This commit is contained in:
Francois-Olivier Devaux 2007-07-13 13:07:07 +00:00
parent 4a50efe542
commit 5dec8bbbe9
7 changed files with 239 additions and 212 deletions

View File

@ -5,6 +5,11 @@ What's New for OpenJPEG
! : changed ! : changed
+ : added + : added
July 13, 2007
! [FOD] Modified the memory allocation for codestreams containing multiple tiles. The memory is now allocated for each tile indenpendently, leading to an important decrease of the virtual memory needed. [j2k.c tcd.h tcd.c]
! [FOD] Modified old comments about the ability to decode mega-images and comments about the disk size necessary to do this. [image_to_j2k.c and frames_to_mj2.c]
* [FOD] Added 2000 bytes for the memory allocation in cio.c for the minimum size of headers (useful in case of very small images) [cio.c]
July 12, 2007 July 12, 2007
* [GB] fixed a bug in JPWL module, which prevented to exploit the full error correction capability of RS codes (e.g. it gave up at 5 errors, even if 6 were correctable); defined a JPWL_MAXIMUM_EPB_ROOM for better customization of the maximum dimension of EPBs (the dimension is pre-calculated on an hypothesis, if it goes beyond 65535 there will be problems, thus we give a little less than the max, let's say 65450) * [GB] fixed a bug in JPWL module, which prevented to exploit the full error correction capability of RS codes (e.g. it gave up at 5 errors, even if 6 were correctable); defined a JPWL_MAXIMUM_EPB_ROOM for better customization of the maximum dimension of EPBs (the dimension is pre-calculated on an hypothesis, if it goes beyond 65535 there will be problems, thus we give a little less than the max, let's say 65450)

View File

@ -98,10 +98,6 @@ void encode_help_display() {
fprintf(stdout,"The markers written to the main_header are : SOC SIZ COD QCD COM.\n"); fprintf(stdout,"The markers written to the main_header are : SOC SIZ COD QCD COM.\n");
fprintf(stdout,"COD and QCD never appear in the tile_header.\n"); fprintf(stdout,"COD and QCD never appear in the tile_header.\n");
fprintf(stdout,"\n"); fprintf(stdout,"\n");
fprintf(stdout,"- This coder can encode a mega image, a test was made on a 24000x24000 pixels \n");
fprintf(stdout,"color image. You need enough disk space memory (twice the original) to encode \n");
fprintf(stdout,"the image,i.e. for a 1.5 GB image you need a minimum of 3GB of disk memory)\n");
fprintf(stdout,"\n");
fprintf(stdout,"By default:\n"); fprintf(stdout,"By default:\n");
fprintf(stdout,"------------\n"); fprintf(stdout,"------------\n");
fprintf(stdout,"\n"); fprintf(stdout,"\n");

View File

@ -58,7 +58,7 @@ opj_cio_t* OPJ_CALLCONV opj_cio_open(opj_common_ptr cinfo, unsigned char *buffer
opj_free(cio); opj_free(cio);
return NULL; return NULL;
} }
cio->length = (int) (0.1625 * cp->img_size); /* 0.1625 = 1.3/8 */ cio->length = (int) (0.1625 * cp->img_size + 2000); /* 0.1625 = 1.3/8 and 2000 bytes as a minimum for headers */
cio->buffer = (unsigned char *)opj_malloc(cio->length); cio->buffer = (unsigned char *)opj_malloc(cio->length);
if(!cio->buffer) { if(!cio->buffer) {
opj_free(cio); opj_free(cio);

View File

@ -1484,10 +1484,12 @@ static void j2k_read_eoc(opj_j2k_t *j2k) {
opj_tcd_t *tcd = tcd_create(j2k->cinfo); opj_tcd_t *tcd = tcd_create(j2k->cinfo);
tcd_malloc_decode(tcd, j2k->image, j2k->cp); tcd_malloc_decode(tcd, j2k->image, j2k->cp);
for (i = 0; i < j2k->cp->tileno_size; i++) { for (i = 0; i < j2k->cp->tileno_size; i++) {
tcd_malloc_decode_tile(tcd, j2k->image, j2k->cp, i);
tileno = j2k->cp->tileno[i]; tileno = j2k->cp->tileno[i];
tcd_decode_tile(tcd, j2k->tile_data[tileno], j2k->tile_len[tileno], tileno); tcd_decode_tile(tcd, j2k->tile_data[tileno], j2k->tile_len[tileno], tileno);
opj_free(j2k->tile_data[tileno]); opj_free(j2k->tile_data[tileno]);
j2k->tile_data[tileno] = NULL; j2k->tile_data[tileno] = NULL;
tcd_free_decode_tile(tcd, i);
} }
tcd_free_decode(tcd); tcd_free_decode(tcd);
tcd_destroy(tcd); tcd_destroy(tcd);

View File

@ -573,195 +573,61 @@ void tcd_init_encode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp, int cur
} }
void tcd_malloc_decode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp) { void tcd_malloc_decode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp) {
int tileno, compno, resno, bandno, precno, cblkno, i, j, p, q; int i, j, tileno, p, q;
unsigned int x0 = 0, y0 = 0, x1 = 0, y1 = 0, w, h; unsigned int x0 = 0, y0 = 0, x1 = 0, y1 = 0, w, h;
tcd->image = image; tcd->image = image;
tcd->cp = cp;
tcd->tcd_image->tw = cp->tw; tcd->tcd_image->tw = cp->tw;
tcd->tcd_image->th = cp->th; tcd->tcd_image->th = cp->th;
tcd->tcd_image->tiles = (opj_tcd_tile_t *) opj_malloc(cp->tw * cp->th * sizeof(opj_tcd_tile_t)); tcd->tcd_image->tiles = (opj_tcd_tile_t *) opj_malloc(cp->tw * cp->th * sizeof(opj_tcd_tile_t));
for (i = 0; i < cp->tileno_size; i++) {
opj_tcp_t *tcp = &(cp->tcps[cp->tileno[i]]);
opj_tcd_tile_t *tile = &(tcd->tcd_image->tiles[cp->tileno[i]]);
/* cfr p59 ISO/IEC FDIS15444-1 : 2000 (18 august 2000) */
tileno = cp->tileno[i];
p = tileno % cp->tw; /* si numerotation matricielle .. */
q = tileno / cp->tw; /* .. coordonnees de la tile (q,p) q pour ligne et p pour colonne */
/* 4 borders of the tile rescale on the image if necessary */
tile->x0 = int_max(cp->tx0 + p * cp->tdx, image->x0);
tile->y0 = int_max(cp->ty0 + q * cp->tdy, image->y0);
tile->x1 = int_min(cp->tx0 + (p + 1) * cp->tdx, image->x1);
tile->y1 = int_min(cp->ty0 + (q + 1) * cp->tdy, image->y1);
tile->numcomps = image->numcomps;
tile->comps = (opj_tcd_tilecomp_t *) opj_malloc(image->numcomps * sizeof(opj_tcd_tilecomp_t));
for (compno = 0; compno < tile->numcomps; compno++) {
opj_tccp_t *tccp = &tcp->tccps[compno];
opj_tcd_tilecomp_t *tilec = &tile->comps[compno];
/* border of each tile component (global) */
tilec->x0 = int_ceildiv(tile->x0, image->comps[compno].dx);
tilec->y0 = int_ceildiv(tile->y0, image->comps[compno].dy);
tilec->x1 = int_ceildiv(tile->x1, image->comps[compno].dx);
tilec->y1 = int_ceildiv(tile->y1, image->comps[compno].dy);
tilec->data = (int *) opj_malloc((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0) * sizeof(int));
tilec->numresolutions = tccp->numresolutions;
tilec->resolutions = (opj_tcd_resolution_t *) opj_malloc(tilec->numresolutions * sizeof(opj_tcd_resolution_t));
for (resno = 0; resno < tilec->numresolutions; resno++) {
int pdx, pdy;
int levelno = tilec->numresolutions - 1 - resno;
int tlprcxstart, tlprcystart, brprcxend, brprcyend;
int tlcbgxstart, tlcbgystart, brcbgxend, brcbgyend;
int cbgwidthexpn, cbgheightexpn;
int cblkwidthexpn, cblkheightexpn;
opj_tcd_resolution_t *res = &tilec->resolutions[resno];
/* border for each resolution level (global) */
res->x0 = int_ceildivpow2(tilec->x0, levelno);
res->y0 = int_ceildivpow2(tilec->y0, levelno);
res->x1 = int_ceildivpow2(tilec->x1, levelno);
res->y1 = int_ceildivpow2(tilec->y1, levelno);
res->numbands = resno == 0 ? 1 : 3;
/* p. 35, table A-23, ISO/IEC FDIS154444-1 : 2000 (18 august 2000) */
if (tccp->csty & J2K_CCP_CSTY_PRT) {
pdx = tccp->prcw[resno];
pdy = tccp->prch[resno];
} else {
pdx = 15;
pdy = 15;
}
/* p. 64, B.6, ISO/IEC FDIS15444-1 : 2000 (18 august 2000) */
tlprcxstart = int_floordivpow2(res->x0, pdx) << pdx;
tlprcystart = int_floordivpow2(res->y0, pdy) << pdy;
brprcxend = int_ceildivpow2(res->x1, pdx) << pdx;
brprcyend = int_ceildivpow2(res->y1, pdy) << pdy;
res->pw = (res->x0 == res->x1) ? 0 : ((brprcxend - tlprcxstart) >> pdx);
res->ph = (res->y0 == res->y1) ? 0 : ((brprcyend - tlprcystart) >> pdy);
if (resno == 0) {
tlcbgxstart = tlprcxstart;
tlcbgystart = tlprcystart;
brcbgxend = brprcxend;
brcbgyend = brprcyend;
cbgwidthexpn = pdx;
cbgheightexpn = pdy;
} else {
tlcbgxstart = int_ceildivpow2(tlprcxstart, 1);
tlcbgystart = int_ceildivpow2(tlprcystart, 1);
brcbgxend = int_ceildivpow2(brprcxend, 1);
brcbgyend = int_ceildivpow2(brprcyend, 1);
cbgwidthexpn = pdx - 1;
cbgheightexpn = pdy - 1;
}
cblkwidthexpn = int_min(tccp->cblkw, cbgwidthexpn);
cblkheightexpn = int_min(tccp->cblkh, cbgheightexpn);
for (bandno = 0; bandno < res->numbands; bandno++) {
int x0b, y0b;
int gain, numbps;
opj_stepsize_t *ss = NULL;
opj_tcd_band_t *band = &res->bands[bandno];
band->bandno = resno == 0 ? 0 : bandno + 1;
x0b = (band->bandno == 1) || (band->bandno == 3) ? 1 : 0;
y0b = (band->bandno == 2) || (band->bandno == 3) ? 1 : 0;
if (band->bandno == 0) {
/* band border (global) */
band->x0 = int_ceildivpow2(tilec->x0, levelno);
band->y0 = int_ceildivpow2(tilec->y0, levelno);
band->x1 = int_ceildivpow2(tilec->x1, levelno);
band->y1 = int_ceildivpow2(tilec->y1, levelno);
} else {
/* band border (global) */
band->x0 = int_ceildivpow2(tilec->x0 - (1 << levelno) * x0b, levelno + 1);
band->y0 = int_ceildivpow2(tilec->y0 - (1 << levelno) * y0b, levelno + 1);
band->x1 = int_ceildivpow2(tilec->x1 - (1 << levelno) * x0b, levelno + 1);
band->y1 = int_ceildivpow2(tilec->y1 - (1 << levelno) * y0b, levelno + 1);
}
ss = &tccp->stepsizes[resno == 0 ? 0 : 3 * (resno - 1) + bandno + 1];
gain = tccp->qmfbid == 0 ? dwt_getgain_real(band->bandno) : dwt_getgain(band->bandno);
numbps = image->comps[compno].prec + gain;
band->stepsize = (float)((1.0 + ss->mant / 2048.0) * pow(2.0, numbps - ss->expn));
band->numbps = ss->expn + tccp->numgbits - 1; /* WHY -1 ? */
band->precincts = (opj_tcd_precinct_t *) opj_malloc(res->pw * res->ph * sizeof(opj_tcd_precinct_t));
for (precno = 0; precno < res->pw * res->ph; precno++) {
int tlcblkxstart, tlcblkystart, brcblkxend, brcblkyend;
int cbgxstart = tlcbgxstart + (precno % res->pw) * (1 << cbgwidthexpn);
int cbgystart = tlcbgystart + (precno / res->pw) * (1 << cbgheightexpn);
int cbgxend = cbgxstart + (1 << cbgwidthexpn);
int cbgyend = cbgystart + (1 << cbgheightexpn);
opj_tcd_precinct_t *prc = &band->precincts[precno];
/* precinct size (global) */
prc->x0 = int_max(cbgxstart, band->x0);
prc->y0 = int_max(cbgystart, band->y0);
prc->x1 = int_min(cbgxend, band->x1);
prc->y1 = int_min(cbgyend, band->y1);
tlcblkxstart = int_floordivpow2(prc->x0, cblkwidthexpn) << cblkwidthexpn;
tlcblkystart = int_floordivpow2(prc->y0, cblkheightexpn) << cblkheightexpn;
brcblkxend = int_ceildivpow2(prc->x1, cblkwidthexpn) << cblkwidthexpn;
brcblkyend = int_ceildivpow2(prc->y1, cblkheightexpn) << cblkheightexpn;
prc->cw = (brcblkxend - tlcblkxstart) >> cblkwidthexpn;
prc->ch = (brcblkyend - tlcblkystart) >> cblkheightexpn;
prc->cblks = (opj_tcd_cblk_t *) opj_malloc(prc->cw * prc->ch * sizeof(opj_tcd_cblk_t));
prc->incltree = tgt_create(prc->cw, prc->ch);
prc->imsbtree = tgt_create(prc->cw, prc->ch);
for (cblkno = 0; cblkno < prc->cw * prc->ch; cblkno++) {
int cblkxstart = tlcblkxstart + (cblkno % prc->cw) * (1 << cblkwidthexpn);
int cblkystart = tlcblkystart + (cblkno / prc->cw) * (1 << cblkheightexpn);
int cblkxend = cblkxstart + (1 << cblkwidthexpn);
int cblkyend = cblkystart + (1 << cblkheightexpn);
/* code-block size (global) */
opj_tcd_cblk_t *cblk = &prc->cblks[cblkno];
cblk->x0 = int_max(cblkxstart, prc->x0);
cblk->y0 = int_max(cblkystart, prc->y0);
cblk->x1 = int_min(cblkxend, prc->x1);
cblk->y1 = int_min(cblkyend, prc->y1);
}
} /* precno */
} /* bandno */
} /* resno */
} /* compno */
} /* i = 0..cp->tileno_size */
/* tcd_dump(stdout, tcd, &tcd->tcd_image); */
/* /*
Allocate place to store the decoded data = final image Allocate place to store the decoded data = final image
Place limited by the tile really present in the codestream Place limited by the tile really present in the codestream
*/ */
for (j = 0; j < cp->tileno_size; j++) {
opj_tcd_tile_t *tile;
tileno = cp->tileno[j];
tile = &(tcd->tcd_image->tiles[cp->tileno[tileno]]);
tile->numcomps = image->numcomps;
tile->comps = (opj_tcd_tilecomp_t *) opj_malloc(image->numcomps * sizeof(opj_tcd_tilecomp_t));
}
for (i = 0; i < image->numcomps; i++) { for (i = 0; i < image->numcomps; i++) {
for (j = 0; j < cp->tileno_size; j++) { for (j = 0; j < cp->tileno_size; j++) {
opj_tcd_tile_t *tile;
opj_tcd_tilecomp_t *tilec;
/* cfr p59 ISO/IEC FDIS15444-1 : 2000 (18 august 2000) */
tileno = cp->tileno[j]; tileno = cp->tileno[j];
x0 = j == 0 ? tcd->tcd_image->tiles[tileno].comps[i].x0 : int_min(x0,
(unsigned int) tcd->tcd_image->tiles[tileno].comps[i].x0); tile = &(tcd->tcd_image->tiles[cp->tileno[tileno]]);
y0 = j == 0 ? tcd->tcd_image->tiles[tileno].comps[i].y0 : int_min(y0, tilec = &tile->comps[i];
(unsigned int) tcd->tcd_image->tiles[tileno].comps[i].y0);
x1 = j == 0 ? tcd->tcd_image->tiles[tileno].comps[i].x1 : int_max(x1, p = tileno % cp->tw; /* si numerotation matricielle .. */
(unsigned int) tcd->tcd_image->tiles[tileno].comps[i].x1); q = tileno / cp->tw; /* .. coordonnees de la tile (q,p) q pour ligne et p pour colonne */
y1 = j == 0 ? tcd->tcd_image->tiles[tileno].comps[i].y1 : int_max(y1,
(unsigned int) tcd->tcd_image->tiles[tileno].comps[i].y1); /* 4 borders of the tile rescale on the image if necessary */
tile->x0 = int_max(cp->tx0 + p * cp->tdx, image->x0);
tile->y0 = int_max(cp->ty0 + q * cp->tdy, image->y0);
tile->x1 = int_min(cp->tx0 + (p + 1) * cp->tdx, image->x1);
tile->y1 = int_min(cp->ty0 + (q + 1) * cp->tdy, image->y1);
tilec->x0 = int_ceildiv(tile->x0, image->comps[i].dx);
tilec->y0 = int_ceildiv(tile->y0, image->comps[i].dy);
tilec->x1 = int_ceildiv(tile->x1, image->comps[i].dx);
tilec->y1 = int_ceildiv(tile->y1, image->comps[i].dy);
x0 = j == 0 ? tilec->x0 : int_min(x0, (unsigned int) tilec->x0);
y0 = j == 0 ? tilec->y0 : int_min(y0, (unsigned int) tilec->x0);
x1 = j == 0 ? tilec->x1 : int_max(x1, (unsigned int) tilec->x1);
y1 = j == 0 ? tilec->y1 : int_max(y1, (unsigned int) tilec->y1);
} }
w = x1 - x0; w = x1 - x0;
@ -773,6 +639,167 @@ void tcd_malloc_decode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp) {
image->comps[i].x0 = x0; image->comps[i].x0 = x0;
image->comps[i].y0 = y0; image->comps[i].y0 = y0;
} }
}
void tcd_malloc_decode_tile(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp, int tileno) {
int compno, resno, bandno, precno, cblkno;
unsigned int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
opj_tcp_t *tcp;
opj_tcd_tile_t *tile;
tcd->cp = cp;
tcp = &(cp->tcps[cp->tileno[tileno]]);
tile = &(tcd->tcd_image->tiles[cp->tileno[tileno]]);
tileno = cp->tileno[tileno];
for (compno = 0; compno < tile->numcomps; compno++) {
opj_tccp_t *tccp = &tcp->tccps[compno];
opj_tcd_tilecomp_t *tilec = &tile->comps[compno];
/* border of each tile component (global) */
tilec->x0 = int_ceildiv(tile->x0, image->comps[compno].dx);
tilec->y0 = int_ceildiv(tile->y0, image->comps[compno].dy);
tilec->x1 = int_ceildiv(tile->x1, image->comps[compno].dx);
tilec->y1 = int_ceildiv(tile->y1, image->comps[compno].dy);
tilec->data = (int *) opj_malloc((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0) * sizeof(int));
tilec->numresolutions = tccp->numresolutions;
tilec->resolutions = (opj_tcd_resolution_t *) opj_malloc(tilec->numresolutions * sizeof(opj_tcd_resolution_t));
for (resno = 0; resno < tilec->numresolutions; resno++) {
int pdx, pdy;
int levelno = tilec->numresolutions - 1 - resno;
int tlprcxstart, tlprcystart, brprcxend, brprcyend;
int tlcbgxstart, tlcbgystart, brcbgxend, brcbgyend;
int cbgwidthexpn, cbgheightexpn;
int cblkwidthexpn, cblkheightexpn;
opj_tcd_resolution_t *res = &tilec->resolutions[resno];
/* border for each resolution level (global) */
res->x0 = int_ceildivpow2(tilec->x0, levelno);
res->y0 = int_ceildivpow2(tilec->y0, levelno);
res->x1 = int_ceildivpow2(tilec->x1, levelno);
res->y1 = int_ceildivpow2(tilec->y1, levelno);
res->numbands = resno == 0 ? 1 : 3;
/* p. 35, table A-23, ISO/IEC FDIS154444-1 : 2000 (18 august 2000) */
if (tccp->csty & J2K_CCP_CSTY_PRT) {
pdx = tccp->prcw[resno];
pdy = tccp->prch[resno];
} else {
pdx = 15;
pdy = 15;
}
/* p. 64, B.6, ISO/IEC FDIS15444-1 : 2000 (18 august 2000) */
tlprcxstart = int_floordivpow2(res->x0, pdx) << pdx;
tlprcystart = int_floordivpow2(res->y0, pdy) << pdy;
brprcxend = int_ceildivpow2(res->x1, pdx) << pdx;
brprcyend = int_ceildivpow2(res->y1, pdy) << pdy;
res->pw = (res->x0 == res->x1) ? 0 : ((brprcxend - tlprcxstart) >> pdx);
res->ph = (res->y0 == res->y1) ? 0 : ((brprcyend - tlprcystart) >> pdy);
if (resno == 0) {
tlcbgxstart = tlprcxstart;
tlcbgystart = tlprcystart;
brcbgxend = brprcxend;
brcbgyend = brprcyend;
cbgwidthexpn = pdx;
cbgheightexpn = pdy;
} else {
tlcbgxstart = int_ceildivpow2(tlprcxstart, 1);
tlcbgystart = int_ceildivpow2(tlprcystart, 1);
brcbgxend = int_ceildivpow2(brprcxend, 1);
brcbgyend = int_ceildivpow2(brprcyend, 1);
cbgwidthexpn = pdx - 1;
cbgheightexpn = pdy - 1;
}
cblkwidthexpn = int_min(tccp->cblkw, cbgwidthexpn);
cblkheightexpn = int_min(tccp->cblkh, cbgheightexpn);
for (bandno = 0; bandno < res->numbands; bandno++) {
int x0b, y0b;
int gain, numbps;
opj_stepsize_t *ss = NULL;
opj_tcd_band_t *band = &res->bands[bandno];
band->bandno = resno == 0 ? 0 : bandno + 1;
x0b = (band->bandno == 1) || (band->bandno == 3) ? 1 : 0;
y0b = (band->bandno == 2) || (band->bandno == 3) ? 1 : 0;
if (band->bandno == 0) {
/* band border (global) */
band->x0 = int_ceildivpow2(tilec->x0, levelno);
band->y0 = int_ceildivpow2(tilec->y0, levelno);
band->x1 = int_ceildivpow2(tilec->x1, levelno);
band->y1 = int_ceildivpow2(tilec->y1, levelno);
} else {
/* band border (global) */
band->x0 = int_ceildivpow2(tilec->x0 - (1 << levelno) * x0b, levelno + 1);
band->y0 = int_ceildivpow2(tilec->y0 - (1 << levelno) * y0b, levelno + 1);
band->x1 = int_ceildivpow2(tilec->x1 - (1 << levelno) * x0b, levelno + 1);
band->y1 = int_ceildivpow2(tilec->y1 - (1 << levelno) * y0b, levelno + 1);
}
ss = &tccp->stepsizes[resno == 0 ? 0 : 3 * (resno - 1) + bandno + 1];
gain = tccp->qmfbid == 0 ? dwt_getgain_real(band->bandno) : dwt_getgain(band->bandno);
numbps = image->comps[compno].prec + gain;
band->stepsize = (float)((1.0 + ss->mant / 2048.0) * pow(2.0, numbps - ss->expn));
band->numbps = ss->expn + tccp->numgbits - 1; /* WHY -1 ? */
band->precincts = (opj_tcd_precinct_t *) opj_malloc(res->pw * res->ph * sizeof(opj_tcd_precinct_t));
for (precno = 0; precno < res->pw * res->ph; precno++) {
int tlcblkxstart, tlcblkystart, brcblkxend, brcblkyend;
int cbgxstart = tlcbgxstart + (precno % res->pw) * (1 << cbgwidthexpn);
int cbgystart = tlcbgystart + (precno / res->pw) * (1 << cbgheightexpn);
int cbgxend = cbgxstart + (1 << cbgwidthexpn);
int cbgyend = cbgystart + (1 << cbgheightexpn);
opj_tcd_precinct_t *prc = &band->precincts[precno];
/* precinct size (global) */
prc->x0 = int_max(cbgxstart, band->x0);
prc->y0 = int_max(cbgystart, band->y0);
prc->x1 = int_min(cbgxend, band->x1);
prc->y1 = int_min(cbgyend, band->y1);
tlcblkxstart = int_floordivpow2(prc->x0, cblkwidthexpn) << cblkwidthexpn;
tlcblkystart = int_floordivpow2(prc->y0, cblkheightexpn) << cblkheightexpn;
brcblkxend = int_ceildivpow2(prc->x1, cblkwidthexpn) << cblkwidthexpn;
brcblkyend = int_ceildivpow2(prc->y1, cblkheightexpn) << cblkheightexpn;
prc->cw = (brcblkxend - tlcblkxstart) >> cblkwidthexpn;
prc->ch = (brcblkyend - tlcblkystart) >> cblkheightexpn;
prc->cblks = (opj_tcd_cblk_t *) opj_malloc(prc->cw * prc->ch * sizeof(opj_tcd_cblk_t));
prc->incltree = tgt_create(prc->cw, prc->ch);
prc->imsbtree = tgt_create(prc->cw, prc->ch);
for (cblkno = 0; cblkno < prc->cw * prc->ch; cblkno++) {
int cblkxstart = tlcblkxstart + (cblkno % prc->cw) * (1 << cblkwidthexpn);
int cblkystart = tlcblkystart + (cblkno / prc->cw) * (1 << cblkheightexpn);
int cblkxend = cblkxstart + (1 << cblkwidthexpn);
int cblkyend = cblkystart + (1 << cblkheightexpn);
/* code-block size (global) */
opj_tcd_cblk_t *cblk = &prc->cblks[cblkno];
cblk->x0 = int_max(cblkxstart, prc->x0);
cblk->y0 = int_max(cblkystart, prc->y0);
cblk->x1 = int_min(cblkxend, prc->x1);
cblk->y1 = int_min(cblkyend, prc->y1);
}
} /* precno */
} /* bandno */
} /* resno */
} /* compno */
/* tcd_dump(stdout, tcd, &tcd->tcd_image); */
} }
void tcd_makelayer_fixed(opj_tcd_t *tcd, int layno, int final) { void tcd_makelayer_fixed(opj_tcd_t *tcd, int layno, int final) {
@ -1378,32 +1405,34 @@ bool tcd_decode_tile(opj_tcd_t *tcd, unsigned char *src, int len, int tileno) {
} }
void tcd_free_decode(opj_tcd_t *tcd) { void tcd_free_decode(opj_tcd_t *tcd) {
int tileno,compno,resno,bandno,precno;
opj_tcd_image_t *tcd_image = tcd->tcd_image; opj_tcd_image_t *tcd_image = tcd->tcd_image;
for (tileno = 0; tileno < tcd_image->tw * tcd_image->th; tileno++) {
opj_tcd_tile_t *tile = &tcd_image->tiles[tileno];
for (compno = 0; compno < tile->numcomps; compno++) {
opj_tcd_tilecomp_t *tilec = &tile->comps[compno];
for (resno = 0; resno < tilec->numresolutions; resno++) {
opj_tcd_resolution_t *res = &tilec->resolutions[resno];
for (bandno = 0; bandno < res->numbands; bandno++) {
opj_tcd_band_t *band = &res->bands[bandno];
for (precno = 0; precno < res->ph * res->pw; precno++) {
opj_tcd_precinct_t *prec = &band->precincts[precno];
if (prec->cblks != NULL) opj_free(prec->cblks);
if (prec->imsbtree != NULL) tgt_destroy(prec->imsbtree);
if (prec->incltree != NULL) tgt_destroy(prec->incltree);
}
if (band->precincts != NULL) opj_free(band->precincts);
}
}
if (tilec->resolutions != NULL) opj_free(tilec->resolutions);
}
if (tile->comps != NULL) opj_free(tile->comps);
}
if (tcd_image->tiles != NULL) opj_free(tcd_image->tiles); if (tcd_image->tiles != NULL) opj_free(tcd_image->tiles);
} }
void tcd_free_decode_tile(opj_tcd_t *tcd, int tileno) {
int compno,resno,bandno,precno;
opj_tcd_image_t *tcd_image = tcd->tcd_image;
opj_tcd_tile_t *tile = &tcd_image->tiles[tileno];
for (compno = 0; compno < tile->numcomps; compno++) {
opj_tcd_tilecomp_t *tilec = &tile->comps[compno];
for (resno = 0; resno < tilec->numresolutions; resno++) {
opj_tcd_resolution_t *res = &tilec->resolutions[resno];
for (bandno = 0; bandno < res->numbands; bandno++) {
opj_tcd_band_t *band = &res->bands[bandno];
for (precno = 0; precno < res->ph * res->pw; precno++) {
opj_tcd_precinct_t *prec = &band->precincts[precno];
if (prec->cblks != NULL) opj_free(prec->cblks);
if (prec->imsbtree != NULL) tgt_destroy(prec->imsbtree);
if (prec->incltree != NULL) tgt_destroy(prec->incltree);
}
if (band->precincts != NULL) opj_free(band->precincts);
}
}
if (tilec->resolutions != NULL) opj_free(tilec->resolutions);
}
if (tile->comps != NULL) opj_free(tile->comps);
}

View File

@ -234,6 +234,7 @@ Initialize the tile decoder
@param cp Coding parameters @param cp Coding parameters
*/ */
void tcd_malloc_decode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp); void tcd_malloc_decode(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp);
void tcd_malloc_decode_tile(opj_tcd_t *tcd, opj_image_t * image, opj_cp_t * cp, int tileno);
void tcd_makelayer_fixed(opj_tcd_t *tcd, int layno, int final); void tcd_makelayer_fixed(opj_tcd_t *tcd, int layno, int final);
void tcd_rateallocate_fixed(opj_tcd_t *tcd); void tcd_rateallocate_fixed(opj_tcd_t *tcd);
void tcd_makelayer(opj_tcd_t *tcd, int layno, double thresh, int final); void tcd_makelayer(opj_tcd_t *tcd, int layno, double thresh, int final);
@ -261,6 +262,7 @@ Free the memory allocated for decoding
@param tcd TCD handle @param tcd TCD handle
*/ */
void tcd_free_decode(opj_tcd_t *tcd); void tcd_free_decode(opj_tcd_t *tcd);
void tcd_free_decode_tile(opj_tcd_t *tcd, int tileno);
/* ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */
/*@}*/ /*@}*/

View File

@ -78,13 +78,6 @@ void help_display()
fprintf fprintf
(stdout,"COD and QCD never appear in the tile_header.\n"); (stdout,"COD and QCD never appear in the tile_header.\n");
fprintf(stdout,"\n"); fprintf(stdout,"\n");
fprintf
(stdout,"- This coder can encode a mega image, a test was made on a 24000x24000 pixels \n");
fprintf
(stdout,"color image. You need enough disk space memory (twice the original) to encode \n");
fprintf
(stdout,"the image,i.e. for a 1.5 GB image you need a minimum of 3GB of disk memory)\n");
fprintf(stdout,"\n");
fprintf(stdout,"By default:\n"); fprintf(stdout,"By default:\n");
fprintf(stdout,"------------\n"); fprintf(stdout,"------------\n");
fprintf(stdout,"\n"); fprintf(stdout,"\n");