Merge pull request #957 from rouault/idwt_53_improvements

IDWT 5x3 single-pass lifting and SSE2/AVX2 implementation
This commit is contained in:
Even Rouault 2017-06-26 12:45:34 +02:00 committed by GitHub
commit 533fa2fdee
9 changed files with 1019 additions and 55 deletions

View File

@ -2,9 +2,12 @@ language: cpp
matrix: matrix:
include: include:
# OSX
- os: osx - os: osx
compiler: clang compiler: clang
env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_INCLUDE_IF_DEPLOY=1 env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_INCLUDE_IF_DEPLOY=1
# Test code style
- os: linux - os: linux
compiler: clang-3.8 compiler: clang-3.8
env: OPJ_CI_CC=clang-3.8 OPJ_CI_CXX=clang-3.8 OPJ_CI_CHECK_STYLE=1 OPJ_CI_SKIP_TESTS=1 env: OPJ_CI_CC=clang-3.8 OPJ_CI_CXX=clang-3.8 OPJ_CI_CHECK_STYLE=1 OPJ_CI_SKIP_TESTS=1
@ -16,12 +19,31 @@ matrix:
packages: packages:
- clang-3.8 - clang-3.8
- flip - flip
# Performance test with GCC
- os: linux - os: linux
compiler: g++ compiler: g++
env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_INCLUDE_IF_DEPLOY=1 OPJ_CI_PERF_TESTS=1 env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_INCLUDE_IF_DEPLOY=1 OPJ_CI_PERF_TESTS=1
# Test compilation with AVX2
- os: linux
compiler: clang-3.8
# skip tests since Travis doesn't have AVX2 compatible machines
env: OPJ_CI_CC=clang-3.8 OPJ_CI_CXX=clang-3.8 OPJ_CI_INSTRUCTION_SETS="-mavx2" OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_SKIP_TESTS=1
addons:
apt:
sources:
- llvm-toolchain-precise-3.8
- ubuntu-toolchain-r-test
packages:
- clang-3.8
# Test multi-threading
- os: linux - os: linux
compiler: g++ compiler: g++
env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_NUM_THREADS=2 env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_NUM_THREADS=2
# Test 32-bit compilation
- os: linux - os: linux
compiler: g++ compiler: g++
env: OPJ_CI_ARCH=i386 OPJ_CI_BUILD_CONFIGURATION=Release env: OPJ_CI_ARCH=i386 OPJ_CI_BUILD_CONFIGURATION=Release
@ -30,6 +52,8 @@ matrix:
packages: packages:
- gcc-multilib - gcc-multilib
- g++-multilib - g++-multilib
# Profile code (gcc -pg)
- os: linux - os: linux
compiler: g++ compiler: g++
env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Debug OPJ_CI_PROFILE=1 env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Debug OPJ_CI_PROFILE=1
@ -37,9 +61,13 @@ matrix:
apt: apt:
packages: packages:
- valgrind - valgrind
# Test under ASAN
- os: linux - os: linux
compiler: clang compiler: clang
env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Debug OPJ_CI_ASAN=1 env: OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Debug OPJ_CI_ASAN=1
# Test with CLang 3.8
- os: linux - os: linux
compiler: clang-3.8 compiler: clang-3.8
env: OPJ_CI_CC=clang-3.8 OPJ_CI_CXX=clang-3.8 OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_PERF_TESTS=1 env: OPJ_CI_CC=clang-3.8 OPJ_CI_CXX=clang-3.8 OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release OPJ_CI_PERF_TESTS=1
@ -50,6 +78,8 @@ matrix:
- ubuntu-toolchain-r-test - ubuntu-toolchain-r-test
packages: packages:
- clang-3.8 - clang-3.8
# Test with mingw 32 bit
- os: linux - os: linux
compiler: x86_64-w64-mingw32-g++ compiler: x86_64-w64-mingw32-g++
env: OPJ_CI_CC=x86_64-w64-mingw32-gcc OPJ_CI_CXX=x86_64-w64-mingw32-g++ OPJ_CI_ARCH=i386 OPJ_CI_BUILD_CONFIGURATION=Release env: OPJ_CI_CC=x86_64-w64-mingw32-gcc OPJ_CI_CXX=x86_64-w64-mingw32-g++ OPJ_CI_ARCH=i386 OPJ_CI_BUILD_CONFIGURATION=Release
@ -63,6 +93,8 @@ matrix:
- g++-mingw-w64-i686 - g++-mingw-w64-i686
- gcc-multilib - gcc-multilib
- g++-multilib - g++-multilib
# Test with mingw 64 bit
- os: linux - os: linux
compiler: x86_64-w64-mingw32-g++ compiler: x86_64-w64-mingw32-g++
env: OPJ_CI_CC=x86_64-w64-mingw32-gcc OPJ_CI_CXX=x86_64-w64-mingw32-g++ OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release env: OPJ_CI_CC=x86_64-w64-mingw32-gcc OPJ_CI_CXX=x86_64-w64-mingw32-g++ OPJ_CI_ARCH=x86_64 OPJ_CI_BUILD_CONFIGURATION=Release
@ -74,6 +106,8 @@ matrix:
- gcc-mingw-w64-x86-64 - gcc-mingw-w64-x86-64
- gcc-mingw-w64 - gcc-mingw-w64
- g++-mingw-w64-x86-64 - g++-mingw-w64-x86-64
# Test with gcc 4.8
- os: linux - os: linux
compiler: g++-4.8 compiler: g++-4.8
env: OPJ_CI_CC=gcc-4.8 OPJ_CI_CXX=g++-4.8 OPJ_CI_ABI_CHECK=1 env: OPJ_CI_CC=gcc-4.8 OPJ_CI_CXX=g++-4.8 OPJ_CI_ABI_CHECK=1

View File

@ -253,6 +253,7 @@ if(BUILD_JPIP_SERVER)
endif() endif()
add_subdirectory(src/lib) add_subdirectory(src/lib)
option(BUILD_LUTS_GENERATOR "Build utility to generate t1_luts.h" OFF) option(BUILD_LUTS_GENERATOR "Build utility to generate t1_luts.h" OFF)
option(BUILD_BENCH_DWT "Build bench_dwt utility (development benchmark)" OFF)
#----------------------------------------------------------------------------- #-----------------------------------------------------------------------------
# Build Applications # Build Applications

View File

@ -183,3 +183,13 @@ endif(OPJ_USE_THREAD AND NOT Threads_FOUND)
if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT) if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
TARGET_LINK_LIBRARIES(${OPENJPEG_LIBRARY_NAME} ${CMAKE_THREAD_LIBS_INIT}) TARGET_LINK_LIBRARIES(${OPENJPEG_LIBRARY_NAME} ${CMAKE_THREAD_LIBS_INIT})
endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT) endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
if(BUILD_BENCH_DWT)
add_executable(bench_dwt bench_dwt.c dwt.c opj_malloc.c thread.c)
if(UNIX)
target_link_libraries(bench_dwt m)
endif()
if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
target_link_libraries(bench_dwt ${CMAKE_THREAD_LIBS_INIT})
endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
endif(BUILD_BENCH_DWT)

241
src/lib/openjp2/bench_dwt.c Normal file
View File

@ -0,0 +1,241 @@
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2017, IntoPix SA <contact@intopix.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opj_includes.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/times.h>
#endif /* _WIN32 */
OPJ_INT32 getValue(OPJ_UINT32 i)
{
return ((OPJ_INT32)i % 511) - 256;
}
void init_tilec(opj_tcd_tilecomp_t * l_tilec,
OPJ_INT32 x0,
OPJ_INT32 y0,
OPJ_INT32 x1,
OPJ_INT32 y1,
OPJ_UINT32 numresolutions)
{
opj_tcd_resolution_t* l_res;
OPJ_UINT32 resno, l_level_no;
size_t i, nValues;
memset(l_tilec, 0, sizeof(*l_tilec));
l_tilec->x0 = x0;
l_tilec->y0 = y0;
l_tilec->x1 = x1;
l_tilec->y1 = y1;
nValues = (size_t)(l_tilec->x1 - l_tilec->x0) *
(size_t)(l_tilec->y1 - l_tilec->y0);
l_tilec->data = opj_malloc(sizeof(OPJ_INT32) * nValues);
for (i = 0; i < nValues; i++) {
l_tilec->data[i] = getValue(i);
}
l_tilec->numresolutions = numresolutions;
l_tilec->resolutions = opj_calloc(l_tilec->numresolutions,
sizeof(opj_tcd_resolution_t));
l_level_no = l_tilec->numresolutions;
l_res = l_tilec->resolutions;
/* Adapted from opj_tcd_init_tile() */
for (resno = 0; resno < l_tilec->numresolutions; ++resno) {
--l_level_no;
/* border for each resolution level (global) */
l_res->x0 = opj_int_ceildivpow2(l_tilec->x0, (OPJ_INT32)l_level_no);
l_res->y0 = opj_int_ceildivpow2(l_tilec->y0, (OPJ_INT32)l_level_no);
l_res->x1 = opj_int_ceildivpow2(l_tilec->x1, (OPJ_INT32)l_level_no);
l_res->y1 = opj_int_ceildivpow2(l_tilec->y1, (OPJ_INT32)l_level_no);
++l_res;
}
}
void free_tilec(opj_tcd_tilecomp_t * l_tilec)
{
opj_free(l_tilec->data);
opj_free(l_tilec->resolutions);
}
void usage(void)
{
printf(
"bench_dwt [-size value] [-check] [-display] [-num_resolutions val]\n");
printf(
" [-offset x y] [-num_threads val]\n");
exit(1);
}
OPJ_FLOAT64 opj_clock(void)
{
#ifdef _WIN32
/* _WIN32: use QueryPerformance (very accurate) */
LARGE_INTEGER freq, t ;
/* freq is the clock speed of the CPU */
QueryPerformanceFrequency(&freq) ;
/* cout << "freq = " << ((double) freq.QuadPart) << endl; */
/* t is the high resolution performance counter (see MSDN) */
QueryPerformanceCounter(& t) ;
return freq.QuadPart ? (t.QuadPart / (OPJ_FLOAT64) freq.QuadPart) : 0 ;
#else
/* Unix or Linux: use resource usage */
struct rusage t;
OPJ_FLOAT64 procTime;
/* (1) Get the rusage data structure at this moment (man getrusage) */
getrusage(0, &t);
/* (2) What is the elapsed time ? - CPU time = User time + System time */
/* (2a) Get the seconds */
procTime = (OPJ_FLOAT64)(t.ru_utime.tv_sec + t.ru_stime.tv_sec);
/* (2b) More precisely! Get the microseconds part ! */
return (procTime + (OPJ_FLOAT64)(t.ru_utime.tv_usec + t.ru_stime.tv_usec) *
1e-6) ;
#endif
}
int main(int argc, char** argv)
{
int num_threads = 0;
opj_tcd_tilecomp_t tilec;
opj_thread_pool_t* tp;
OPJ_INT32 i, j, k;
OPJ_BOOL display = OPJ_FALSE;
OPJ_BOOL check = OPJ_FALSE;
OPJ_INT32 size = 16384 - 1;
OPJ_FLOAT64 start, stop;
OPJ_UINT32 offset_x = (size + 1) / 2 - 1;
OPJ_UINT32 offset_y = (size + 1) / 2 - 1;
OPJ_UINT32 num_resolutions = 6;
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "-display") == 0) {
display = OPJ_TRUE;
check = OPJ_TRUE;
} else if (strcmp(argv[i], "-check") == 0) {
check = OPJ_TRUE;
} else if (strcmp(argv[i], "-size") == 0 && i + 1 < argc) {
size = atoi(argv[i + 1]);
i ++;
} else if (strcmp(argv[i], "-num_threads") == 0 && i + 1 < argc) {
num_threads = atoi(argv[i + 1]);
i ++;
} else if (strcmp(argv[i], "-num_resolutions") == 0 && i + 1 < argc) {
num_resolutions = atoi(argv[i + 1]);
if (num_resolutions == 0 || num_resolutions > 32) {
fprintf(stderr,
"Invalid value for num_resolutions. Should be >= 1 and <= 32\n");
exit(1);
}
i ++;
} else if (strcmp(argv[i], "-offset") == 0 && i + 2 < argc) {
offset_x = atoi(argv[i + 1]);
offset_y = atoi(argv[i + 2]);
i += 2;
} else {
usage();
}
}
tp = opj_thread_pool_create(num_threads);
init_tilec(&tilec, offset_x, offset_y, offset_x + size, offset_y + size,
num_resolutions);
if (display) {
printf("Before\n");
k = 0;
for (j = 0; j < tilec.y1 - tilec.y0; j++) {
for (i = 0; i < tilec.x1 - tilec.x0; i++) {
printf("%d ", tilec.data[k]);
k ++;
}
printf("\n");
}
}
start = opj_clock();
opj_dwt_decode(tp, &tilec, tilec.numresolutions);
stop = opj_clock();
printf("time for dwt_decode: %.03f s\n", stop - start);
if (display || check) {
if (display) {
printf("After IDWT\n");
k = 0;
for (j = 0; j < tilec.y1 - tilec.y0; j++) {
for (i = 0; i < tilec.x1 - tilec.x0; i++) {
printf("%d ", tilec.data[k]);
k ++;
}
printf("\n");
}
}
opj_dwt_encode(&tilec);
if (display) {
printf("After FDWT\n");
k = 0;
for (j = 0; j < tilec.y1 - tilec.y0; j++) {
for (i = 0; i < tilec.x1 - tilec.x0; i++) {
printf("%d ", tilec.data[k]);
k ++;
}
printf("\n");
}
}
if (check) {
size_t idx;
size_t nValues = (size_t)(tilec.x1 - tilec.x0) *
(size_t)(tilec.y1 - tilec.y0);
for (idx = 0; i < nValues; i++) {
if (tilec.data[idx] != getValue(idx)) {
printf("Difference found at idx = %u\n", (OPJ_UINT32)idx);
exit(1);
}
}
}
}
free_tilec(&tilec);
opj_thread_pool_destroy(tp);
return 0;
}

View File

@ -13,6 +13,7 @@
* Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
* Copyright (c) 2017, IntoPIX SA <support@intopix.com>
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
@ -37,11 +38,27 @@
* POSSIBILITY OF SUCH DAMAGE. * POSSIBILITY OF SUCH DAMAGE.
*/ */
#include <assert.h>
#define OPJ_SKIP_POISON
#include "opj_includes.h"
#ifdef __SSE__ #ifdef __SSE__
#include <xmmintrin.h> #include <xmmintrin.h>
#endif #endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef __AVX2__
#include <immintrin.h>
#endif
#include "opj_includes.h" #if defined(__GNUC__)
#pragma GCC poison malloc calloc realloc free
#endif
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/ /*@{*/
@ -49,6 +66,17 @@
#define OPJ_WS(i) v->mem[(i)*2] #define OPJ_WS(i) v->mem[(i)*2]
#define OPJ_WD(i) v->mem[(1+(i)*2)] #define OPJ_WD(i) v->mem[(1+(i)*2)]
#ifdef __AVX2__
/** Number of int32 values in a AVX2 register */
#define VREG_INT_COUNT 8
#else
/** Number of int32 values in a SSE2 register */
#define VREG_INT_COUNT 4
#endif
/** Number of columns that we can process in parallel in the vertical pass */
#define PARALLEL_COLS_53 (2*VREG_INT_COUNT)
/** @name Local data structures */ /** @name Local data structures */
/*@{*/ /*@{*/
@ -83,7 +111,7 @@ static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
/** /**
Virtual function type for wavelet transform in 1-D Virtual function type for wavelet transform in 1-D
*/ */
typedef void (*DWT1DFN)(opj_dwt_t* v); typedef void (*DWT1DFN)(const opj_dwt_t* v);
/** @name Local static functions */ /** @name Local static functions */
/*@{*/ /*@{*/
@ -99,25 +127,11 @@ Forward lazy transform (vertical)
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
/** /**
Inverse lazy transform (horizontal)
*/
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
/**
Inverse lazy transform (vertical)
*/
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
/**
Forward 5-3 wavelet transform in 1-D Forward 5-3 wavelet transform in 1-D
*/ */
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas); OPJ_INT32 cas);
/** /**
Inverse 5-3 wavelet transform in 1-D
*/
static void opj_dwt_decode_1(opj_dwt_t *v);
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
OPJ_INT32 cas);
/**
Forward 9-7 wavelet transform in 1-D Forward 9-7 wavelet transform in 1-D
*/ */
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
@ -131,7 +145,7 @@ static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
Inverse wavelet transform in 2-D. Inverse wavelet transform in 2-D.
*/ */
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn); opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec, static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,
void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32)); void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32));
@ -255,10 +269,11 @@ static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
} /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
} }
#ifdef STANDARD_SLOW_VERSION
/* <summary> */ /* <summary> */
/* Inverse lazy transform (horizontal). */ /* Inverse lazy transform (horizontal). */
/* </summary> */ /* </summary> */
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
{ {
OPJ_INT32 *ai = a; OPJ_INT32 *ai = a;
OPJ_INT32 *bi = h->mem + h->cas; OPJ_INT32 *bi = h->mem + h->cas;
@ -279,7 +294,7 @@ static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a)
/* <summary> */ /* <summary> */
/* Inverse lazy transform (vertical). */ /* Inverse lazy transform (vertical). */
/* </summary> */ /* </summary> */
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
{ {
OPJ_INT32 *ai = a; OPJ_INT32 *ai = a;
OPJ_INT32 *bi = v->mem + v->cas; OPJ_INT32 *bi = v->mem + v->cas;
@ -299,6 +314,7 @@ static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
} }
} }
#endif /* STANDARD_SLOW_VERSION */
/* <summary> */ /* <summary> */
/* Forward 5-3 wavelet transform in 1-D. */ /* Forward 5-3 wavelet transform in 1-D. */
@ -331,6 +347,7 @@ static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
} }
} }
#ifdef STANDARD_SLOW_VERSION
/* <summary> */ /* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */ /* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */ /* </summary> */
@ -362,14 +379,634 @@ static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
} }
} }
/* <summary> */ static void opj_dwt_decode_1(const opj_dwt_t *v)
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void opj_dwt_decode_1(opj_dwt_t *v)
{ {
opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
} }
#endif /* STANDARD_SLOW_VERSION */
#if !defined(STANDARD_SLOW_VERSION)
static void opj_idwt53_h_cas0(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp)
{
OPJ_INT32 i, j;
const OPJ_INT32* in_even = &tiledp[0];
const OPJ_INT32* in_odd = &tiledp[sn];
#ifdef TWO_PASS_VERSION
/* For documentation purpose: performs lifting in two iterations, */
/* but withtmp explicit interleaving */
assert(len > 1);
/* Even */
tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
}
if (len & 1) { /* if len is odd */
tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
}
/* Odd */
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
}
if (!(len & 1)) { /* if len is even */
tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
}
#else
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
assert(len > 1);
/* Improved version of the TWO_PASS_VERSION: */
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1n = in_even[0];
d1n = in_odd[0];
s0n = s1n - ((d1n + 1) >> 1);
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
d1c = d1n;
s0c = s0n;
s1n = in_even[j];
d1n = in_odd[j];
s0n = s1n - ((d1c + d1n + 2) >> 2);
tmp[i ] = s0c;
tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
}
tmp[i] = s0n;
if (len & 1) {
tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
} else {
tmp[len - 1] = d1n + s0n;
}
#endif
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
static void opj_idwt53_h_cas1(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp)
{
OPJ_INT32 i, j;
const OPJ_INT32* in_even = &tiledp[sn];
const OPJ_INT32* in_odd = &tiledp[0];
#ifdef TWO_PASS_VERSION
/* For documentation purpose: performs lifting in two iterations, */
/* but withtmp explicit interleaving */
assert(len > 2);
/* Odd */
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
}
if (!(len & 1)) {
tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
}
/* Even */
tmp[0] = in_even[0] + tmp[1];
for (i = 2, j = 1; i < len - 1; i += 2, j++) {
tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
}
if (len & 1) {
tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
}
#else
OPJ_INT32 s1, s2, dc, dn;
assert(len > 2);
/* Improved version of the TWO_PASS_VERSION: */
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1 = in_even[1];
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
tmp[0] = in_even[0] + dc;
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2 = in_even[j + 1];
dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
tmp[i ] = dc;
tmp[i + 1] = s1 + ((dn + dc) >> 1);
dc = dn;
s1 = s2;
}
tmp[i] = dc;
if (!(len & 1)) {
dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
tmp[len - 2] = s1 + ((dn + dc) >> 1);
tmp[len - 1] = dn;
} else {
tmp[len - 1] = s1 + dc;
}
#endif
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
}
#endif /* !defined(STANDARD_SLOW_VERSION) */
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D for one row. */
/* </summary> */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_h(const opj_dwt_t *dwt,
OPJ_INT32* tiledp)
{
#ifdef STANDARD_SLOW_VERSION
/* For documentation purpose */
opj_dwt_interleave_h(dwt, tiledp);
opj_dwt_decode_1(dwt);
memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
#else
const OPJ_INT32 sn = dwt->sn;
const OPJ_INT32 len = sn + dwt->dn;
if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
if (len > 1) {
opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
} else {
/* Unmodified value */
}
} else { /* Left-most sample is on odd coordinate */
if (len == 1) {
tiledp[0] /= 2;
} else if (len == 2) {
OPJ_INT32* out = dwt->mem;
const OPJ_INT32* in_even = &tiledp[sn];
const OPJ_INT32* in_odd = &tiledp[0];
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
out[0] = in_even[0] + out[1];
memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
} else if (len > 2) {
opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
}
}
#endif
}
#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
/* Conveniency macros to improve the readabilty of the formulas */
#if __AVX2__
#define VREG __m256i
#define LOAD_CST(x) _mm256_set1_epi32(x)
#define LOAD(x) _mm256_load_si256((const VREG*)(x))
#define LOADU(x) _mm256_loadu_si256((const VREG*)(x))
#define STORE(x,y) _mm256_store_si256((VREG*)(x),(y))
#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
#define ADD(x,y) _mm256_add_epi32((x),(y))
#define SUB(x,y) _mm256_sub_epi32((x),(y))
#define SAR(x,y) _mm256_srai_epi32((x),(y))
#else
#define VREG __m128i
#define LOAD_CST(x) _mm_set1_epi32(x)
#define LOAD(x) _mm_load_si128((const VREG*)(x))
#define LOADU(x) _mm_loadu_si128((const VREG*)(x))
#define STORE(x,y) _mm_store_si128((VREG*)(x),(y))
#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
#define ADD(x,y) _mm_add_epi32((x),(y))
#define SUB(x,y) _mm_sub_epi32((x),(y))
#define SAR(x,y) _mm_srai_epi32((x),(y))
#endif
#define ADD3(x,y,z) ADD(ADD(x,y),z)
static
void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
const OPJ_INT32* tmp,
OPJ_INT32 len,
OPJ_INT32 stride)
{
OPJ_INT32 i;
for (i = 0; i < len; ++i) {
/* A memcpy(&tiledp_col[i * stride + 0],
&tmp[PARALLEL_COLS_53 * i + 0],
PARALLEL_COLS_53 * sizeof(OPJ_INT32))
would do but would be a tiny bit slower.
We can take here advantage of our knowledge of alignment */
STOREU(&tiledp_col[i * stride + 0],
LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
STOREU(&tiledp_col[i * stride + VREG_INT_COUNT],
LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
}
}
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
* 16 in AVX2, when top-most pixel is on even coordinate */
static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_INT32 stride)
{
const OPJ_INT32* in_even = &tiledp_col[0];
const OPJ_INT32* in_odd = &tiledp_col[sn * stride];
OPJ_INT32 i, j;
VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
const VREG two = LOAD_CST(2);
assert(len > 1);
#if __AVX2__
assert(PARALLEL_COLS_53 == 16);
assert(VREG_INT_COUNT == 8);
#else
assert(PARALLEL_COLS_53 == 8);
assert(VREG_INT_COUNT == 4);
#endif
/* Note: loads of input even/odd values must be done in a unaligned */
/* fashion. But stores in tmp can be done with aligned store, since */
/* the temporary buffer is properly aligned */
assert((size_t)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
s1n_0 = LOADU(in_even + 0);
s1n_1 = LOADU(in_even + VREG_INT_COUNT);
d1n_0 = LOADU(in_odd);
d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
/* s0n = s1n - ((d1n + 1) >> 1); <==> */
/* s0n = s1n - ((d1n + d1n + 2) >> 2); */
s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
d1c_0 = d1n_0;
s0c_0 = s0n_0;
d1c_1 = d1n_1;
s0c_1 = s0n_1;
s1n_0 = LOADU(in_even + j * stride);
s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
d1n_0 = LOADU(in_odd + j * stride);
d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
/*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
/* d1c + ((s0c + s0n) >> 1) */
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
}
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
if (len & 1) {
VREG tmp_len_minus_1;
s1n_0 = LOADU(in_even + ((len - 1) / 2) * stride);
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
STORE(tmp + 8 * (len - 1), tmp_len_minus_1);
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
STORE(tmp + 8 * (len - 2),
ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
s1n_1 = LOADU(in_even + ((len - 1) / 2) * stride + VREG_INT_COUNT);
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
tmp_len_minus_1);
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
} else {
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
ADD(d1n_0, s0n_0));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
ADD(d1n_1, s0n_1));
}
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
* 16 in AVX2, when top-most pixel is on odd coordinate */
static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_INT32 stride)
{
OPJ_INT32 i, j;
VREG s1_0, s2_0, dc_0, dn_0;
VREG s1_1, s2_1, dc_1, dn_1;
const VREG two = LOAD_CST(2);
const OPJ_INT32* in_even = &tiledp_col[sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
assert(len > 2);
#if __AVX2__
assert(PARALLEL_COLS_53 == 16);
assert(VREG_INT_COUNT == 8);
#else
assert(PARALLEL_COLS_53 == 8);
assert(VREG_INT_COUNT == 4);
#endif
/* Note: loads of input even/odd values must be done in a unaligned */
/* fashion. But stores in tmp can be done with aligned store, since */
/* the temporary buffer is properly aligned */
assert((size_t)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
s1_0 = LOADU(in_even + stride);
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
dc_0 = SUB(LOADU(in_odd + 0),
SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2_0 = LOADU(in_even + (j + 1) * stride);
s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
/* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
dn_0 = SUB(LOADU(in_odd + j * stride),
SAR(ADD3(s1_0, s2_0, two), 2));
dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
SAR(ADD3(s1_1, s2_1, two), 2));
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
/* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
dc_0 = dn_0;
s1_0 = s2_0;
dc_1 = dn_1;
s1_1 = s2_1;
}
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
if (!(len & 1)) {
/*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
dn_0 = SUB(LOADU(in_odd + (len / 2 - 1) * stride),
SAR(ADD3(s1_0, s1_0, two), 2));
dn_1 = SUB(LOADU(in_odd + (len / 2 - 1) * stride + VREG_INT_COUNT),
SAR(ADD3(s1_1, s1_1, two), 2));
/* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
} else {
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
ADD(s1_1, dc_1));
}
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
}
#undef VREG
#undef LOAD_CST
#undef LOADU
#undef LOAD
#undef STORE
#undef STOREU
#undef ADD
#undef ADD3
#undef SUB
#undef SAR
#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
#if !defined(STANDARD_SLOW_VERSION)
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
* pixel is on even coordinate */
static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_INT32 stride)
{
OPJ_INT32 i, j;
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
assert(len > 1);
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1n = tiledp_col[0];
d1n = tiledp_col[sn * stride];
s0n = s1n - ((d1n + 1) >> 1);
for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
d1c = d1n;
s0c = s0n;
s1n = tiledp_col[(j + 1) * stride];
d1n = tiledp_col[(sn + j + 1) * stride];
s0n = s1n - ((d1c + d1n + 2) >> 2);
tmp[i ] = s0c;
tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
}
tmp[i] = s0n;
if (len & 1) {
tmp[len - 1] =
tiledp_col[((len - 1) / 2) * stride] -
((d1n + 1) >> 1);
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
} else {
tmp[len - 1] = d1n + s0n;
}
for (i = 0; i < len; ++i) {
tiledp_col[i * stride] = tmp[i];
}
}
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
* pixel is on odd coordinate */
static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
const OPJ_INT32 sn,
const OPJ_INT32 len,
OPJ_INT32* tiledp_col,
const OPJ_INT32 stride)
{
OPJ_INT32 i, j;
OPJ_INT32 s1, s2, dc, dn;
const OPJ_INT32* in_even = &tiledp_col[sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
assert(len > 2);
/* Performs lifting in one single iteration. Saves memory */
/* accesses and explicit interleaving. */
s1 = in_even[stride];
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
tmp[0] = in_even[0] + dc;
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
s2 = in_even[(j + 1) * stride];
dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2);
tmp[i ] = dc;
tmp[i + 1] = s1 + ((dn + dc) >> 1);
dc = dn;
s1 = s2;
}
tmp[i] = dc;
if (!(len & 1)) {
dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
tmp[len - 2] = s1 + ((dn + dc) >> 1);
tmp[len - 1] = dn;
} else {
tmp[len - 1] = s1 + dc;
}
for (i = 0; i < len; ++i) {
tiledp_col[i * stride] = tmp[i];
}
}
#endif /* !defined(STANDARD_SLOW_VERSION) */
/* <summary> */
/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
/* </summary> */
/* Performs interleave, inverse wavelet transform and copy back to buffer */
static void opj_idwt53_v(const opj_dwt_t *dwt,
OPJ_INT32* tiledp_col,
OPJ_INT32 stride,
OPJ_INT32 nb_cols)
{
#ifdef STANDARD_SLOW_VERSION
/* For documentation purpose */
OPJ_INT32 k, c;
for (c = 0; c < nb_cols; c ++) {
opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
opj_dwt_decode_1(dwt);
for (k = 0; k < dwt->sn + dwt->dn; ++k) {
tiledp_col[c + k * stride] = dwt->mem[k];
}
}
#else
const OPJ_INT32 sn = dwt->sn;
const OPJ_INT32 len = sn + dwt->dn;
if (dwt->cas == 0) {
/* If len == 1, unmodified value */
#if (defined(__SSE2__) || defined(__AVX2__))
if (len > 1 && nb_cols == PARALLEL_COLS_53) {
/* Same as below general case, except that thanks to SSE2/AVX2 */
/* we can efficently process 8/16 columns in parallel */
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
return;
}
#endif
if (len > 1) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
}
return;
}
} else {
if (len == 1) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
tiledp_col[0] /= 2;
}
return;
}
if (len == 2) {
OPJ_INT32 c;
OPJ_INT32* out = dwt->mem;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
OPJ_INT32 i;
const OPJ_INT32* in_even = &tiledp_col[sn * stride];
const OPJ_INT32* in_odd = &tiledp_col[0];
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
out[0] = in_even[0] + out[1];
for (i = 0; i < len; ++i) {
tiledp_col[i * stride] = out[i];
}
}
return;
}
#if (defined(__SSE2__) || defined(__AVX2__))
if (len > 2 && nb_cols == PARALLEL_COLS_53) {
/* Same as below general case, except that thanks to SSE2/AVX2 */
/* we can efficently process 8/16 columns in parallel */
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
return;
}
#endif
if (len > 2) {
OPJ_INT32 c;
for (c = 0; c < nb_cols; c++, tiledp_col++) {
opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
}
return;
}
}
#endif
}
/* <summary> */ /* <summary> */
/* Forward 9-7 wavelet transform in 1-D. */ /* Forward 9-7 wavelet transform in 1-D. */
/* </summary> */ /* </summary> */
@ -542,7 +1179,7 @@ OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
OPJ_BOOL opj_dwt_decode(opj_thread_pool_t* tp, opj_tcd_tilecomp_t* tilec, OPJ_BOOL opj_dwt_decode(opj_thread_pool_t* tp, opj_tcd_tilecomp_t* tilec,
OPJ_UINT32 numres) OPJ_UINT32 numres)
{ {
return opj_dwt_decode_tile(tp, tilec, numres, &opj_dwt_decode_1); return opj_dwt_decode_tile(tp, tilec, numres);
} }
@ -639,7 +1276,6 @@ static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
typedef struct { typedef struct {
opj_dwt_t h; opj_dwt_t h;
DWT1DFN dwt_1D;
OPJ_UINT32 rw; OPJ_UINT32 rw;
OPJ_UINT32 w; OPJ_UINT32 w;
OPJ_INT32 * OPJ_RESTRICT tiledp; OPJ_INT32 * OPJ_RESTRICT tiledp;
@ -655,9 +1291,7 @@ static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
job = (opj_dwd_decode_h_job_t*)user_data; job = (opj_dwd_decode_h_job_t*)user_data;
for (j = job->min_j; j < job->max_j; j++) { for (j = job->min_j; j < job->max_j; j++) {
opj_dwt_interleave_h(&job->h, &job->tiledp[j * job->w]); opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
(job->dwt_1D)(&job->h);
memcpy(&job->tiledp[j * job->w], job->h.mem, job->rw * sizeof(OPJ_INT32));
} }
opj_aligned_free(job->h.mem); opj_aligned_free(job->h.mem);
@ -666,7 +1300,6 @@ static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
typedef struct { typedef struct {
opj_dwt_t v; opj_dwt_t v;
DWT1DFN dwt_1D;
OPJ_UINT32 rh; OPJ_UINT32 rh;
OPJ_UINT32 w; OPJ_UINT32 w;
OPJ_INT32 * OPJ_RESTRICT tiledp; OPJ_INT32 * OPJ_RESTRICT tiledp;
@ -681,14 +1314,14 @@ static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
(void)tls; (void)tls;
job = (opj_dwd_decode_v_job_t*)user_data; job = (opj_dwd_decode_v_job_t*)user_data;
for (j = job->min_j; j < job->max_j; j++) { for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
OPJ_UINT32 k; j += PARALLEL_COLS_53) {
opj_dwt_interleave_v(&job->v, &job->tiledp[j], (OPJ_INT32)job->w); opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_INT32)job->w,
(job->dwt_1D)(&job->v); PARALLEL_COLS_53);
for (k = 0; k < job->rh; ++k) {
job->tiledp[k * job->w + j] = job->v.mem[k];
}
} }
if (j < job->max_j)
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_INT32)job->w,
(OPJ_INT32)(job->max_j - j));
opj_aligned_free(job->v.mem); opj_aligned_free(job->v.mem);
opj_free(job); opj_free(job);
@ -699,7 +1332,7 @@ static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
/* Inverse wavelet transform in 2-D. */ /* Inverse wavelet transform in 2-D. */
/* </summary> */ /* </summary> */
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
{ {
opj_dwt_t h; opj_dwt_t h;
opj_dwt_t v; opj_dwt_t v;
@ -721,12 +1354,15 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
num_threads = opj_thread_pool_get_thread_count(tp); num_threads = opj_thread_pool_get_thread_count(tp);
h_mem_size = opj_dwt_max_resolution(tr, numres); h_mem_size = opj_dwt_max_resolution(tr, numres);
/* overflow check */ /* overflow check */
if (h_mem_size > (SIZE_MAX / sizeof(OPJ_INT32))) { if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
/* FIXME event manager error callback */ /* FIXME event manager error callback */
return OPJ_FALSE; return OPJ_FALSE;
} }
h_mem_size *= sizeof(OPJ_INT32); /* We need PARALLEL_COLS_53 times the height of the array, */
h.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); /* since for the vertical pass */
/* we process PARALLEL_COLS_53 columns at a time */
h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32);
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (! h.mem) { if (! h.mem) {
/* FIXME event manager error callback */ /* FIXME event manager error callback */
return OPJ_FALSE; return OPJ_FALSE;
@ -750,9 +1386,7 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
if (num_threads <= 1 || rh <= 1) { if (num_threads <= 1 || rh <= 1) {
for (j = 0; j < rh; ++j) { for (j = 0; j < rh; ++j) {
opj_dwt_interleave_h(&h, &tiledp[j * w]); opj_idwt53_h(&h, &tiledp[j * w]);
(dwt_1D)(&h);
memcpy(&tiledp[j * w], h.mem, rw * sizeof(OPJ_INT32));
} }
} else { } else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
@ -777,7 +1411,6 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
return OPJ_FALSE; return OPJ_FALSE;
} }
job->h = h; job->h = h;
job->dwt_1D = dwt_1D;
job->rw = rw; job->rw = rw;
job->w = w; job->w = w;
job->tiledp = tiledp; job->tiledp = tiledp;
@ -786,7 +1419,7 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
job->max_j = rh; job->max_j = rh;
} }
job->h.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (!job->h.mem) { if (!job->h.mem) {
/* FIXME event manager error callback */ /* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0); opj_thread_pool_wait_completion(tp, 0);
@ -803,14 +1436,12 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
v.cas = tr->y0 % 2; v.cas = tr->y0 % 2;
if (num_threads <= 1 || rw <= 1) { if (num_threads <= 1 || rw <= 1) {
for (j = 0; j < rw; ++j) { for (j = 0; j + PARALLEL_COLS_53 <= rw;
OPJ_UINT32 k; j += PARALLEL_COLS_53) {
opj_idwt53_v(&v, &tiledp[j], (OPJ_INT32)w, PARALLEL_COLS_53);
opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w); }
(dwt_1D)(&v); if (j < rw) {
for (k = 0; k < rh; ++k) { opj_idwt53_v(&v, &tiledp[j], (OPJ_INT32)w, (OPJ_INT32)(rw - j));
tiledp[k * w + j] = v.mem[k];
}
} }
} else { } else {
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
@ -835,7 +1466,6 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
return OPJ_FALSE; return OPJ_FALSE;
} }
job->v = v; job->v = v;
job->dwt_1D = dwt_1D;
job->rh = rh; job->rh = rh;
job->w = w; job->w = w;
job->tiledp = tiledp; job->tiledp = tiledp;
@ -844,7 +1474,7 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
job->max_j = rw; job->max_j = rw;
} }
job->v.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
if (!job->v.mem) { if (!job->v.mem) {
/* FIXME event manager error callback */ /* FIXME event manager error callback */
opj_thread_pool_wait_completion(tp, 0); opj_thread_pool_wait_completion(tp, 0);

View File

@ -187,6 +187,32 @@ static INLINE long opj_lrintf(float f)
# pragma intrinsic(__emul) # pragma intrinsic(__emul)
#endif #endif
/* Apparently Visual Studio doesn't define __SSE__ / __SSE2__ macros */
#if defined(_M_X64)
/* Intel 64bit support SSE and SSE2 */
# ifndef __SSE__
# define __SSE__ 1
# endif
# ifndef __SSE2__
# define __SSE2__ 1
# endif
#endif
/* For x86, test the value of the _M_IX86_FP macro. */
/* See https://msdn.microsoft.com/en-us/library/b0084kay.aspx */
#if defined(_M_IX86_FP)
# if _M_IX86_FP >= 1
# ifndef __SSE__
# define __SSE__ 1
# endif
# endif
# if _M_IX86_FP >= 2
# ifndef __SSE2__
# define __SSE2__ 1
# endif
# endif
#endif
/* Type to use for bit-fields in internal headers */ /* Type to use for bit-fields in internal headers */
typedef unsigned int OPJ_BITFIELD; typedef unsigned int OPJ_BITFIELD;

View File

@ -213,6 +213,15 @@ void * opj_aligned_realloc(void *ptr, size_t size)
return opj_aligned_realloc_n(ptr, 16U, size); return opj_aligned_realloc_n(ptr, 16U, size);
} }
void *opj_aligned_32_malloc(size_t size)
{
return opj_aligned_alloc_n(32U, size);
}
void * opj_aligned_32_realloc(void *ptr, size_t size)
{
return opj_aligned_realloc_n(ptr, 32U, size);
}
void opj_aligned_free(void* ptr) void opj_aligned_free(void* ptr)
{ {
#if defined(OPJ_HAVE_POSIX_MEMALIGN) || defined(OPJ_HAVE_MEMALIGN) #if defined(OPJ_HAVE_POSIX_MEMALIGN) || defined(OPJ_HAVE_MEMALIGN)

View File

@ -71,6 +71,14 @@ void * opj_aligned_malloc(size_t size);
void * opj_aligned_realloc(void *ptr, size_t size); void * opj_aligned_realloc(void *ptr, size_t size);
void opj_aligned_free(void* ptr); void opj_aligned_free(void* ptr);
/**
Allocate memory aligned to a 32 byte boundary
@param size Bytes to allocate
@return Returns a void pointer to the allocated space, or NULL if there is insufficient memory available
*/
void * opj_aligned_32_malloc(size_t size);
void * opj_aligned_32_realloc(void *ptr, size_t size);
/** /**
Reallocate memory blocks. Reallocate memory blocks.
@param m Pointer to previously allocated memory block @param m Pointer to previously allocated memory block

View File

@ -53,6 +53,11 @@ if (NOT "$ENV{OPJ_CI_ARCH}" STREQUAL "")
endif() endif()
endif() endif()
if (NOT "$ENV{OPJ_CI_INSTRUCTION_SETS}" STREQUAL "")
set(CCFLAGS_ARCH "${CCFLAGS_ARCH} $ENV{OPJ_CI_INSTRUCTION_SETS}")
endif()
if ("$ENV{OPJ_CI_ASAN}" STREQUAL "1") if ("$ENV{OPJ_CI_ASAN}" STREQUAL "1")
set(OPJ_HAS_MEMCHECK TRUE) set(OPJ_HAS_MEMCHECK TRUE)
set(CTEST_MEMORYCHECK_TYPE "AddressSanitizer") set(CTEST_MEMORYCHECK_TYPE "AddressSanitizer")