0x1U) << 6) | (val1 >> 2));
pDst[i + 2] = (OPJ_INT32)(((val1 & 0x3U) << 5) | (val2 >> 3));
pDst[i + 3] = (OPJ_INT32)(((val2 & 0x7U) << 4) | (val3 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val3 & 0xFU) << 3) | (val4 >> 5));
pDst[i + 5] = (OPJ_INT32)(((val4 & 0x1FU) << 2) | (val5 >> 6));
pDst[i + 6] = (OPJ_INT32)(((val5 & 0x3FU) << 1) | (val6 >> 7));
pDst[i + 7] = (OPJ_INT32)(((val6 & 0x7FU)));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 7)
if (length > 1U) {
GETBITS(pDst[i + 1], 7)
if (length > 2U) {
GETBITS(pDst[i + 2], 7)
if (length > 3U) {
GETBITS(pDst[i + 3], 7)
if (length > 4U) {
GETBITS(pDst[i + 4], 7)
if (length > 5U) {
GETBITS(pDst[i + 5], 7)
if (length > 6U) {
GETBITS(pDst[i + 6], 7)
}
}
}
}
}
}
}
}
static void tif_9uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
OPJ_UINT32 val7 = *pSrc++;
OPJ_UINT32 val8 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 1) | (val1 >> 7));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x7FU) << 2) | (val2 >> 6));
pDst[i + 2] = (OPJ_INT32)(((val2 & 0x3FU) << 3) | (val3 >> 5));
pDst[i + 3] = (OPJ_INT32)(((val3 & 0x1FU) << 4) | (val4 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val4 & 0xFU) << 5) | (val5 >> 3));
pDst[i + 5] = (OPJ_INT32)(((val5 & 0x7U) << 6) | (val6 >> 2));
pDst[i + 6] = (OPJ_INT32)(((val6 & 0x3U) << 7) | (val7 >> 1));
pDst[i + 7] = (OPJ_INT32)(((val7 & 0x1U) << 8) | (val8));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 9)
if (length > 1U) {
GETBITS(pDst[i + 1], 9)
if (length > 2U) {
GETBITS(pDst[i + 2], 9)
if (length > 3U) {
GETBITS(pDst[i + 3], 9)
if (length > 4U) {
GETBITS(pDst[i + 4], 9)
if (length > 5U) {
GETBITS(pDst[i + 5], 9)
if (length > 6U) {
GETBITS(pDst[i + 6], 9)
}
}
}
}
}
}
}
}
static void tif_10uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4));
pDst[i + 2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2));
pDst[i + 3] = (OPJ_INT32)(((val3 & 0x3U) << 8) | val4);
}
if (length & 3U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
length = length & 3U;
pDst[i + 0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6));
if (length > 1U) {
OPJ_UINT32 val2 = *pSrc++;
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4));
if (length > 2U) {
OPJ_UINT32 val3 = *pSrc++;
pDst[i + 2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2));
}
}
}
}
static void tif_11uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
OPJ_UINT32 val7 = *pSrc++;
OPJ_UINT32 val8 = *pSrc++;
OPJ_UINT32 val9 = *pSrc++;
OPJ_UINT32 val10 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 3) | (val1 >> 5));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x1FU) << 6) | (val2 >> 2));
pDst[i + 2] = (OPJ_INT32)(((val2 & 0x3U) << 9) | (val3 << 1) | (val4 >> 7));
pDst[i + 3] = (OPJ_INT32)(((val4 & 0x7FU) << 4) | (val5 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val5 & 0xFU) << 7) | (val6 >> 1));
pDst[i + 5] = (OPJ_INT32)(((val6 & 0x1U) << 10) | (val7 << 2) | (val8 >> 6));
pDst[i + 6] = (OPJ_INT32)(((val8 & 0x3FU) << 5) | (val9 >> 3));
pDst[i + 7] = (OPJ_INT32)(((val9 & 0x7U) << 8) | (val10));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 11)
if (length > 1U) {
GETBITS(pDst[i + 1], 11)
if (length > 2U) {
GETBITS(pDst[i + 2], 11)
if (length > 3U) {
GETBITS(pDst[i + 3], 11)
if (length > 4U) {
GETBITS(pDst[i + 4], 11)
if (length > 5U) {
GETBITS(pDst[i + 5], 11)
if (length > 6U) {
GETBITS(pDst[i + 6], 11)
}
}
}
}
}
}
}
}
static void tif_12uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)1U); i += 2U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0xFU) << 8) | val2);
}
if (length & 1U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4));
}
}
static void tif_13uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
OPJ_UINT32 val7 = *pSrc++;
OPJ_UINT32 val8 = *pSrc++;
OPJ_UINT32 val9 = *pSrc++;
OPJ_UINT32 val10 = *pSrc++;
OPJ_UINT32 val11 = *pSrc++;
OPJ_UINT32 val12 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 5) | (val1 >> 3));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x7U) << 10) | (val2 << 2) | (val3 >> 6));
pDst[i + 2] = (OPJ_INT32)(((val3 & 0x3FU) << 7) | (val4 >> 1));
pDst[i + 3] = (OPJ_INT32)(((val4 & 0x1U) << 12) | (val5 << 4) | (val6 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val6 & 0xFU) << 9) | (val7 << 1) | (val8 >> 7));
pDst[i + 5] = (OPJ_INT32)(((val8 & 0x7FU) << 6) | (val9 >> 2));
pDst[i + 6] = (OPJ_INT32)(((val9 & 0x3U) << 11) | (val10 << 3) | (val11 >> 5));
pDst[i + 7] = (OPJ_INT32)(((val11 & 0x1FU) << 8) | (val12));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 13)
if (length > 1U) {
GETBITS(pDst[i + 1], 13)
if (length > 2U) {
GETBITS(pDst[i + 2], 13)
if (length > 3U) {
GETBITS(pDst[i + 3], 13)
if (length > 4U) {
GETBITS(pDst[i + 4], 13)
if (length > 5U) {
GETBITS(pDst[i + 5], 13)
if (length > 6U) {
GETBITS(pDst[i + 6], 13)
}
}
}
}
}
}
}
}
static void tif_14uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4));
pDst[i + 2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6));
pDst[i + 3] = (OPJ_INT32)(((val5 & 0x3FU) << 8) | val6);
}
if (length & 3U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
length = length & 3U;
pDst[i + 0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2));
if (length > 1U) {
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4));
if (length > 2U) {
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
pDst[i + 2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6));
}
}
}
}
static void tif_15uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) {
OPJ_UINT32 val0 = *pSrc++;
OPJ_UINT32 val1 = *pSrc++;
OPJ_UINT32 val2 = *pSrc++;
OPJ_UINT32 val3 = *pSrc++;
OPJ_UINT32 val4 = *pSrc++;
OPJ_UINT32 val5 = *pSrc++;
OPJ_UINT32 val6 = *pSrc++;
OPJ_UINT32 val7 = *pSrc++;
OPJ_UINT32 val8 = *pSrc++;
OPJ_UINT32 val9 = *pSrc++;
OPJ_UINT32 val10 = *pSrc++;
OPJ_UINT32 val11 = *pSrc++;
OPJ_UINT32 val12 = *pSrc++;
OPJ_UINT32 val13 = *pSrc++;
OPJ_UINT32 val14 = *pSrc++;
pDst[i + 0] = (OPJ_INT32)((val0 << 7) | (val1 >> 1));
pDst[i + 1] = (OPJ_INT32)(((val1 & 0x1U) << 14) | (val2 << 6) | (val3 >> 2));
pDst[i + 2] = (OPJ_INT32)(((val3 & 0x3U) << 13) | (val4 << 5) | (val5 >> 3));
pDst[i + 3] = (OPJ_INT32)(((val5 & 0x7U) << 12) | (val6 << 4) | (val7 >> 4));
pDst[i + 4] = (OPJ_INT32)(((val7 & 0xFU) << 11) | (val8 << 3) | (val9 >> 5));
pDst[i + 5] = (OPJ_INT32)(((val9 & 0x1FU) << 10) | (val10 << 2) | (val11 >> 6));
pDst[i + 6] = (OPJ_INT32)(((val11 & 0x3FU) << 9) | (val12 << 1) | (val13 >> 7));
pDst[i + 7] = (OPJ_INT32)(((val13 & 0x7FU) << 8) | (val14));
}
if (length & 7U) {
unsigned int val;
int available = 0;
length = length & 7U;
GETBITS(pDst[i + 0], 15)
if (length > 1U) {
GETBITS(pDst[i + 1], 15)
if (length > 2U) {
GETBITS(pDst[i + 2], 15)
if (length > 3U) {
GETBITS(pDst[i + 3], 15)
if (length > 4U) {
GETBITS(pDst[i + 4], 15)
if (length > 5U) {
GETBITS(pDst[i + 5], 15)
if (length > 6U) {
GETBITS(pDst[i + 6], 15)
}
}
}
}
}
}
}
}
/* seems that libtiff decodes this to machine endianness */
static void tif_16uto32s(const OPJ_UINT16* pSrc, OPJ_INT32* pDst,
OPJ_SIZE_T length)
{
OPJ_SIZE_T i;
for (i = 0; i < length; i++) {
pDst[i] = pSrc[i];
}
}
/*
* libtiff/tif_getimage.c : 1,2,4,8,16 bitspersample accepted
* CINEMA : 12 bit precision
*/
opj_image_t* tiftoimage(const char *filename, opj_cparameters_t *parameters)
{
int subsampling_dx = parameters->subsampling_dx;
int subsampling_dy = parameters->subsampling_dy;
TIFF *tif;
tdata_t buf;
tstrip_t strip;
int64_t strip_size, rowStride, TIFF_MAX;
int j, currentPlane, numcomps = 0, w, h;
OPJ_COLOR_SPACE color_space = OPJ_CLRSPC_UNKNOWN;
opj_image_cmptparm_t cmptparm[4]; /* RGBA */
opj_image_t *image = NULL;
2017-08-11 00:06:23 +02:00
uint16 tiBps, tiPhoto, tiSf, tiSpp, tiPC;
uint32 tiWidth, tiHeight;
OPJ_BOOL is_cinema = OPJ_IS_CINEMA(parameters->rsiz);
convert_XXx32s_C1R cvtTifTo32s = NULL;
convert_32s_CXPX cvtCxToPx = NULL;
OPJ_INT32* buffer32s = NULL;
OPJ_INT32* planes[4];
tif = TIFFOpen(filename, "r");
if (!tif) {
fprintf(stderr, "tiftoimage:Failed to open %s for reading\n", filename);
return 0;
}
tiBps = tiPhoto = tiSf = tiSpp = tiPC = 0;
tiWidth = tiHeight = 0;
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &tiWidth);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &tiHeight);
TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &tiBps);
TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &tiSf);
TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &tiSpp);
TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &tiPhoto);
TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &tiPC);
w = (int)tiWidth;
h = (int)tiHeight;
2017-07-31 13:58:08 +02:00
if (tiSpp == 0 || tiSpp > 4) { /* should be 1 ... 4 */
fprintf(stderr, "tiftoimage: Bad value for samples per pixel == %d.\n"
2017-07-31 13:58:08 +02:00
"\tAborting.\n", tiSpp);
TIFFClose(tif);
return NULL;
}
if (tiBps > 16U || tiBps == 0) {
fprintf(stderr, "tiftoimage: Bad values for Bits == %d.\n"
"\tMax. 16 Bits are allowed here.\n\tAborting.\n", tiBps);
TIFFClose(tif);
return NULL;
}
if (tiPhoto != PHOTOMETRIC_MINISBLACK && tiPhoto != PHOTOMETRIC_RGB) {
fprintf(stderr,
2017-07-31 13:58:08 +02:00
"tiftoimage: Bad color format %d.\n\tOnly RGB(A) and GRAY(A) has been implemented\n\tAborting.\n",
(int) tiPhoto);
TIFFClose(tif);
return NULL;
}
2017-07-31 13:58:08 +02:00
if (tiWidth == 0 || tiHeight == 0) {
fprintf(stderr, "tiftoimage: Bad values for width(%u) "
"and/or height(%u)\n\tAborting.\n", tiWidth, tiHeight);
TIFFClose(tif);
return NULL;
}
w = (int)tiWidth;
h = (int)tiHeight;
switch (tiBps) {
case 1:
case 2:
case 4:
case 6:
case 8:
cvtTifTo32s = convert_XXu32s_C1R_LUT[tiBps];
break;
/* others are specific to TIFF */
case 3:
cvtTifTo32s = tif_3uto32s;
break;
case 5:
cvtTifTo32s = tif_5uto32s;
break;
case 7:
cvtTifTo32s = tif_7uto32s;
break;
case 9:
cvtTifTo32s = tif_9uto32s;
break;
case 10:
cvtTifTo32s = tif_10uto32s;
break;
case 11:
cvtTifTo32s = tif_11uto32s;
break;
case 12:
cvtTifTo32s = tif_12uto32s;
break;
case 13:
cvtTifTo32s = tif_13uto32s;
break;
case 14:
cvtTifTo32s = tif_14uto32s;
break;
case 15:
cvtTifTo32s = tif_15uto32s;
break;
case 16:
cvtTifTo32s = (convert_XXx32s_C1R)tif_16uto32s;
break;
default:
/* never here */
break;
}
/* initialize image components */
memset(&cmptparm[0], 0, 4 * sizeof(opj_image_cmptparm_t));
if ((tiPhoto == PHOTOMETRIC_RGB) && (is_cinema) && (tiBps != 12U)) {
fprintf(stdout, "WARNING:\n"
"Input image bitdepth is %d bits\n"
"TIF conversion has automatically rescaled to 12-bits\n"
"to comply with cinema profiles.\n",
tiBps);
} else {
is_cinema = 0U;
}
numcomps = tiSpp;
if (tiPhoto == PHOTOMETRIC_RGB) { /* RGB(A) */
color_space = OPJ_CLRSPC_SRGB;
} else if (tiPhoto == PHOTOMETRIC_MINISBLACK) { /* GRAY(A) */
color_space = OPJ_CLRSPC_GRAY;
}
cvtCxToPx = convert_32s_CXPX_LUT[numcomps];
if (tiPC == PLANARCONFIG_SEPARATE) {
cvtCxToPx = convert_32s_CXPX_LUT[1]; /* override */
tiSpp = 1U; /* consider only one sample per plane */
}
for (j = 0; j < numcomps; j++) {
cmptparm[j].prec = tiBps;
cmptparm[j].bpp = tiBps;
cmptparm[j].dx = (OPJ_UINT32)subsampling_dx;
cmptparm[j].dy = (OPJ_UINT32)subsampling_dy;
cmptparm[j].w = (OPJ_UINT32)w;
cmptparm[j].h = (OPJ_UINT32)h;
}
image = opj_image_create((OPJ_UINT32)numcomps, &cmptparm[0], color_space);
if (!image) {
TIFFClose(tif);
return NULL;
}
/* set image offset and reference grid */
image->x0 = (OPJ_UINT32)parameters->image_offset_x0;
image->y0 = (OPJ_UINT32)parameters->image_offset_y0;
image->x1 = !image->x0 ? (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1 :
image->x0 + (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1;
2017-07-31 13:58:08 +02:00
if (image->x1 <= image->x0) {
fprintf(stderr, "tiftoimage: Bad value for image->x1(%d) vs. "
"image->x0(%d)\n\tAborting.\n", image->x1, image->x0);
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
image->y1 = !image->y0 ? (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1 :
image->y0 + (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1;
2017-07-31 13:58:08 +02:00
if (image->y1 <= image->y0) {
fprintf(stderr, "tiftoimage: Bad value for image->y1(%d) vs. "
"image->y0(%d)\n\tAborting.\n", image->y1, image->y0);
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
for (j = 0; j < numcomps; j++) {
planes[j] = image->comps[j].data;
}
image->comps[numcomps - 1].alpha = (OPJ_UINT16)(1 - (numcomps & 1));
strip_size = (int64_t)TIFFStripSize(tif);
buf = malloc((OPJ_SIZE_T)strip_size);
if (buf == NULL) {
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
if (sizeof(tsize_t) == 4) {
TIFF_MAX = INT_MAX;
} else {
TIFF_MAX = UINT_MAX;
}
if ((int64_t)tiWidth > (int64_t)(TIFF_MAX / tiSpp) ||
(int64_t)(tiWidth * tiSpp) > (int64_t)(TIFF_MAX / tiBps) ||
(int64_t)(tiWidth * tiSpp) > (int64_t)(TIFF_MAX / (int64_t)sizeof(OPJ_INT32))) {
2017-08-02 17:27:08 +02:00
fprintf(stderr, "Buffer overflow\n");
_TIFFfree(buf);
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
rowStride = (int64_t)((tiWidth * tiSpp * tiBps + 7U) / 8U);
2017-07-31 13:58:08 +02:00
buffer32s = (OPJ_INT32 *)malloc((OPJ_SIZE_T)(tiWidth * tiSpp * sizeof(
OPJ_INT32)));
if (buffer32s == NULL) {
_TIFFfree(buf);
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
strip = 0;
currentPlane = 0;
do {
planes[0] = image->comps[currentPlane].data; /* to manage planar data */
h = (int)tiHeight;
/* Read the Image components */
for (; (h > 0) && (strip < TIFFNumberOfStrips(tif)); strip++) {
const OPJ_UINT8 *dat8;
int64_t ssize;
2017-07-31 13:58:08 +02:00
ssize = (int64_t)TIFFReadEncodedStrip(tif, strip, buf, (tsize_t)strip_size);
2017-07-31 13:58:08 +02:00
if (ssize < 1 || ssize > strip_size) {
fprintf(stderr, "tiftoimage: Bad value for ssize(%" PRId64 ") "
"vs. strip_size(%" PRId64 ").\n\tAborting.\n", ssize, strip_size);
2017-07-31 13:58:08 +02:00
_TIFFfree(buf);
_TIFFfree(buffer32s);
TIFFClose(tif);
opj_image_destroy(image);
return NULL;
}
dat8 = (const OPJ_UINT8*)buf;
while (ssize >= rowStride) {
cvtTifTo32s(dat8, buffer32s, (OPJ_SIZE_T)w * tiSpp);
cvtCxToPx(buffer32s, planes, (OPJ_SIZE_T)w);
planes[0] += w;
planes[1] += w;
planes[2] += w;
planes[3] += w;
dat8 += rowStride;
ssize -= rowStride;
h--;
}
}
currentPlane++;
} while ((tiPC == PLANARCONFIG_SEPARATE) && (currentPlane < numcomps));
free(buffer32s);
_TIFFfree(buf);
TIFFClose(tif);
if (is_cinema) {
for (j = 0; j < numcomps; ++j) {
scale_component(&(image->comps[j]), 12);
}
}
return image;
}/* tiftoimage() */