From b684247201349584a8dc07d99dcc5fcfd3f267e1 Mon Sep 17 00:00:00 2001 From: Aous Naman Date: Sat, 4 Sep 2021 12:09:59 +1000 Subject: [PATCH] Formatted files with prepare_commit.sh. Code fixed to compile with Visual Studio 10 --- src/lib/openjp2/fbc_dec.c | 4014 ++++++++++++++++++------------------- src/lib/openjp2/j2k.c | 16 +- src/lib/openjp2/j2k.h | 3 +- src/lib/openjp2/t1.c | 3 +- src/lib/openjp2/t2.c | 98 +- src/lib/openjp2/tcd.h | 6 +- 6 files changed, 2055 insertions(+), 2085 deletions(-) diff --git a/src/lib/openjp2/fbc_dec.c b/src/lib/openjp2/fbc_dec.c index 1627fedb..0b52ca7d 100644 --- a/src/lib/openjp2/fbc_dec.c +++ b/src/lib/openjp2/fbc_dec.c @@ -2,21 +2,21 @@ // This software is released under the 2-Clause BSD license, included // below. // -// Copyright (c) 2021, Aous Naman +// Copyright (c) 2021, Aous Naman // Copyright (c) 2021, Kakadu Software Pty Ltd, Australia // Copyright (c) 2021, The University of New South Wales, Australia -// +// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: -// +// // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. -// +// // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. -// +// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A @@ -36,7 +36,7 @@ //***************************************************************************/ //***************************************************************************/ -/** @file fbc.cpp +/** @file fbc_dec.cpp * @brief implements HTJ2K block decoder */ @@ -50,19 +50,19 @@ // compiler detection ///////////////////////////////////////////////////////////////////////////// #ifdef _MSC_VER - #define OPJ_COMPILER_MSVC +#define OPJ_COMPILER_MSVC #elif (defined __GNUC__) - #define OPJ_COMPILER_GNUC +#define OPJ_COMPILER_GNUC #endif //************************************************************************/ -/** @brief Displays the error message for disabling the decoding of CUP +/** @brief Displays the error message for disabling the decoding of CUP * pass due to insufficient precision once */ static OPJ_BOOL cannot_decode_due_to_insufficient_precision = OPJ_FALSE; //************************************************************************/ -/** @brief Displays the error message for disabling the decoding of SPP and +/** @brief Displays the error message for disabling the decoding of SPP and * MRP passes once */ static OPJ_BOOL cannot_decode_spp_mrp_msg = OPJ_FALSE; @@ -71,21 +71,21 @@ static OPJ_BOOL cannot_decode_spp_mrp_msg = OPJ_FALSE; /** @brief Generates population count (i.e., the number of set bits) * * @param [in] val is the value for which population count is sought - */ -static inline + */ +static INLINE OPJ_UINT32 population_count(OPJ_UINT32 val) { #ifdef OPJ_COMPILER_MSVC - return (OPJ_UINT32)__popcnt(val); + return (OPJ_UINT32)__popcnt(val); #elif (defined OPJ_COMPILER_GNUC) - return (OPJ_UINT32)__builtin_popcount(val); + return (OPJ_UINT32)__builtin_popcount(val); #else - val -= ((val >> 1) & 0x55555555); - val = (((val >> 2) & 0x33333333) + (val & 0x33333333)); - val = (((val >> 4) + val) & 0x0f0f0f0f); - val += (val >> 8); - val += (val >> 16); - return (OPJ_UINT32)(val & 0x0000003f); + val -= ((val >> 1) & 0x55555555); + val = (((val >> 2) & 0x33333333) + (val & 0x33333333)); + val = (((val >> 4) + val) & 0x0f0f0f0f); + val += (val >> 8); + val += (val >> 16); + return (OPJ_UINT32)(val & 0x0000003f); #endif } @@ -93,26 +93,26 @@ OPJ_UINT32 population_count(OPJ_UINT32 val) /** @brief Counts the number of leading zeros * * @param [in] val is the value for which leading zero count is sought - */ + */ #ifdef OPJ_COMPILER_MSVC - #pragma intrinsic(_BitScanReverse) +#pragma intrinsic(_BitScanReverse) #endif -static inline +static INLINE OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val) { #ifdef OPJ_COMPILER_MSVC - unsigned long result = 0; - _BitScanReverse(&result, val); - return 31U ^ (OPJ_UINT32)result; + unsigned long result = 0; + _BitScanReverse(&result, val); + return 31U ^ (OPJ_UINT32)result; #elif (defined OPJ_COMPILER_GNUC) - return (OPJ_UINT32)__builtin_clz(val); + return (OPJ_UINT32)__builtin_clz(val); #else - val |= (val >> 1); - val |= (val >> 2); - val |= (val >> 4); - val |= (val >> 8); - val |= (val >> 16); - return 32U - population_count(val); + val |= (val >> 1); + val |= (val >> 2); + val |= (val >> 4); + val |= (val >> 8); + val |= (val >> 16); + return 32U - population_count(val); #endif } @@ -122,24 +122,24 @@ OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val) * A number of events is decoded from the MEL bitstream ahead of time * and stored in run/num_runs. * Each run represents the number of zero events before a one event. - */ + */ typedef struct dec_mel { - // data decoding machinary - OPJ_UINT8* data; //!bits > 32) //there are enough bits in the tmp variable - return; // return without reading new data + OPJ_UINT32 val; + int bits; + OPJ_UINT32 t; + OPJ_BOOL unstuff; - val = 0xFFFFFFFF; - //the next line (the if statement) needs to be tested first - //if (melp->size > 0) // if there is data in the MEL segment + if (melp->bits > 32) { //there are enough bits in the tmp variable + return; // return without reading new data + } + val = 0xFFFFFFFF; + //the next line (the if statement) needs to be tested first + //if (melp->size > 0) // if there is data in the MEL segment val = *(OPJ_UINT32*)melp->data; // read 32 bits from MEL data - - // next we unstuff them before adding them to the buffer - bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if - // the previously read byte requires - // unstuffing - // data is unstuffed and accumulated in t - // bits has the number of bits in t - t = (melp->size > 0) ? (val & 0xFF) : 0xFF; // feed 0xFF if the - // MEL bitstream has been exhausted - if (melp->size == 1) t |= 0xF; // if this is 1 byte before the last - // in MEL+VLC segments (remember they - // can overlap) - melp->data += melp->size-- > 0; // advance data by 1 byte if we have not - // reached the end of the MEL segment - unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing + // next we unstuff them before adding them to the buffer + bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if + // the previously read byte requires + // unstuffing - bits -= unstuff; // there is one less bit in t if unstuffing is needed - t = t << (8 - unstuff); // move up to make room for the next byte + // data is unstuffed and accumulated in t + // bits has the number of bits in t + t = (melp->size > 0) ? (val & 0xFF) : 0xFF; // feed 0xFF if the + // MEL bitstream has been exhausted + if (melp->size == 1) { + t |= 0xF; // if this is 1 byte before the last + } + // in MEL+VLC segments (remember they + // can overlap) + melp->data += melp->size-- > 0; // advance data by 1 byte if we have not + // reached the end of the MEL segment + unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing - //this is a repeat of the above - t |= (melp->size > 0) ? ((val>>8) & 0xFF) : 0xFF; - if (melp->size == 1) t |= 0xF; - melp->data += melp->size-- > 0; - unstuff = (((val >> 8) & 0xFF) == 0xFF); + bits -= unstuff; // there is one less bit in t if unstuffing is needed + t = t << (8 - unstuff); // move up to make room for the next byte - bits -= unstuff; - t = t << (8 - unstuff); + //this is a repeat of the above + t |= (melp->size > 0) ? ((val >> 8) & 0xFF) : 0xFF; + if (melp->size == 1) { + t |= 0xF; + } + melp->data += melp->size-- > 0; + unstuff = (((val >> 8) & 0xFF) == 0xFF); - t |= (melp->size > 0) ? ((val>>16) & 0xFF) : 0xFF; - if (melp->size == 1) t |= 0xF; - melp->data += melp->size-- > 0; - unstuff = (((val >> 16) & 0xFF) == 0xFF); + bits -= unstuff; + t = t << (8 - unstuff); - bits -= unstuff; - t = t << (8 - unstuff); + t |= (melp->size > 0) ? ((val >> 16) & 0xFF) : 0xFF; + if (melp->size == 1) { + t |= 0xF; + } + melp->data += melp->size-- > 0; + unstuff = (((val >> 16) & 0xFF) == 0xFF); - t |= (melp->size > 0) ? ((val>>24) & 0xFF) : 0xFF; - if (melp->size == 1) t |= 0xF; - melp->data += melp->size-- > 0; - melp->unstuff = (((val >> 24) & 0xFF) == 0xFF); + bits -= unstuff; + t = t << (8 - unstuff); - // move t to tmp, and push the result all the way up, so we read from - // the MSB - melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits); - melp->bits += bits; //increment the number of bits in tmp + t |= (melp->size > 0) ? ((val >> 24) & 0xFF) : 0xFF; + if (melp->size == 1) { + t |= 0xF; + } + melp->data += melp->size-- > 0; + melp->unstuff = (((val >> 24) & 0xFF) == 0xFF); + + // move t to tmp, and push the result all the way up, so we read from + // the MSB + melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits); + melp->bits += bits; //increment the number of bits in tmp } //************************************************************************/ /** @brief Decodes unstuffed MEL segment bits stored in tmp to runs - * + * * Runs are stored in "runs" and the number of runs in "num_runs". - * Each run represents a number of zero events that may or may not + * Each run represents a number of zero events that may or may not * terminate in a 1 event. * Each run is stored in 7 bits. The LSB is 1 if the run terminates in - * a 1 event, 0 otherwise. The next 6 bits, for the case terminating - * with 1, contain the number of consecutive 0 zero events * 2; for the - * case terminating with 0, they store (number of consecutive 0 zero + * a 1 event, 0 otherwise. The next 6 bits, for the case terminating + * with 1, contain the number of consecutive 0 zero events * 2; for the + * case terminating with 0, they store (number of consecutive 0 zero * events - 1) * 2. * A total of 6 bits (made up of 1 + 5) should have been enough. * * @param [in] melp is a pointer to dec_mel_t structure */ -static inline +static INLINE void mel_decode(dec_mel_t *melp) { - static const int mel_exp[13] = { //MEL exponents - 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 - }; + static const int mel_exp[13] = { //MEL exponents + 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 + }; - if (melp->bits < 6) // if there are less than 6 bits in tmp - mel_read(melp); // then read from the MEL bitstream - // 6 bits is the largest decodable MEL cwd + if (melp->bits < 6) { // if there are less than 6 bits in tmp + mel_read(melp); // then read from the MEL bitstream + } + // 6 bits is the largest decodable MEL cwd - //repeat so long that there is enough decodable bits in tmp, - // and the runs store is not full (num_runs < 8) - while (melp->bits >= 6 && melp->num_runs < 8) - { - int eval = mel_exp[melp->k]; // number of bits associated with state - int run = 0; - if (melp->tmp & (1ull<<63)) //The next bit to decode (stored in MSB) - { //one is found - run = 1 << eval; - run--; // consecutive runs of 0 events - 1 - melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12 - melp->tmp <<= 1; // consume one bit from tmp - melp->bits -= 1; - run = run << 1; // a stretch of zeros not terminating in one + //repeat so long that there is enough decodable bits in tmp, + // and the runs store is not full (num_runs < 8) + while (melp->bits >= 6 && melp->num_runs < 8) { + int eval = mel_exp[melp->k]; // number of bits associated with state + int run = 0; + if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB) + //one is found + run = 1 << eval; + run--; // consecutive runs of 0 events - 1 + melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12 + melp->tmp <<= 1; // consume one bit from tmp + melp->bits -= 1; + run = run << 1; // a stretch of zeros not terminating in one + } else { + //0 is found + run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1); + melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0 + melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6) + melp->bits -= eval + 1; + run = (run << 1) + 1; // a stretch of zeros terminating with one + } + eval = melp->num_runs * 7; // 7 bits per run + melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient + melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs + melp->num_runs++; // increment count } - else - { //0 is found - run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1); - melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0 - melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6) - melp->bits -= eval + 1; - run = (run << 1) + 1; // a stretch of zeros terminating with one - } - eval = melp->num_runs * 7; // 7 bits per run - melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient - melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs - melp->num_runs++; // increment count - } } //************************************************************************/ /** @brief Initiates a dec_mel_t structure for MEL decoding and reads * some bytes in order to get the read address to a multiple - * of 4 + * of 4 * * @param [in] melp is a pointer to dec_mel_t structure * @param [in] bbuf is a pointer to byte buffer * @param [in] lcup is the length of MagSgn+MEL+VLC segments * @param [in] scup is the length of MEL+VLC segments */ -static inline +static INLINE void mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup) { - int num; + int num; + int i; - melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL - melp->bits = 0; // 0 bits in tmp - melp->tmp = 0; // - melp->unstuff = OPJ_FALSE; // no unstuffing - melp->size = scup - 1; // size is the length of MEL+VLC-1 - melp->k = 0; // 0 for state - melp->num_runs = 0; // num_runs is 0 - melp->runs = 0; // + melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL + melp->bits = 0; // 0 bits in tmp + melp->tmp = 0; // + melp->unstuff = OPJ_FALSE; // no unstuffing + melp->size = scup - 1; // size is the length of MEL+VLC-1 + melp->k = 0; // 0 for state + melp->num_runs = 0; // num_runs is 0 + melp->runs = 0; // - //This code is borrowed; original is for a different architecture - //These few lines take care of the case where data is not at a multiple - // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment - num = 4 - (int)((intptr_t)(melp->data) & 0x3); - for (int i = 0; i < num; ++i) { // this code is similar to mel_read - OPJ_UINT64 d; - int d_bits; - - assert(melp->unstuff == OPJ_FALSE || melp->data[0] <= 0x8F); - d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed - // set data to 0xFF - if (melp->size == 1) d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF - // see the standard - melp->data += melp->size-- > 0; //increment if the end is not reached - d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1 - melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp - melp->bits += d_bits; //increment tmp by number of bits - melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs - //unstuffing - } - melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit - // is the MSB + //This code is borrowed; original is for a different architecture + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment + num = 4 - (int)((intptr_t)(melp->data) & 0x3); + for (i = 0; i < num; ++i) { // this code is similar to mel_read + OPJ_UINT64 d; + int d_bits; + + assert(melp->unstuff == OPJ_FALSE || melp->data[0] <= 0x8F); + d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed + // set data to 0xFF + if (melp->size == 1) { + d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF + } + // see the standard + melp->data += melp->size-- > 0; //increment if the end is not reached + d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1 + melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp + melp->bits += d_bits; //increment tmp by number of bits + melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs + //unstuffing + } + melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit + // is the MSB } //************************************************************************/ @@ -321,103 +331,104 @@ void mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup) * MEL segment is decoded * * @param [in] melp is a pointer to dec_mel_t structure - */ -static inline + */ +static INLINE int mel_get_run(dec_mel_t *melp) { - int t; - if (melp->num_runs == 0) //if no runs, decode more bit from MEL segment - mel_decode(melp); + int t; + if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment + mel_decode(melp); + } - t = melp->runs & 0x7F; //retrieve one run - melp->runs >>= 7; // remove the retrieved run - melp->num_runs--; - return t; // return run + t = melp->runs & 0x7F; //retrieve one run + melp->runs >>= 7; // remove the retrieved run + melp->num_runs--; + return t; // return run } //************************************************************************/ /** @brief A structure for reading and unstuffing a segment that grows * backward, such as VLC and MRP - */ + */ typedef struct rev_struct { - //storage - OPJ_UINT8* data; //!bits > 32) // if there are more than 32 bits in tmp, then - return; // reading 32 bits can overflow vlcp->tmp - val = 0; - //the next line (the if statement) needs to be tested first - if (vlcp->size > 0) // if there are bytes left in the VLC segment - { - // We pad the data by 8 bytes at the beginning of the code stream - // buffer - val = *(OPJ_UINT32*)vlcp->data; // then read 32 bits - vlcp->data -= 4; // move data pointer back by 4 - vlcp->size -= 4; // reduce available byte by 4 - } + //process 4 bytes at a time + if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then + return; // reading 32 bits can overflow vlcp->tmp + } + val = 0; + //the next line (the if statement) needs to be tested first + if (vlcp->size > 0) { // if there are bytes left in the VLC segment + // We pad the data by 8 bytes at the beginning of the code stream + // buffer + val = *(OPJ_UINT32*)vlcp->data; // then read 32 bits + vlcp->data -= 4; // move data pointer back by 4 + vlcp->size -= 4; // reduce available byte by 4 + } - //accumulate in tmp, number of bits in tmp are stored in bits - tmp = val >> 24; //start with the MSB byte + //accumulate in tmp, number of bits in tmp are stored in bits + tmp = val >> 24; //start with the MSB byte - // test unstuff (previous byte is >0x8F), and this byte is 0x7F - bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = (val >> 24) > 0x8F; //this is for the next byte + // test unstuff (previous byte is >0x8F), and this byte is 0x7F + bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val >> 24) > 0x8F; //this is for the next byte - tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte - bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = ((val >> 16) & 0xFF) > 0x8F; + tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte + bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 16) & 0xFF) > 0x8F; - tmp |= ((val >> 8) & 0xFF) << bits; - bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = ((val >> 8) & 0xFF) > 0x8F; + tmp |= ((val >> 8) & 0xFF) << bits; + bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 8) & 0xFF) > 0x8F; - tmp |= (val & 0xFF) << bits; - bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = (val & 0xFF) > 0x8F; + tmp |= (val & 0xFF) << bits; + bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val & 0xFF) > 0x8F; - // now move the read and unstuffed bits into vlcp->tmp - vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits; - vlcp->bits += bits; - vlcp->unstuff = unstuff; // this for the next read + // now move the read and unstuffed bits into vlcp->tmp + vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits; + vlcp->bits += bits; + vlcp->unstuff = unstuff; // this for the next read } //************************************************************************/ -/** @brief Initiates the rev_struct_t structure and reads a few bytes to +/** @brief Initiates the rev_struct_t structure and reads a few bytes to * move the read address to multiple of 4 * * There is another similar rev_init_mrp subroutine. The difference is @@ -430,62 +441,61 @@ void rev_read(rev_struct_t *vlcp) * @param [in] lcup is the length of MagSgn+MEL+VLC segments * @param [in] scup is the length of MEL+VLC segments */ -static inline +static INLINE void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup) { - OPJ_UINT32 d; - int num; - int tnum; + OPJ_UINT32 d; + int num, tnum, i; - //first byte has only the upper 4 bits - vlcp->data = data + lcup - 2; + //first byte has only the upper 4 bits + vlcp->data = data + lcup - 2; - //size can not be larger than this, in fact it should be smaller - vlcp->size = scup - 2; + //size can not be larger than this, in fact it should be smaller + vlcp->size = scup - 2; - d = *vlcp->data--; // read one byte (this is a half byte) - vlcp->tmp = d >> 4; // both initialize and set - vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard - vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte + d = *vlcp->data--; // read one byte (this is a half byte) + vlcp->tmp = d >> 4; // both initialize and set + vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard + vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte - //This code is designed for an architecture that read address should - // align to the read size (address multiple of 4 if read size is 4) - //These few lines take care of the case where data is not at a multiple - // of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream - num = 1 + (int)((intptr_t)(vlcp->data) & 0x3); - tnum = num < vlcp->size ? num : vlcp->size; - for (int i = 0; i < tnum; ++i) { - OPJ_UINT64 d; - OPJ_UINT32 d_bits; - d = *vlcp->data--; // read one byte and move read pointer - //check if the last byte was >0x8F (unstuff == true) and this is 0x7F - d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); - vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp - vlcp->bits += d_bits; - vlcp->unstuff = d > 0x8F; // for next byte - } - vlcp->size -= tnum; - vlcp->data -= 3; // make ready to read 32 bits (address multiple of 4) - rev_read(vlcp); // read another 32 buts + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream + num = 1 + (int)((intptr_t)(vlcp->data) & 0x3); + tnum = num < vlcp->size ? num : vlcp->size; + for (i = 0; i < tnum; ++i) { + OPJ_UINT64 d; + OPJ_UINT32 d_bits; + d = *vlcp->data--; // read one byte and move read pointer + //check if the last byte was >0x8F (unstuff == true) and this is 0x7F + d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); + vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp + vlcp->bits += d_bits; + vlcp->unstuff = d > 0x8F; // for next byte + } + vlcp->size -= tnum; + vlcp->data -= 3; // make ready to read 32 bits (address multiple of 4) + rev_read(vlcp); // read another 32 buts } //************************************************************************/ -/** @brief Retrieves 32 bits from the head of a rev_struct structure +/** @brief Retrieves 32 bits from the head of a rev_struct structure * * By the end of this call, vlcp->tmp must have no less than 33 bits * * @param [in] vlcp is a pointer to rev_struct structure */ -static inline +static INLINE OPJ_UINT32 rev_fetch(rev_struct_t *vlcp) { - if (vlcp->bits < 32) // if there are less then 32 bits, read more - { - rev_read(vlcp); // read 32 bits, but unstuffing might reduce this - if (vlcp->bits < 32)// if there is still space in vlcp->tmp for 32 bits - rev_read(vlcp); // read another 32 - } - return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp + if (vlcp->bits < 32) { // if there are less then 32 bits, read more + rev_read(vlcp); // read 32 bits, but unstuffing might reduce this + if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits + rev_read(vlcp); // read another 32 + } + } + return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp } //************************************************************************/ @@ -494,13 +504,13 @@ OPJ_UINT32 rev_fetch(rev_struct_t *vlcp) * @param [in] vlcp is a pointer to rev_struct structure * @param [in] num_bits is the number of bits to be removed */ -static inline +static INLINE OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits) { - assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits - vlcp->tmp >>= num_bits; // remove bits - vlcp->bits -= num_bits; // decrement the number of bits - return (OPJ_UINT32)vlcp->tmp; + assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits + vlcp->tmp >>= num_bits; // remove bits + vlcp->bits -= num_bits; // decrement the number of bits + return (OPJ_UINT32)vlcp->tmp; } //************************************************************************/ @@ -514,50 +524,51 @@ OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits) * * @param [in] mrp is a pointer to rev_struct structure */ -static inline +static INLINE void rev_read_mrp(rev_struct_t *mrp) { - OPJ_UINT32 val; - OPJ_UINT32 tmp; - OPJ_UINT32 bits; - OPJ_BOOL unstuff; + OPJ_UINT32 val; + OPJ_UINT32 tmp; + OPJ_UINT32 bits; + OPJ_BOOL unstuff; - //process 4 bytes at a time - if (mrp->bits > 32) - return; - val = 0; - //the next line (the if statement) needs to be tested first - //notice that second line can be simplified to mrp->data -= 4 - // if (mrp->size > 0) - { - val = *(OPJ_UINT32*)mrp->data; // read 32 bits - mrp->data -= mrp->size > 0 ? 4 : 0; // move back read pointer only if - // there is data - } + //process 4 bytes at a time + if (mrp->bits > 32) { + return; + } + val = 0; + //the next line (the if statement) needs to be tested first + //notice that second line can be simplified to mrp->data -= 4 + // if (mrp->size > 0) + { + val = *(OPJ_UINT32*)mrp->data; // read 32 bits + mrp->data -= mrp->size > 0 ? 4 : 0; // move back read pointer only if + // there is data + } - //accumulate in tmp, and keep count in bits - tmp = (mrp->size-- > 0) ? (val >> 24) : 0; // fill zeros if all - - //test if the last byte > 0x8F (unstuff must be true) and this is 0x7F - bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = (val >> 24) > 0x8F; + //accumulate in tmp, and keep count in bits + tmp = (mrp->size-- > 0) ? (val >> 24) : 0; // fill zeros if all - //process the next byte - tmp |= (mrp->size-- > 0) ? (((val >> 16) & 0xFF) << bits) : 0; - bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = ((val >> 16) & 0xFF) > 0x8F; + //test if the last byte > 0x8F (unstuff must be true) and this is 0x7F + bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val >> 24) > 0x8F; - tmp |= (mrp->size-- > 0) ? (((val >> 8) & 0xFF) << bits) : 0; - bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = ((val >> 8) & 0xFF) > 0x8F; + //process the next byte + tmp |= (mrp->size-- > 0) ? (((val >> 16) & 0xFF) << bits) : 0; + bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 16) & 0xFF) > 0x8F; - tmp |= (mrp->size-- > 0) ? ((val & 0xFF) << bits) : 0; - bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); - unstuff = (val & 0xFF) > 0x8F; + tmp |= (mrp->size-- > 0) ? (((val >> 8) & 0xFF) << bits) : 0; + bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 8) & 0xFF) > 0x8F; - mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer - mrp->bits += bits; - mrp->unstuff = unstuff; // next byte + tmp |= (mrp->size-- > 0) ? ((val & 0xFF) << bits) : 0; + bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val & 0xFF) > 0x8F; + + mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer + mrp->bits += bits; + mrp->unstuff = unstuff; // next byte } //************************************************************************/ @@ -567,7 +578,7 @@ void rev_read_mrp(rev_struct_t *mrp) * an architecture that read size must be compatible with the * alignment of the read address * - * There is another simiar subroutine rev_init. This subroutine does + * There is another simiar subroutine rev_init. This subroutine does * NOT skip the first 12 bits, and starts with unstuff set to true. * * @param [in] mrp is a pointer to rev_struct structure @@ -575,55 +586,55 @@ void rev_read_mrp(rev_struct_t *mrp) * @param [in] lcup is the length of MagSgn+MEL+VLC segments * @param [in] len2 is the length of SPP+MRP segments */ -static inline +static INLINE void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2) { - int num; + int num, i; - mrp->data = data + lcup + len2 - 1; - mrp->size = len2; - mrp->unstuff = OPJ_TRUE; - mrp->bits = 0; - mrp->tmp = 0; + mrp->data = data + lcup + len2 - 1; + mrp->size = len2; + mrp->unstuff = OPJ_TRUE; + mrp->bits = 0; + mrp->tmp = 0; - //This code is designed for an architecture that read address should - // align to the read size (address multiple of 4 if read size is 4) - //These few lines take care of the case where data is not at a multiple - // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream - num = 1 + (int)((intptr_t)(mrp->data) & 0x3); - for (int i = 0; i < num; ++i) { - OPJ_UINT64 d; - OPJ_UINT32 d_bits; + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream + num = 1 + (int)((intptr_t)(mrp->data) & 0x3); + for (i = 0; i < num; ++i) { + OPJ_UINT64 d; + OPJ_UINT32 d_bits; - //read a byte, 0 if no more data - d = (mrp->size-- > 0) ? *mrp->data-- : 0; - //check if unstuffing is needed - d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); - mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp - mrp->bits += d_bits; - mrp->unstuff = d > 0x8F; // for next byte - } - mrp->data -= 3; //make ready to read a 32 bits - rev_read_mrp(mrp); + //read a byte, 0 if no more data + d = (mrp->size-- > 0) ? *mrp->data-- : 0; + //check if unstuffing is needed + d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); + mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp + mrp->bits += d_bits; + mrp->unstuff = d > 0x8F; // for next byte + } + mrp->data -= 3; //make ready to read a 32 bits + rev_read_mrp(mrp); } //************************************************************************/ -/** @brief Retrieves 32 bits from the head of a rev_struct structure +/** @brief Retrieves 32 bits from the head of a rev_struct structure * * By the end of this call, mrp->tmp must have no less than 33 bits * * @param [in] mrp is a pointer to rev_struct structure */ -static inline +static INLINE OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp) { - if (mrp->bits < 32) // if there are less than 32 bits in mrp->tmp - { - rev_read_mrp(mrp); // read 30-32 bits from mrp - if (mrp->bits < 32) // if there is a space of 32 bits - rev_read_mrp(mrp); // read more - } - return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp + if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp + rev_read_mrp(mrp); // read 30-32 bits from mrp + if (mrp->bits < 32) { // if there is a space of 32 bits + rev_read_mrp(mrp); // read more + } + } + return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp } //************************************************************************/ @@ -632,13 +643,13 @@ OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp) * @param [in] mrp is a pointer to rev_struct structure * @param [in] num_bits is the number of bits to be removed */ -static inline +static INLINE OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits) { - assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits - mrp->tmp >>= num_bits; // discard the lowest num_bits bits - mrp->bits -= num_bits; - return (OPJ_UINT32)mrp->tmp; // return data after consumption + assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits + mrp->tmp >>= num_bits; // discard the lowest num_bits bits + mrp->bits -= num_bits; + return (OPJ_UINT32)mrp->tmp; // return data after consumption } //************************************************************************/ @@ -652,218 +663,203 @@ OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits) * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; * this value is a partial calculation of u + kappa. */ -static inline +static INLINE OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) { - //table stores possible decoding three bits from vlc - // there are 8 entries for xx1, x10, 100, 000, where x means do not care - // table value is made up of - // 2 bits in the LSB for prefix length - // 3 bits for suffix length - // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) - static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword - 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" - 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" - 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" - 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" - 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" - 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" - 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" - 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" - }; + //table stores possible decoding three bits from vlc + // there are 8 entries for xx1, x10, 100, 000, where x means do not care + // table value is made up of + // 2 bits in the LSB for prefix length + // 3 bits for suffix length + // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) + static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword + 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" + 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" + 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" + 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" + }; - OPJ_UINT32 consumed_bits = 0; - if (mode == 0) // both u_off are 0 - { - u[0] = u[1] = 1; //Kappa is 1 for initial line - } - else if (mode <= 2) // u_off are either 01 or 10 - { - OPJ_UINT32 d; - OPJ_UINT32 suffix_len; + OPJ_UINT32 consumed_bits = 0; + if (mode == 0) { // both u_off are 0 + u[0] = u[1] = 1; //Kappa is 1 for initial line + } else if (mode <= 2) { // u_off are either 01 or 10 + OPJ_UINT32 d; + OPJ_UINT32 suffix_len; - d = dec[vlc & 0x7]; //look at the least significant 3 bits - vlc >>= d & 0x3; //prefix length - consumed_bits += d & 0x3; + d = dec[vlc & 0x7]; //look at the least significant 3 bits + vlc >>= d & 0x3; //prefix length + consumed_bits += d & 0x3; - suffix_len = ((d >> 2) & 0x7); - consumed_bits += suffix_len; + suffix_len = ((d >> 2) & 0x7); + consumed_bits += suffix_len; - d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line - u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line - } - else if (mode == 3) // both u_off are 1, and MEL event is 0 - { - OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d1 & 0x3; // Consume bits - consumed_bits += d1 & 0x3; + d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line + u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line + } else if (mode == 3) { // both u_off are 1, and MEL event is 0 + OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; - if ((d1 & 0x3) > 2) - { - OPJ_UINT32 suffix_len; + if ((d1 & 0x3) > 2) { + OPJ_UINT32 suffix_len; - //u_{q_2} prefix - u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line - ++consumed_bits; - vlc >>= 1; + //u_{q_2} prefix + u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line + ++consumed_bits; + vlc >>= 1; - suffix_len = ((d1 >> 2) & 0x7); - consumed_bits += suffix_len; - d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = d1 + 1; //Kappa is 1 for initial line + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //Kappa is 1 for initial line + } else { + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; + + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //Kappa is 1 for initial line + vlc >>= suffix_len; + + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; + + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 1; //Kappa is 1 for initial line + } + } else if (mode == 4) { // both u_off are 1, and MEL event is 1 + OPJ_UINT32 d1; + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; + + d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; + + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 3; // add 2+kappa + vlc >>= suffix_len; + + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; + + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 3; // add 2+kappa } - else - { - OPJ_UINT32 d2; - OPJ_UINT32 suffix_len; - - d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d2 & 0x3; // Consume bits - consumed_bits += d2 & 0x3; - - suffix_len = ((d1 >> 2) & 0x7); - consumed_bits += suffix_len; - - d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = d1 + 1; //Kappa is 1 for initial line - vlc >>= suffix_len; - - suffix_len = ((d2 >> 2) & 0x7); - consumed_bits += suffix_len; - - d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[1] = d2 + 1; //Kappa is 1 for initial line - } - } - else if (mode == 4) // both u_off are 1, and MEL event is 1 - { - OPJ_UINT32 d1; - OPJ_UINT32 d2; - OPJ_UINT32 suffix_len; - - d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d1 & 0x3; // Consume bits - consumed_bits += d1 & 0x3; - - d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d2 & 0x3; // Consume bits - consumed_bits += d2 & 0x3; - - suffix_len = ((d1 >> 2) & 0x7); - consumed_bits += suffix_len; - - d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = d1 + 3; // add 2+kappa - vlc >>= suffix_len; - - suffix_len = ((d2 >> 2) & 0x7); - consumed_bits += suffix_len; - - d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[1] = d2 + 3; // add 2+kappa - } - return consumed_bits; + return consumed_bits; } //************************************************************************/ /** @brief Decode non-initial UVLC to get the u value (or u_q) * * @param [in] vlc is the head of the VLC bitstream - * @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad + * @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad * and 2nd for 2nd quad of a quad pair * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; * this value is a partial calculation of u + kappa. */ -static inline +static INLINE OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) { - //table stores possible decoding three bits from vlc - // there are 8 entries for xx1, x10, 100, 000, where x means do not care - // table value is made up of - // 2 bits in the LSB for prefix length - // 3 bits for suffix length - // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) - static const OPJ_UINT8 dec[8] = { - 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" - 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" - 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" - 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" - 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" - 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" - 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" - 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" - }; + //table stores possible decoding three bits from vlc + // there are 8 entries for xx1, x10, 100, 000, where x means do not care + // table value is made up of + // 2 bits in the LSB for prefix length + // 3 bits for suffix length + // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) + static const OPJ_UINT8 dec[8] = { + 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" + 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" + 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" + 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" + }; - OPJ_UINT32 consumed_bits = 0; - if (mode == 0) - { - u[0] = u[1] = 1; //for kappa - } - else if (mode <= 2) //u_off are either 01 or 10 - { - OPJ_UINT32 d; - OPJ_UINT32 suffix_len; + OPJ_UINT32 consumed_bits = 0; + if (mode == 0) { + u[0] = u[1] = 1; //for kappa + } else if (mode <= 2) { //u_off are either 01 or 10 + OPJ_UINT32 d; + OPJ_UINT32 suffix_len; - d = dec[vlc & 0x7]; //look at the least significant 3 bits - vlc >>= d & 0x3; //prefix length - consumed_bits += d & 0x3; + d = dec[vlc & 0x7]; //look at the least significant 3 bits + vlc >>= d & 0x3; //prefix length + consumed_bits += d & 0x3; - suffix_len = ((d >> 2) & 0x7); - consumed_bits += suffix_len; + suffix_len = ((d >> 2) & 0x7); + consumed_bits += suffix_len; - d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = (mode == 1) ? d + 1 : 1; //for kappa - u[1] = (mode == 1) ? 1 : d + 1; //for kappa - } - else if (mode == 3) // both u_off are 1 - { - OPJ_UINT32 d1; - OPJ_UINT32 d2; - OPJ_UINT32 suffix_len; + d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = (mode == 1) ? d + 1 : 1; //for kappa + u[1] = (mode == 1) ? 1 : d + 1; //for kappa + } else if (mode == 3) { // both u_off are 1 + OPJ_UINT32 d1; + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; - d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d1 & 0x3; // Consume bits - consumed_bits += d1 & 0x3; + d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; - d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword - vlc >>= d2 & 0x3; // Consume bits - consumed_bits += d2 & 0x3; + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; - suffix_len = ((d1 >> 2) & 0x7); - consumed_bits += suffix_len; + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; - d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[0] = d1 + 1; //1 for kappa - vlc >>= suffix_len; + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //1 for kappa + vlc >>= suffix_len; - suffix_len = ((d2 >> 2) & 0x7); - consumed_bits += suffix_len; + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; - d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value - u[1] = d2 + 1; //1 for kappa - } - return consumed_bits; + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 1; //1 for kappa + } + return consumed_bits; } //************************************************************************/ -/** @brief State structure for reading and unstuffing of forward-growing +/** @brief State structure for reading and unstuffing of forward-growing * bitstreams; these are: MagSgn and SPP bitstreams */ typedef struct frwd_struct { - const OPJ_UINT8* data; //!bits <= 32); // assert that there is a space for 32 bits + assert(msp->bits <= 32); // assert that there is a space for 32 bits - val = *(OPJ_UINT32*)msp->data; // read 32 bits - msp->data += msp->size > 0 ? 4 : 0; // move pointer if data is not - // exhausted + val = *(OPJ_UINT32*)msp->data; // read 32 bits + msp->data += msp->size > 0 ? 4 : 0; // move pointer if data is not + // exhausted - // we accumulate in t and keep a count of the number of bits in bits - bits = 8u - (msp->unstuff ? 1u:0u); // if previous byte was 0xFF - // get next byte, if bitstream is exhausted, replace it with X - t = msp->size-- > 0 ? (val & 0xFF) : msp->X; - unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next? + // we accumulate in t and keep a count of the number of bits in bits + bits = 8u - (msp->unstuff ? 1u : 0u); // if previous byte was 0xFF + // get next byte, if bitstream is exhausted, replace it with X + t = msp->size-- > 0 ? (val & 0xFF) : msp->X; + unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next? - t |= (msp->size-- > 0 ? ((val >> 8) & 0xFF) : msp->X) << bits; - bits += 8u - (unstuff ? 1u:0u); - unstuff = (((val >> 8) & 0xFF) == 0xFF); + t |= (msp->size-- > 0 ? ((val >> 8) & 0xFF) : msp->X) << bits; + bits += 8u - (unstuff ? 1u : 0u); + unstuff = (((val >> 8) & 0xFF) == 0xFF); - t |= (msp->size-- > 0 ? ((val >> 16) & 0xFF) : msp->X) << bits; - bits += 8u - (unstuff ? 1u:0u); - unstuff = (((val >> 16) & 0xFF) == 0xFF); + t |= (msp->size-- > 0 ? ((val >> 16) & 0xFF) : msp->X) << bits; + bits += 8u - (unstuff ? 1u : 0u); + unstuff = (((val >> 16) & 0xFF) == 0xFF); - t |= (msp->size-- > 0 ? ((val >> 24) & 0xFF) : msp->X) << bits; - bits += 8u - (unstuff ? 1u:0u); - msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte + t |= (msp->size-- > 0 ? ((val >> 24) & 0xFF) : msp->X) << bits; + bits += 8u - (unstuff ? 1u : 0u); + msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte - msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp - msp->bits += bits; + msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp + msp->bits += bits; } //************************************************************************/ /** @brief Initialize frwd_struct_t struct and reads some bytes - * + * * @param [in] msp is a pointer to frwd_struct_t * @param [in] data is a pointer to the start of data * @param [in] size is the number of byte in the bitstream * @param [in] X is the value fed in when the bitstream is exhausted. * See frwd_read. */ -static inline -void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, +static INLINE +void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, OPJ_UINT32 X) { - int num; + int num, i; - msp->data = data; - msp->tmp = 0; - msp->bits = 0; - msp->unstuff = OPJ_FALSE; - msp->size = size; - msp->X = X; - assert(msp->X == 0 || msp->X == 0xFF); + msp->data = data; + msp->tmp = 0; + msp->bits = 0; + msp->unstuff = OPJ_FALSE; + msp->size = size; + msp->X = X; + assert(msp->X == 0 || msp->X == 0xFF); - //This code is designed for an architecture that read address should - // align to the read size (address multiple of 4 if read size is 4) - //These few lines take care of the case where data is not at a multiple - // of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream - num = 4 - (int)((intptr_t)(msp->data) & 0x3); - for (int i = 0; i < num; ++i) - { - OPJ_UINT64 d; - //read a byte if the buffer is not exhausted, otherwise set it to X - d = msp->size-- > 0 ? *msp->data++ : msp->X; - msp->tmp |= (d << msp->bits); // store data in msp->tmp - msp->bits += 8u - (msp->unstuff?1u:0u); // number of bits added to msp->tmp - msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte - } - frwd_read(msp); // read 32 bits more + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream + num = 4 - (int)((intptr_t)(msp->data) & 0x3); + for (i = 0; i < num; ++i) { + OPJ_UINT64 d; + //read a byte if the buffer is not exhausted, otherwise set it to X + d = msp->size-- > 0 ? *msp->data++ : msp->X; + msp->tmp |= (d << msp->bits); // store data in msp->tmp + msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp + msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte + } + frwd_read(msp); // read 32 bits more } //************************************************************************/ @@ -958,12 +953,12 @@ void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, * @param [in] msp is a pointer to frwd_struct_t * @param [in] num_bits is the number of bit to consume */ -static inline +static INLINE void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits) { - assert(num_bits <= msp->bits); - msp->tmp >>= num_bits; // consume num_bits - msp->bits -= num_bits; + assert(num_bits <= msp->bits); + msp->tmp >>= num_bits; // consume num_bits + msp->bits -= num_bits; } //************************************************************************/ @@ -971,16 +966,16 @@ void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits) * * @param [in] msp is a pointer to frwd_struct_t */ -static inline +static INLINE OPJ_UINT32 frwd_fetch(frwd_struct_t *msp) { - if (msp->bits < 32) - { - frwd_read(msp); - if (msp->bits < 32) //need to test - frwd_read(msp); - } - return (OPJ_UINT32)msp->tmp; + if (msp->bits < 32) { + frwd_read(msp); + if (msp->bits < 32) { //need to test + frwd_read(msp); + } + } + return (OPJ_UINT32)msp->tmp; } //************************************************************************/ @@ -1005,8 +1000,8 @@ static OPJ_BOOL opj_t1_allocate_buffers( if (datasize > t1->datasize) { opj_aligned_free(t1->data); - t1->data = (OPJ_INT32*) - opj_aligned_malloc(datasize * sizeof(OPJ_INT32)); + t1->data = (OPJ_INT32*) + opj_aligned_malloc(datasize * sizeof(OPJ_INT32)); if (!t1->data) { /* FIXME event manager error callback */ return OPJ_FALSE; @@ -1059,1476 +1054,1445 @@ OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, opj_mutex_t* p_manager_mutex, OPJ_BOOL check_pterm) { - OPJ_BYTE* cblkdata = NULL; - OPJ_UINT8* coded_data; - OPJ_UINT32* decoded_data; - OPJ_UINT32 num_passes; - OPJ_UINT32 lengths1; - OPJ_UINT32 lengths2; - OPJ_INT32 width; - OPJ_INT32 height; - OPJ_INT32 stride; - OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; - OPJ_UINT32 p; - OPJ_UINT32 zero_planes_p1; - int lcup, scup; - dec_mel_t mel; - rev_struct_t vlc; - frwd_struct_t magsgn; - frwd_struct_t sigprop; - rev_struct_t magref; - OPJ_UINT8 *lsp, *line_state; - int run; - OPJ_UINT32 vlc_val; - OPJ_UINT32 qinf[2]; - OPJ_UINT32 c_q; - OPJ_UINT32* sp; - - (void)(orient); // stops unused parameter message - (void)(check_pterm); // stops unused parameter message - - // We ignor orient, because the same decoder is used for all subbands - // We also ignore check_pterm, because I am not sure how it applies - assert(cblksty == 0x40); // that is the only support mode - if (roishift != 0) { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding " - "HT codeblocks\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - return OPJ_FALSE; - } - - if (!opj_t1_allocate_buffers( - t1, - (OPJ_UINT32)(cblk->x1 - cblk->x0), - (OPJ_UINT32)(cblk->y1 - cblk->y0))) { - return OPJ_FALSE; - } - - /* Even if we have a single chunk, in multi-threaded decoding */ - /* the insertion of our synthetic marker might potentially override */ - /* valid codestream of other codeblocks decoded in parallel. */ - if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) { - OPJ_UINT32 i; - OPJ_UINT32 cblk_len; - - /* Compute whole codeblock length from chunk lengths */ - cblk_len = 0; - for (i = 0; i < cblk->numchunks; i++) { - cblk_len += cblk->chunks[i].len; - } - - /* Allocate temporary memory if needed */ - if (cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA > t1->cblkdatabuffersize) { - cblkdata = (OPJ_BYTE*)opj_realloc( - t1->cblkdatabuffer, cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA); - if (cblkdata == NULL) { - return OPJ_FALSE; - } - t1->cblkdatabuffer = cblkdata; - memset(t1->cblkdatabuffer + cblk_len, 0, OPJ_COMMON_CBLK_DATA_EXTRA); - t1->cblkdatabuffersize = cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA; - } - - /* Concatenate all chunks */ - cblkdata = t1->cblkdatabuffer; - cblk_len = 0; - for (i = 0; i < cblk->numchunks; i++) { - memcpy(cblkdata+cblk_len, cblk->chunks[i].data, cblk->chunks[i].len); - cblk_len += cblk->chunks[i].len; - } - } else if (cblk->numchunks == 1) { - cblkdata = cblk->chunks[0].data; - } else { - /* Not sure if that can happen in practice, but avoid Coverity to */ - /* think we will dereference a null cblkdta pointer */ - return OPJ_TRUE; - } - - // OPJ_BYTE* coded_data is a pointer to bitstream - coded_data = cblkdata; - // OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf. - decoded_data = (OPJ_UINT32*)t1->data; - // OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for - // CUP+SPP, and 3 for CUP+SPP+MRP - num_passes = cblk->numsegs>0 ? cblk->segs[0].real_num_passes : 0; - num_passes += cblk->numsegs>1 ? cblk->segs[1].real_num_passes : 0; - // OPJ_UINT32 lengths1 is the length of cleanup pass - lengths1 = num_passes > 0 ? cblk->segs[0].len : 0; - // OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP) - lengths2 = num_passes > 1 ? cblk->segs[1].len : 0; - // OPJ_INT32 width is the decoded codeblock width - width = cblk->x1 - cblk->x0; - // OPJ_INT32 height is the decoded codeblock height - height = cblk->y1 - cblk->y0; - // OPJ_INT32 stride is the decoded codeblock buffer stride - stride = width; - - /* sigma1 and sigma2 contains significant (i.e., non-zero) pixel - * locations. The buffers are used interchangeably, because we need - * more than 4 rows of significance information at a given time. - * Each 32 bits contain significance information for 4 rows of 8 - * columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is - * called a nibble and has significance information for 4 rows. - * The least significant nibble has information for the first column, - * and so on. The nibble's LSB is for the first row, and so on. - * Since, at most, we can have 1024 columns in a quad, we need 128 - * entries; we added 1 for convenience when propagation of signifcance - * goes outside the structure - * To work in OpenJPEG these buffers has been expanded to 132. - */ - // OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; - pflags = (OPJ_UINT32 *)t1->flags; - sigma1 = pflags; - sigma2 = sigma1 + 132; - // mbr arrangement is similar to sigma; mbr contains locations - // that become significant during significance propagation pass - mbr1 = sigma2 + 132; - mbr2 = mbr1 + 132; - //a pointer to sigma - sip = sigma1; //pointers to arrays to be used interchangeably - sip_shift = 0; //the amount of shift needed for sigma - - if (num_passes > 1 && lengths2 == 0) - { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has " - "more than one coding pass, but zero length for " - "2nd and potential 3rd pass.\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - num_passes = 1; - } - if (num_passes > 3) - { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - opj_event_msg(p_manager, EVT_WARNING, "We do not support more than 3 " - "coding passes; This codeblocks has %d passes.\n", - num_passes); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - return OPJ_FALSE; - } - - if (cblk->numbps == 1 && num_passes > 1) - { - // We do not have enough precision to decode SgnProp nor MagRef passes. - // We decode the cleanup passes only - if (cannot_decode_spp_mrp_msg == OPJ_FALSE) { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - cannot_decode_spp_mrp_msg = OPJ_TRUE; - opj_event_msg(p_manager, EVT_WARNING, "Not enough precision to decode " - "the SgnProp nor MagRef passes. This message " - "will not be displayed again.\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - } - num_passes = 1; - } - if (cblk->numbps == 0) - { - // We do not have enough precision to decode the CUP pass with the - // center of bin bit set. The code can be modified to support this - // case, without using the center of the bin. - if (cannot_decode_due_to_insufficient_precision == OPJ_FALSE) { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - cannot_decode_due_to_insufficient_precision = OPJ_TRUE; - opj_event_msg(p_manager, EVT_WARNING, "Not enough precision to decode " - "the cleanup pass. The code should be " - "modified to support this case. This message " - "will not be displayed again.\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - } - return OPJ_TRUE; - } - - // OPJ_INT32 - p = cblk->numbps; - // OPJ_INT32 zero planes plus 1 - zero_planes_p1 = cblk->Mb - cblk->numbps + 1; - - // read scup and fix the bytes there - lcup = (int)lengths1; // length of CUP - //scup is the length of MEL + VLC - scup = (((int)coded_data[lcup-1]) << 4) + (coded_data[lcup-2] & 0xF); - if (scup < 2 || scup > lcup || scup > 4079) //something is wrong - return OPJ_FALSE; - - // init structures - mel_init(&mel, coded_data, lcup, scup); - rev_init(&vlc, coded_data, lcup, scup); - frwd_init(&magsgn, coded_data, lcup - scup, 0xFF); - if (num_passes > 1) // needs to be tested - frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0); - if (num_passes > 2) - rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2); - - /** State storage - * One byte per quad; for 1024 columns, or 512 quads, we need - * 512 bytes. We are using 2 extra bytes one on the left and one on - * the right for convenience. - * - * The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs - * contain max(E^nw | E^n) - */ - - // 514 is enough for a block width of 1024, +2 extra - // here expanded to 528 - line_state = (OPJ_UINT8 *)(mbr2 + 132); - - //initial 2 lines - ///////////////// - lsp = line_state; // point to line state - lsp[0] = 0; // for initial row of quad, we set to 0 - run = mel_get_run(&mel); // decode runs of events from MEL bitstrm - // data represented as runs of 0 events - // See mel_decode description - qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream - c_q = 0; // context for quad q - sp = decoded_data; // decoded codeblock samples - // vlc_val; // fetched data from VLC bitstream - - for (OPJ_INT32 x = 0; x < width; x += 4) // one iteration per quad pair - { - OPJ_UINT32 U_q[2]; // u values for the quad pair - OPJ_UINT32 uvlc_mode; - OPJ_UINT32 consumed_bits; - OPJ_UINT32 m_n, v_n; - OPJ_UINT32 ms_val; - OPJ_UINT32 locs; - - // decode VLC - ///////////// - - //first quad - // Get the head of the VLC bitstream. One fetch is enough for two - // quads, since the largest VLC code is 7 bits, and maximum number of - // bits used for u is 8. Therefore for two quads we need 30 bits - // (if we include unstuffing, then 32 bits are enough, since we have - // a maximum of one stuffing per two bytes) - vlc_val = rev_fetch(&vlc); - - //decode VLC using the context c_q and the head of the VLC bitstream - qinf[0] = vlc_tbl0[ (c_q << 7) | (vlc_val & 0x7F) ]; - - if (c_q == 0) // if zero context, we need to use one MEL event - { - run -= 2; //the number of 0 events is multiplied by 2, so subtract 2 - - // Is the run terminated in 1? if so, use decoded VLC code, - // otherwise, discard decoded data, since we will decoded again - // using a different context - qinf[0] = (run == -1) ? qinf[0] : 0; - - // is run -1 or -2? this means a run has been consumed - if (run < 0) - run = mel_get_run(&mel); // get another run - } - - // prepare context for the next quad; eqn. 1 in ITU T.814 - c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5); - - //remove data from vlc stream (0 bits are removed if qinf is not used) - vlc_val = rev_advance(&vlc, qinf[0] & 0x7); - - //update sigma - // The update depends on the value of x; consider one OPJ_UINT32 - // if x is 0, 8, 16 and so on, then this line update c locations - // nibble (4 bits) number 0 1 2 3 4 5 6 7 - // LSB c c 0 0 0 0 0 0 - // c c 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - // if x is 4, 12, 20, then this line update locations c - // nibble (4 bits) number 0 1 2 3 4 5 6 7 - // LSB 0 0 0 0 c c 0 0 - // 0 0 0 0 c c 0 0 - // 0 0 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - *sip |= (((qinf[0] & 0x30)>>4) | ((qinf[0] & 0xC0)>>2)) << sip_shift; - - //second quad - qinf[1] = 0; - if (x + 2 < width) // do not run if codeblock is narrower - { - //decode VLC using the context c_q and the head of the VLC bitstream - qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)]; - - // if context is zero, use one MEL event - if (c_q == 0) //zero context - { - run -= 2; //subtract 2, since events number if multiplied by 2 - - // if event is 0, discard decoded qinf - qinf[1] = (run == -1) ? qinf[1] : 0; - - if (run < 0) // have we consumed all events in a run - run = mel_get_run(&mel); // if yes, then get another run - } - - //prepare context for the next quad, eqn. 1 in ITU T.814 - c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5); - - //remove data from vlc stream, if qinf is not used, cwdlen is 0 - vlc_val = rev_advance(&vlc, qinf[1] & 0x7); - } - - //update sigma - // The update depends on the value of x; consider one OPJ_UINT32 - // if x is 0, 8, 16 and so on, then this line update c locations - // nibble (4 bits) number 0 1 2 3 4 5 6 7 - // LSB 0 0 c c 0 0 0 0 - // 0 0 c c 0 0 0 0 - // 0 0 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - // if x is 4, 12, 20, then this line update locations c - // nibble (4 bits) number 0 1 2 3 4 5 6 7 - // LSB 0 0 0 0 0 0 c c - // 0 0 0 0 0 0 c c - // 0 0 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0)<<2))) << (4+sip_shift); - - sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry - sip_shift ^= 0x10; // increment/decrement sip_shift by 16 - - // retrieve u - ///////////// - - // uvlc_mode is made up of u_offset bits from the quad pair - uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); - if (uvlc_mode == 3) // if both u_offset are set, get an event from - { // the MEL run of events - run -= 2; //subtract 2, since events number if multiplied by 2 - uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1 - if (run < 0) // if run is consumed (run is -1 or -2), get another run - run = mel_get_run(&mel); - } - //decode uvlc_mode to get u for both quads - consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q); - if (U_q[0] > zero_planes_p1 || U_q[1] > zero_planes_p1) - { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding " - "this codeblock is stopped.\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); - return OPJ_FALSE; - } - - //consume u bits in the VLC code - vlc_val = rev_advance(&vlc, consumed_bits); - - //decode magsgn and update line_state - ///////////////////////////////////// - - //We obtain a mask for the samples locations that needs evaluation - locs = 0xFF; - if (x + 4 > width) locs >>= (x + 4 - width) << 1; // limits width - locs = height > 1 ? locs : (locs & 0x55); // limits height - - //first quad, starting at first sample in quad and moving on - if (qinf[0] & 0x10) //is it signifcant? (sigma_n) - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data - m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits - // to read from bitstream), using EMB e_k - frwd_advance(&magsgn, m_n); //consume m_n - val = ms_val << 31; //get sign bit - v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits - v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB - v_n |= 1; //add center of bin - //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit - //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x1) // if this is outside the codeblock, set the - sp[0] = 0; // sample to zero - - if (qinf[0] & 0x20) //sigma_n - { - OPJ_UINT32 val, t; - - ms_val = frwd_fetch(&magsgn); //get 32 bits - m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k - frwd_advance(&magsgn, m_n); //consume m_n - val = ms_val << 31; //get sign bit - v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits - v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1 - v_n |= 1; //bin center - //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit - //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^N), and E^N - t = lsp[0] & 0x7F; // keep E^NW - v_n = 32 - count_leading_zeros(v_n); - lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s - } - else if (locs & 0x2) // if this is outside the codeblock, set the - sp[stride] = 0; //no need to update line_state - - ++lsp; // move to next quad information - ++sp; // move to next column of samples - - //this is similar to the above two samples - if (qinf[0] & 0x40) - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 14) & 1); - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[0] & 0x400) >> 10) << m_n); - v_n |= 1; - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x4) - sp[0] = 0; - - lsp[0] = 0; - if (qinf[0] & 0x80) - { - OPJ_UINT32 val; - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= ((qinf[0] & 0x800) >> 11) << m_n; - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //line_state: bit 7 (\sigma^NW), and E^NW for next quad - lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); - } - else if (locs & 0x8) //if outside set to 0 - sp[stride] = 0; - - ++sp; //move to next column - - //second quad - if (qinf[1] & 0x10) - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x100) >> 8) << m_n); - v_n |= 1; - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x10) - sp[0] = 0; - - if (qinf[1] & 0x20) - { - OPJ_UINT32 val, t; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x200) >> 9) << m_n); - v_n |= 1; - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^N), and E^N - t = lsp[0] & 0x7F; //E^NW - v_n = 32 - count_leading_zeros(v_n); //E^N - lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s - } - else if (locs & 0x20) - sp[stride] = 0; //no need to update line_state - - ++lsp; //move line state to next quad - ++sp; //move to next sample - - if (qinf[1] & 0x40) - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x400) >> 10) << m_n); - v_n |= 1; - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x40) - sp[0] = 0; - - lsp[0] = 0; - if (qinf[1] & 0x80) - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x800) >> 11) << m_n); - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //line_state: bit 7 (\sigma^NW), and E^NW for next quad - lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); - } - else if (locs & 0x80) - sp[stride] = 0; - - ++sp; - } - - //non-initial lines - ////////////////////////// - for (OPJ_INT32 y = 2; y < height; /*done at the end of loop*/) - { - OPJ_UINT32 *sip; - OPJ_UINT8 ls0; - - sip_shift ^= 0x2; // shift sigma to the upper half od the nibble - sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10) - sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array - - lsp = line_state; - ls0 = lsp[0]; // read the line state value - lsp[0] = 0; // and set it to zero - sp = decoded_data + y * stride; // generated samples - c_q = 0; // context - for (OPJ_INT32 x = 0; x < width; x += 4) - { - OPJ_UINT32 U_q[2]; - OPJ_UINT32 uvlc_mode, consumed_bits; - OPJ_UINT32 m_n, v_n; - OPJ_UINT32 ms_val; - OPJ_UINT32 locs; - - // decode vlc - ///////////// - - //first quad - // get context, eqn. 2 ITU T.814 - // c_q has \sigma^W | \sigma^SW - c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N - c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF - - //the following is very similar to previous code, so please refer to - // that - vlc_val = rev_fetch(&vlc); - qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; - if (c_q == 0) //zero context - { - run -= 2; - qinf[0] = (run == -1) ? qinf[0] : 0; - if (run < 0) - run = mel_get_run(&mel); - } - //prepare context for the next quad, \sigma^W | \sigma^SW - c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6); - - //remove data from vlc stream - vlc_val = rev_advance(&vlc, qinf[0] & 0x7); - - //update sigma - // The update depends on the value of x and y; consider one OPJ_UINT32 - // if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this - // line update c locations - // nibble (4 bits) number 0 1 2 3 4 5 6 7 - // LSB 0 0 0 0 0 0 0 0 - // 0 0 0 0 0 0 0 0 - // c c 0 0 0 0 0 0 - // c c 0 0 0 0 0 0 - *sip |= (((qinf[0]&0x30) >> 4) | ((qinf[0]&0xC0) >> 2)) << sip_shift; - - //second quad - qinf[1] = 0; - if (x + 2 < width) - { - c_q |= (lsp[1] >> 7); - c_q |= (lsp[2] >> 5) & 0x4; - qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; - if (c_q == 0) //zero context - { - run -= 2; - qinf[1] = (run == -1) ? qinf[1] : 0; - if (run < 0) - run = mel_get_run(&mel); + OPJ_BYTE* cblkdata = NULL; + OPJ_UINT8* coded_data; + OPJ_UINT32* decoded_data; + OPJ_UINT32 num_passes; + OPJ_UINT32 lengths1; + OPJ_UINT32 lengths2; + OPJ_INT32 width; + OPJ_INT32 height; + OPJ_INT32 stride; + OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; + OPJ_UINT32 p; + OPJ_UINT32 zero_planes_p1; + int lcup, scup; + dec_mel_t mel; + rev_struct_t vlc; + frwd_struct_t magsgn; + frwd_struct_t sigprop; + rev_struct_t magref; + OPJ_UINT8 *lsp, *line_state; + int run; + OPJ_UINT32 vlc_val; // fetched data from VLC bitstream + OPJ_UINT32 qinf[2]; + OPJ_UINT32 c_q; + OPJ_UINT32* sp; + OPJ_INT32 x, y; // loop indices + + (void)(orient); // stops unused parameter message + (void)(check_pterm); // stops unused parameter message + + // We ignor orient, because the same decoder is used for all subbands + // We also ignore check_pterm, because I am not sure how it applies + assert(cblksty == 0x40); // that is the only support mode + if (roishift != 0) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding " + "HT codeblocks\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); } - //prepare context for the next quad - c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6); - //remove data from vlc stream - vlc_val = rev_advance(&vlc, qinf[1] & 0x7); - } - - //update sigma - *sip |= (((qinf[1]&0x30) | ((qinf[1]&0xC0) << 2))) << (4+sip_shift); - - sip += x & 0x7 ? 1 : 0; - sip_shift ^= 0x10; - - //retrieve u - //////////// - uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); - consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q); - vlc_val = rev_advance(&vlc, consumed_bits); - - //calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814 - if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) // is \gamma_q 1? - { - OPJ_UINT32 E = (ls0 & 0x7Fu); - E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1]&0x7Fu); //max(E, E^NE, E^NF) - //since U_q alread has u_q + 1, we subtract 2 instead of 1 - U_q[0] += E > 2 ? E - 2 : 0; - } - - if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) //is \gamma_q 1? - { - OPJ_UINT32 E = (lsp[1] & 0x7Fu); - E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2]&0x7Fu); //max(E, E^NE, E^NF) - //since U_q alread has u_q + 1, we subtract 2 instead of 1 - U_q[1] += E > 2 ? E - 2 : 0; - } - - if (U_q[0] > zero_planes_p1 || U_q[1] > zero_planes_p1) - { - if (p_manager_mutex) - opj_mutex_lock(p_manager_mutex); - opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " - "Decoding this codeblock is stopped.\n"); - if (p_manager_mutex) - opj_mutex_unlock(p_manager_mutex); return OPJ_FALSE; - } - - ls0 = lsp[2]; //for next double quad - lsp[1] = lsp[2] = 0; - - //decode magsgn and update line_state - ///////////////////////////////////// - - //locations where samples need update - locs = 0xFF; - if (x + 4 > width) locs >>= (x + 4 - width) << 1; - locs = height > 1 ? locs : (locs & 0x55); - - - if (qinf[0] & 0x10) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= ((qinf[0] & 0x100) >> 8) << m_n; - v_n |= 1; //center of bin - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x1) - sp[0] = 0; - - if (qinf[0] & 0x20) //sigma_n - { - OPJ_UINT32 val, t; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= ((qinf[0] & 0x200) >> 9) << m_n; - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^N), and E^N - t = lsp[0] & 0x7F; //E^NW - v_n = 32 - count_leading_zeros(v_n); - lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); - } - else if (locs & 0x2) - sp[stride] = 0; //no need to update line_state - - ++lsp; - ++sp; - - if (qinf[0] & 0x40) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[0] & 0x400) >> 10) << m_n); - v_n |= 1; //center of bin - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x4) - sp[0] = 0; - - if (qinf[0] & 0x80) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= ((qinf[0] & 0x800) >> 11) << m_n; - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^NW), and E^NW for next quad - lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); - } - else if (locs & 0x8) - sp[stride] = 0; - - ++sp; - - if (qinf[1] & 0x10) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x100) >> 8) << m_n); - v_n |= 1; //center of bin - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x10) - sp[0] = 0; - - if (qinf[1] & 0x20) //sigma_n - { - OPJ_UINT32 val, t; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x200) >> 9) << m_n); - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^N), and E^N - t = lsp[0] & 0x7F; //E^NW - v_n = 32 - count_leading_zeros(v_n); - lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); - } - else if (locs & 0x20) - sp[stride] = 0; //no need to update line_state - - ++lsp; - ++sp; - - if (qinf[1] & 0x40) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x400) >> 10) << m_n); - v_n |= 1; //center of bin - sp[0] = val | ((v_n + 2) << (p - 1)); - } - else if (locs & 0x40) - sp[0] = 0; - - if (qinf[1] & 0x80) //sigma_n - { - OPJ_UINT32 val; - - ms_val = frwd_fetch(&magsgn); - m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n - frwd_advance(&magsgn, m_n); - val = ms_val << 31; - v_n = ms_val & ((1U << m_n) - 1); - v_n |= (((qinf[1] & 0x800) >> 11) << m_n); - v_n |= 1; //center of bin - sp[stride] = val | ((v_n + 2) << (p - 1)); - - //update line_state: bit 7 (\sigma^NW), and E^NW for next quad - lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); - } - else if (locs & 0x80) - sp[stride] = 0; - - ++sp; } - y += 2; - if (num_passes > 1 && (y & 3) == 0) //executed at multiples of 4 - { // This is for SPP and potentially MRP + if (!opj_t1_allocate_buffers( + t1, + (OPJ_UINT32)(cblk->x1 - cblk->x0), + (OPJ_UINT32)(cblk->y1 - cblk->y0))) { + return OPJ_FALSE; + } - if (num_passes > 2) //do MRP - { - // select the current stripe - OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2; - // the address of the data that needs updating - OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride; - OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin - for (OPJ_INT32 i = 0; i < width; i += 8) - { - //Process one entry from sigma array at a time - // Each nibble (4 bits) in the sigma array represents 4 rows, - // and the 32 bits contain 8 columns - OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data - OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now - OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig - OPJ_UINT32 *dp = dpp + i; // next column in decode samples - if (sig) // if any of the 32 bits are set - { - for (int j = 0; j < 8; ++j, dp++) //one column at a time - { - if (sig & col_mask) // lowest nibble - { - OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB + /* Even if we have a single chunk, in multi-threaded decoding */ + /* the insertion of our synthetic marker might potentially override */ + /* valid codestream of other codeblocks decoded in parallel. */ + if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) { + OPJ_UINT32 i; + OPJ_UINT32 cblk_len; - if (sig & sample_mask) //if LSB is set - { - OPJ_UINT32 sym; + /* Compute whole codeblock length from chunk lengths */ + cblk_len = 0; + for (i = 0; i < cblk->numchunks; i++) { + cblk_len += cblk->chunks[i].len; + } - assert(dp[0] != 0); // decoded value cannot be zero - sym = cwd & 1; // get it value - // remove center of bin if sym is 0 - dp[0] ^= (1 - sym) << (p - 1); - dp[0] |= half; // put half the center of bin - cwd >>= 1; //consume word - } - sample_mask += sample_mask; //next row - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - - assert(dp[stride] != 0); - sym = cwd & 1; - dp[stride] ^= (1 - sym) << (p - 1); - dp[stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - - assert(dp[2 * stride] != 0); - sym = cwd & 1; - dp[2 * stride] ^= (1 - sym) << (p - 1); - dp[2 * stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - - assert(dp[3 * stride] != 0); - sym = cwd & 1; - dp[3 * stride] ^= (1 - sym) << (p - 1); - dp[3 * stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - } - col_mask <<= 4; //next column + /* Allocate temporary memory if needed */ + if (cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA > t1->cblkdatabuffersize) { + cblkdata = (OPJ_BYTE*)opj_realloc( + t1->cblkdatabuffer, cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA); + if (cblkdata == NULL) { + return OPJ_FALSE; } - } - // consume data according to the number of bits set - rev_advance_mrp(&magref, population_count(sig)); - } - } - - if (y >= 4) // update mbr array at the end of each stripe - { - //generate mbr corresponding to a stripe - OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2; - OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2; - - //data is processed in patches of 8 columns, each - // each 32 bits in sigma1 or mbr1 represent 4 rows - - //integrate horizontally - OPJ_UINT32 prev = 0; // previous columns - for (OPJ_INT32 i = 0; i < width; i += 8, mbr++, sig++) - { - OPJ_UINT32 t, z; - - mbr[0] = sig[0]; //start with significant samples - mbr[0] |= prev >> 28; //for first column, left neighbors - mbr[0] |= sig[0] << 4; //left neighbors - mbr[0] |= sig[0] >> 4; //right neighbors - mbr[0] |= sig[1] << 28; //for last column, right neighbors - prev = sig[0]; // for next group of columns - - //integrate vertically - t = mbr[0], z = mbr[0]; - z |= (t & 0x77777777) << 1; //above neighbors - z |= (t & 0xEEEEEEEE) >> 1; //below neighbors - mbr[0] = z & ~sig[0]; //remove already significance samples - } - } - - if (y >= 8) //wait until 8 rows has been processed - { - OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; - OPJ_UINT32 prev; - OPJ_UINT32 val; - - // add membership from the next stripe, obtained above - cur_sig = y & 0x4 ? sigma2 : sigma1; - cur_mbr = y & 0x4 ? mbr2 : mbr1; - nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples - prev = 0; // the columns before these group of 8 columns - for (OPJ_INT32 i=0; i < width; i+=8, cur_mbr++, cur_sig++, nxt_sig++) - { - OPJ_UINT32 t = nxt_sig[0]; - t |= prev >> 28; //for first column, left neighbors - t |= nxt_sig[0] << 4; //left neighbors - t |= nxt_sig[0] >> 4; //right neighbors - t |= nxt_sig[1] << 28; //for last column, right neighbors - prev = nxt_sig[0]; // for next group of columns - - cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr - cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples + t1->cblkdatabuffer = cblkdata; + memset(t1->cblkdatabuffer + cblk_len, 0, OPJ_COMMON_CBLK_DATA_EXTRA); + t1->cblkdatabuffersize = cblk_len + OPJ_COMMON_CBLK_DATA_EXTRA; } - //find new locations and get signs - cur_sig = y & 0x4 ? sigma2 : sigma1; - cur_mbr = y & 0x4 ? mbr2 : mbr1; - nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples - nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples - val = 3u << (p - 2); // sample values for newly discovered - // signficant samples including the bin center - for (OPJ_INT32 i = 0; i < width; - i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) - { - OPJ_UINT32 ux, tx; - OPJ_UINT32 mbr = *cur_mbr; - OPJ_UINT32 new_sig = 0; - if (mbr) //are there any samples that migt be signficant - { - for (OPJ_INT32 n = 0; n < 8; n += 4) - { - OPJ_UINT32 col_mask; - OPJ_UINT32 inv_sig; - OPJ_INT32 end; + /* Concatenate all chunks */ + cblkdata = t1->cblkdatabuffer; + cblk_len = 0; + for (i = 0; i < cblk->numchunks; i++) { + memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len); + cblk_len += cblk->chunks[i].len; + } + } else if (cblk->numchunks == 1) { + cblkdata = cblk->chunks[0].data; + } else { + /* Not sure if that can happen in practice, but avoid Coverity to */ + /* think we will dereference a null cblkdta pointer */ + return OPJ_TRUE; + } - OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits - OPJ_UINT32 cnt = 0; + // OPJ_BYTE* coded_data is a pointer to bitstream + coded_data = cblkdata; + // OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf. + decoded_data = (OPJ_UINT32*)t1->data; + // OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for + // CUP+SPP, and 3 for CUP+SPP+MRP + num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0; + num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0; + // OPJ_UINT32 lengths1 is the length of cleanup pass + lengths1 = num_passes > 0 ? cblk->segs[0].len : 0; + // OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP) + lengths2 = num_passes > 1 ? cblk->segs[1].len : 0; + // OPJ_INT32 width is the decoded codeblock width + width = cblk->x1 - cblk->x0; + // OPJ_INT32 height is the decoded codeblock height + height = cblk->y1 - cblk->y0; + // OPJ_INT32 stride is the decoded codeblock buffer stride + stride = width; - OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; - dp += i + n; //address for decoded samples + /* sigma1 and sigma2 contains significant (i.e., non-zero) pixel + * locations. The buffers are used interchangeably, because we need + * more than 4 rows of significance information at a given time. + * Each 32 bits contain significance information for 4 rows of 8 + * columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is + * called a nibble and has significance information for 4 rows. + * The least significant nibble has information for the first column, + * and so on. The nibble's LSB is for the first row, and so on. + * Since, at most, we can have 1024 columns in a quad, we need 128 + * entries; we added 1 for convenience when propagation of signifcance + * goes outside the structure + * To work in OpenJPEG these buffers has been expanded to 132. + */ + // OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; + pflags = (OPJ_UINT32 *)t1->flags; + sigma1 = pflags; + sigma2 = sigma1 + 132; + // mbr arrangement is similar to sigma; mbr contains locations + // that become significant during significance propagation pass + mbr1 = sigma2 + 132; + mbr2 = mbr1 + 132; + //a pointer to sigma + sip = sigma1; //pointers to arrays to be used interchangeably + sip_shift = 0; //the amount of shift needed for sigma - col_mask = 0xFu << (4 * n); //a mask to select a column + if (num_passes > 1 && lengths2 == 0) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has " + "more than one coding pass, but zero length for " + "2nd and potential 3rd pass.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + num_passes = 1; + } + if (num_passes > 3) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_WARNING, "We do not support more than 3 " + "coding passes; This codeblocks has %d passes.\n", + num_passes); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } - inv_sig = ~cur_sig[0]; // insignificant samples + if (cblk->numbps == 1 && num_passes > 1) { + // We do not have enough precision to decode SgnProp nor MagRef passes. + // We decode the cleanup passes only + if (cannot_decode_spp_mrp_msg == OPJ_FALSE) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + cannot_decode_spp_mrp_msg = OPJ_TRUE; + opj_event_msg(p_manager, EVT_WARNING, "Not enough precision to decode " + "the SgnProp nor MagRef passes. This message " + "will not be displayed again.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + } + num_passes = 1; + } + if (cblk->numbps == 0) { + // We do not have enough precision to decode the CUP pass with the + // center of bin bit set. The code can be modified to support this + // case, without using the center of the bin. + if (cannot_decode_due_to_insufficient_precision == OPJ_FALSE) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + cannot_decode_due_to_insufficient_precision = OPJ_TRUE; + opj_event_msg(p_manager, EVT_WARNING, "Not enough precision to decode " + "the cleanup pass. The code should be " + "modified to support this case. This message " + "will not be displayed again.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + } + return OPJ_TRUE; + } - //find the last sample we operate on - end = n + 4 + i < width ? n + 4 : width - i; + // OPJ_UINT32 + p = cblk->numbps; + // OPJ_UINT32 zero planes plus 1 + zero_planes_p1 = cblk->Mb - cblk->numbps + 1; - for (OPJ_INT32 j = n; j < end; ++j, ++dp, col_mask <<= 4) - { - OPJ_UINT32 sample_mask; + // read scup and fix the bytes there + lcup = (int)lengths1; // length of CUP + //scup is the length of MEL + VLC + scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF); + if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong + return OPJ_FALSE; + } - if ((col_mask & mbr) == 0) //no samples need checking - continue; + // init structures + mel_init(&mel, coded_data, lcup, scup); + rev_init(&vlc, coded_data, lcup, scup); + frwd_init(&magsgn, coded_data, lcup - scup, 0xFF); + if (num_passes > 1) { // needs to be tested + frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0); + } + if (num_passes > 2) { + rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2); + } - //scan mbr to find a new signficant sample - sample_mask = 0x11111111u & col_mask; // LSB - if (mbr & sample_mask) - { - assert(dp[0] == 0); // the sample must have been 0 - if (cwd & 1) //if this sample has become significant - { // must propagate it to nearby samples - OPJ_UINT32 t; - new_sig |= sample_mask; // new significant samples - t = 0x32u << (j * 4);// propagation to neighbors - mbr |= t & inv_sig; //remove already signifcant samples - } - cwd >>= 1; ++cnt; //consume bit and increment number of + /** State storage + * One byte per quad; for 1024 columns, or 512 quads, we need + * 512 bytes. We are using 2 extra bytes one on the left and one on + * the right for convenience. + * + * The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs + * contain max(E^nw | E^n) + */ + + // 514 is enough for a block width of 1024, +2 extra + // here expanded to 528 + line_state = (OPJ_UINT8 *)(mbr2 + 132); + + //initial 2 lines + ///////////////// + lsp = line_state; // point to line state + lsp[0] = 0; // for initial row of quad, we set to 0 + run = mel_get_run(&mel); // decode runs of events from MEL bitstrm + // data represented as runs of 0 events + // See mel_decode description + qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream + c_q = 0; // context for quad q + sp = decoded_data; // decoded codeblock samples + // vlc_val; // fetched data from VLC bitstream + + for (x = 0; x < width; x += 4) { // one iteration per quad pair + OPJ_UINT32 U_q[2]; // u values for the quad pair + OPJ_UINT32 uvlc_mode; + OPJ_UINT32 consumed_bits; + OPJ_UINT32 m_n, v_n; + OPJ_UINT32 ms_val; + OPJ_UINT32 locs; + + // decode VLC + ///////////// + + //first quad + // Get the head of the VLC bitstream. One fetch is enough for two + // quads, since the largest VLC code is 7 bits, and maximum number of + // bits used for u is 8. Therefore for two quads we need 30 bits + // (if we include unstuffing, then 32 bits are enough, since we have + // a maximum of one stuffing per two bytes) + vlc_val = rev_fetch(&vlc); + + //decode VLC using the context c_q and the head of the VLC bitstream + qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ]; + + if (c_q == 0) { // if zero context, we need to use one MEL event + run -= 2; //the number of 0 events is multiplied by 2, so subtract 2 + + // Is the run terminated in 1? if so, use decoded VLC code, + // otherwise, discard decoded data, since we will decoded again + // using a different context + qinf[0] = (run == -1) ? qinf[0] : 0; + + // is run -1 or -2? this means a run has been consumed + if (run < 0) { + run = mel_get_run(&mel); // get another run + } + } + + // prepare context for the next quad; eqn. 1 in ITU T.814 + c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5); + + //remove data from vlc stream (0 bits are removed if qinf is not used) + vlc_val = rev_advance(&vlc, qinf[0] & 0x7); + + //update sigma + // The update depends on the value of x; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, then this line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB c c 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // if x is 4, 12, 20, then this line update locations c + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 c c 0 0 + // 0 0 0 0 c c 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; + + //second quad + qinf[1] = 0; + if (x + 2 < width) { // do not run if codeblock is narrower + //decode VLC using the context c_q and the head of the VLC bitstream + qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)]; + + // if context is zero, use one MEL event + if (c_q == 0) { //zero context + run -= 2; //subtract 2, since events number if multiplied by 2 + + // if event is 0, discard decoded qinf + qinf[1] = (run == -1) ? qinf[1] : 0; + + if (run < 0) { // have we consumed all events in a run + run = mel_get_run(&mel); // if yes, then get another run + } + } + + //prepare context for the next quad, eqn. 1 in ITU T.814 + c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5); + + //remove data from vlc stream, if qinf is not used, cwdlen is 0 + vlc_val = rev_advance(&vlc, qinf[1] & 0x7); + } + + //update sigma + // The update depends on the value of x; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, then this line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 c c 0 0 0 0 + // 0 0 c c 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // if x is 4, 12, 20, then this line update locations c + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 0 0 c c + // 0 0 0 0 0 0 c c + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); + + sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry + sip_shift ^= 0x10; // increment/decrement sip_shift by 16 + + // retrieve u + ///////////// + + // uvlc_mode is made up of u_offset bits from the quad pair + uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); + if (uvlc_mode == 3) { // if both u_offset are set, get an event from + // the MEL run of events + run -= 2; //subtract 2, since events number if multiplied by 2 + uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1 + if (run < 0) { // if run is consumed (run is -1 or -2), get another run + run = mel_get_run(&mel); + } + } + //decode uvlc_mode to get u for both quads + consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q); + if (U_q[0] > zero_planes_p1 || U_q[1] > zero_planes_p1) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding " + "this codeblock is stopped.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + //consume u bits in the VLC code + vlc_val = rev_advance(&vlc, consumed_bits); + + //decode magsgn and update line_state + ///////////////////////////////////// + + //We obtain a mask for the samples locations that needs evaluation + locs = 0xFF; + if (x + 4 > width) { + locs >>= (x + 4 - width) << 1; // limits width + } + locs = height > 1 ? locs : (locs & 0x55); // limits height + + //first quad, starting at first sample in quad and moving on + if (qinf[0] & 0x10) { //is it signifcant? (sigma_n) + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data + m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits + // to read from bitstream), using EMB e_k + frwd_advance(&magsgn, m_n); //consume m_n + val = ms_val << 31; //get sign bit + v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits + v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB + v_n |= 1; //add center of bin + //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit + //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x1) { // if this is outside the codeblock, set the + sp[0] = 0; // sample to zero + } + + if (qinf[0] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); //get 32 bits + m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k + frwd_advance(&magsgn, m_n); //consume m_n + val = ms_val << 31; //get sign bit + v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits + v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1 + v_n |= 1; //bin center + //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit + //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; // keep E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s + } else if (locs & 0x2) { // if this is outside the codeblock, set the + sp[stride] = 0; //no need to update line_state + } + + ++lsp; // move to next quad information + ++sp; // move to next column of samples + + //this is similar to the above two samples + if (qinf[0] & 0x40) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 14) & 1); + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[0] & 0x400) >> 10) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x4) { + sp[0] = 0; + } + + lsp[0] = 0; + if (qinf[0] & 0x80) { + OPJ_UINT32 val; + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x800) >> 11) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x8) { //if outside set to 0 + sp[stride] = 0; + } + + ++sp; //move to next column + + //second quad + if (qinf[1] & 0x10) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x100) >> 8) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x10) { + sp[0] = 0; + } + + if (qinf[1] & 0x20) { + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x200) >> 9) << m_n); + v_n |= 1; + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); //E^N + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s + } else if (locs & 0x20) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; //move line state to next quad + ++sp; //move to next sample + + if (qinf[1] & 0x40) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x400) >> 10) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x40) { + sp[0] = 0; + } + + lsp[0] = 0; + if (qinf[1] & 0x80) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x800) >> 11) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x80) { + sp[stride] = 0; + } + + ++sp; + } + + //non-initial lines + ////////////////////////// + for (y = 2; y < height; /*done at the end of loop*/) { + OPJ_UINT32 *sip; + OPJ_UINT8 ls0; + OPJ_INT32 x; + + sip_shift ^= 0x2; // shift sigma to the upper half od the nibble + sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10) + sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array + + lsp = line_state; + ls0 = lsp[0]; // read the line state value + lsp[0] = 0; // and set it to zero + sp = decoded_data + y * stride; // generated samples + c_q = 0; // context + for (x = 0; x < width; x += 4) { + OPJ_UINT32 U_q[2]; + OPJ_UINT32 uvlc_mode, consumed_bits; + OPJ_UINT32 m_n, v_n; + OPJ_UINT32 ms_val; + OPJ_UINT32 locs; + + // decode vlc + ///////////// + + //first quad + // get context, eqn. 2 ITU T.814 + // c_q has \sigma^W | \sigma^SW + c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N + c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF + + //the following is very similar to previous code, so please refer to + // that + vlc_val = rev_fetch(&vlc); + qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; + if (c_q == 0) { //zero context + run -= 2; + qinf[0] = (run == -1) ? qinf[0] : 0; + if (run < 0) { + run = mel_get_run(&mel); + } + } + //prepare context for the next quad, \sigma^W | \sigma^SW + c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6); + + //remove data from vlc stream + vlc_val = rev_advance(&vlc, qinf[0] & 0x7); + + //update sigma + // The update depends on the value of x and y; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this + // line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; + + //second quad + qinf[1] = 0; + if (x + 2 < width) { + c_q |= (lsp[1] >> 7); + c_q |= (lsp[2] >> 5) & 0x4; + qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; + if (c_q == 0) { //zero context + run -= 2; + qinf[1] = (run == -1) ? qinf[1] : 0; + if (run < 0) { + run = mel_get_run(&mel); + } + } + //prepare context for the next quad + c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6); + //remove data from vlc stream + vlc_val = rev_advance(&vlc, qinf[1] & 0x7); + } + + //update sigma + *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); + + sip += x & 0x7 ? 1 : 0; + sip_shift ^= 0x10; + + //retrieve u + //////////// + uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); + consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q); + vlc_val = rev_advance(&vlc, consumed_bits); + + //calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814 + if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1? + OPJ_UINT32 E = (ls0 & 0x7Fu); + E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF) + //since U_q alread has u_q + 1, we subtract 2 instead of 1 + U_q[0] += E > 2 ? E - 2 : 0; + } + + if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1? + OPJ_UINT32 E = (lsp[1] & 0x7Fu); + E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF) + //since U_q alread has u_q + 1, we subtract 2 instead of 1 + U_q[1] += E > 2 ? E - 2 : 0; + } + + if (U_q[0] > zero_planes_p1 || U_q[1] > zero_planes_p1) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "Decoding this codeblock is stopped.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + ls0 = lsp[2]; //for next double quad + lsp[1] = lsp[2] = 0; + + //decode magsgn and update line_state + ///////////////////////////////////// + + //locations where samples need update + locs = 0xFF; + if (x + 4 > width) { + locs >>= (x + 4 - width) << 1; + } + locs = height > 1 ? locs : (locs & 0x55); + + + if (qinf[0] & 0x10) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x100) >> 8) << m_n; + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x1) { + sp[0] = 0; + } + + if (qinf[0] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x200) >> 9) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); + } else if (locs & 0x2) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; + ++sp; + + if (qinf[0] & 0x40) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[0] & 0x400) >> 10) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x4) { + sp[0] = 0; + } + + if (qinf[0] & 0x80) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x800) >> 11) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x8) { + sp[stride] = 0; + } + + ++sp; + + if (qinf[1] & 0x10) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x100) >> 8) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x10) { + sp[0] = 0; + } + + if (qinf[1] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x200) >> 9) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); + } else if (locs & 0x20) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; + ++sp; + + if (qinf[1] & 0x40) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x400) >> 10) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x40) { + sp[0] = 0; + } + + if (qinf[1] & 0x80) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x800) >> 11) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x80) { + sp[stride] = 0; + } + + ++sp; + } + + y += 2; + if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4 + // This is for SPP and potentially MRP + + if (num_passes > 2) { //do MRP + // select the current stripe + OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2; + // the address of the data that needs updating + OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride; + OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin + OPJ_INT32 i; + for (i = 0; i < width; i += 8) { + //Process one entry from sigma array at a time + // Each nibble (4 bits) in the sigma array represents 4 rows, + // and the 32 bits contain 8 columns + OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data + OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now + OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig + OPJ_UINT32 *dp = dpp + i; // next column in decode samples + if (sig) { // if any of the 32 bits are set + int j; + for (j = 0; j < 8; ++j, dp++) { //one column at a time + if (sig & col_mask) { // lowest nibble + OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB + + if (sig & sample_mask) { //if LSB is set + OPJ_UINT32 sym; + + assert(dp[0] != 0); // decoded value cannot be zero + sym = cwd & 1; // get it value + // remove center of bin if sym is 0 + dp[0] ^= (1 - sym) << (p - 1); + dp[0] |= half; // put half the center of bin + cwd >>= 1; //consume word + } + sample_mask += sample_mask; //next row + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[stride] != 0); + sym = cwd & 1; + dp[stride] ^= (1 - sym) << (p - 1); + dp[stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[2 * stride] != 0); + sym = cwd & 1; + dp[2 * stride] ^= (1 - sym) << (p - 1); + dp[2 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[3 * stride] != 0); + sym = cwd & 1; + dp[3 * stride] ^= (1 - sym) << (p - 1); + dp[3 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + } + col_mask <<= 4; //next column + } + } + // consume data according to the number of bits set + rev_advance_mrp(&magref, population_count(sig)); + } + } + + if (y >= 4) { // update mbr array at the end of each stripe + //generate mbr corresponding to a stripe + OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2; + OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2; + + //data is processed in patches of 8 columns, each + // each 32 bits in sigma1 or mbr1 represent 4 rows + + //integrate horizontally + OPJ_UINT32 prev = 0; // previous columns + OPJ_INT32 i; + for (i = 0; i < width; i += 8, mbr++, sig++) { + OPJ_UINT32 t, z; + + mbr[0] = sig[0]; //start with significant samples + mbr[0] |= prev >> 28; //for first column, left neighbors + mbr[0] |= sig[0] << 4; //left neighbors + mbr[0] |= sig[0] >> 4; //right neighbors + mbr[0] |= sig[1] << 28; //for last column, right neighbors + prev = sig[0]; // for next group of columns + + //integrate vertically + t = mbr[0], z = mbr[0]; + z |= (t & 0x77777777) << 1; //above neighbors + z |= (t & 0xEEEEEEEE) >> 1; //below neighbors + mbr[0] = z & ~sig[0]; //remove already significance samples + } + } + + if (y >= 8) { //wait until 8 rows has been processed + OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; + OPJ_UINT32 prev; + OPJ_UINT32 val; + OPJ_INT32 i; + + // add membership from the next stripe, obtained above + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples + prev = 0; // the columns before these group of 8 columns + for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { + OPJ_UINT32 t = nxt_sig[0]; + t |= prev >> 28; //for first column, left neighbors + t |= nxt_sig[0] << 4; //left neighbors + t |= nxt_sig[0] >> 4; //right neighbors + t |= nxt_sig[1] << 28; //for last column, right neighbors + prev = nxt_sig[0]; // for next group of columns + + cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr + cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples + } + + //find new locations and get signs + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples + nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples + val = 3u << (p - 2); // sample values for newly discovered + // signficant samples including the bin center + for (i = 0; i < width; + i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { + OPJ_UINT32 ux, tx; + OPJ_UINT32 mbr = *cur_mbr; + OPJ_UINT32 new_sig = 0; + if (mbr) { //are there any samples that migt be signficant + OPJ_INT32 n; + for (n = 0; n < 8; n += 4) { + OPJ_UINT32 col_mask; + OPJ_UINT32 inv_sig; + OPJ_INT32 end; + OPJ_INT32 j; + + OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits + OPJ_UINT32 cnt = 0; + + OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; + dp += i + n; //address for decoded samples + + col_mask = 0xFu << (4 * n); //a mask to select a column + + inv_sig = ~cur_sig[0]; // insignificant samples + + //find the last sample we operate on + end = n + 4 + i < width ? n + 4 : width - i; + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & mbr) == 0) { //no samples need checking + continue; + } + + //scan mbr to find a new signficant sample + sample_mask = 0x11111111u & col_mask; // LSB + if (mbr & sample_mask) { + assert(dp[0] == 0); // the sample must have been 0 + if (cwd & 1) { //if this sample has become significant + // must propagate it to nearby samples + OPJ_UINT32 t; + new_sig |= sample_mask; // new significant samples + t = 0x32u << (j * 4);// propagation to neighbors + mbr |= t & inv_sig; //remove already signifcant samples + } + cwd >>= 1; + ++cnt; //consume bit and increment number of //consumed bits + } + + sample_mask += sample_mask; // next row + if (mbr & sample_mask) { + assert(dp[stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x74u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[2 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xE8u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[3 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xC0u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + } + + //obtain signs here + if (new_sig & (0xFFFFu << (4 * n))) { //if any + OPJ_UINT32 col_mask; + OPJ_INT32 j; + OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; + dp += i + n; // decoded samples address + col_mask = 0xFu << (4 * n); //mask to select a column + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & new_sig) == 0) { //if non is signficant + continue; + } + + //scan 4 signs + sample_mask = 0x11111111u & col_mask; + if (new_sig & sample_mask) { + assert(dp[0] == 0); + dp[0] |= ((cwd & 1) << 31) | val; //put value and sign + cwd >>= 1; + ++cnt; //consume bit and increment number + //of consumed bits + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[stride] == 0); + dp[stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[2 * stride] == 0); + dp[2 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[3 * stride] == 0); + dp[3 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + } + + } + frwd_advance(&sigprop, cnt); //consume the bits from bitstrm + cnt = 0; + + //update the next 8 columns + if (n == 4) { + //horizontally + OPJ_UINT32 t = new_sig >> 28; + t |= ((t & 0xE) >> 1) | ((t & 7) << 1); + cur_mbr[1] |= t & ~cur_sig[1]; + } + } + } + //update the next stripe (vertically propagation) + new_sig |= cur_sig[0]; + ux = (new_sig & 0x88888888) >> 3; + tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors + if (i > 0) { + nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; + } + nxt_mbr[0] |= tx & ~nxt_sig[0]; + nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; } - sample_mask += sample_mask; // next row - if (mbr & sample_mask) - { - assert(dp[stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0x74u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (mbr & sample_mask) - { - assert(dp[2 * stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0xE8u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (mbr & sample_mask) - { - assert(dp[3 * stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0xC0u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - } - - //obtain signs here - if (new_sig & (0xFFFFu << (4 * n))) //if any - { - OPJ_UINT32 col_mask; - OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; - dp += i + n; // decoded samples address - col_mask = 0xFu << (4 * n); //mask to select a column - - for (OPJ_INT32 j = n; j < end; ++j, ++dp, col_mask <<= 4) - { - OPJ_UINT32 sample_mask; - - if ((col_mask & new_sig) == 0) //if non is signficant - continue; - - //scan 4 signs - sample_mask = 0x11111111u & col_mask; - if (new_sig & sample_mask) - { - assert(dp[0] == 0); - dp[0] |= ((cwd & 1) << 31) | val; //put value and sign - cwd >>= 1; ++cnt; //consume bit and increment number - //of consumed bits - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[stride] == 0); - dp[stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[2 * stride] == 0); - dp[2 * stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[3 * stride] == 0); - dp[3 * stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - } - - } - frwd_advance(&sigprop, cnt); //consume the bits from bitstrm - cnt = 0; - - //update the next 8 columns - if (n == 4) - { - //horizontally - OPJ_UINT32 t = new_sig >> 28; - t |= ((t & 0xE) >> 1) | ((t & 7) << 1); - cur_mbr[1] |= t & ~cur_sig[1]; - } + //clear current sigma + //mbr need not be cleared because it is overwritten + cur_sig = y & 0x4 ? sigma2 : sigma1; + memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2); + } + } + } + + //terminating + if (num_passes > 1) { + OPJ_INT32 st, y; + + if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) { + //do magref + OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed + OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride; + OPJ_UINT32 half = 1u << (p - 2); + OPJ_INT32 i; + for (i = 0; i < width; i += 8) { + OPJ_UINT32 cwd = rev_fetch_mrp(&magref); + OPJ_UINT32 sig = *cur_sig++; + OPJ_UINT32 col_mask = 0xF; + OPJ_UINT32 *dp = dpp + i; + if (sig) { + int j; + for (j = 0; j < 8; ++j, dp++) { + if (sig & col_mask) { + OPJ_UINT32 sample_mask = 0x11111111 & col_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[0] != 0); + sym = cwd & 1; + dp[0] ^= (1 - sym) << (p - 1); + dp[0] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[stride] != 0); + sym = cwd & 1; + dp[stride] ^= (1 - sym) << (p - 1); + dp[stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[2 * stride] != 0); + sym = cwd & 1; + dp[2 * stride] ^= (1 - sym) << (p - 1); + dp[2 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[3 * stride] != 0); + sym = cwd & 1; + dp[3 * stride] ^= (1 - sym) << (p - 1); + dp[3 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + } + col_mask <<= 4; + } + } + rev_advance_mrp(&magref, population_count(sig)); + } + } + + //do the last incomplete stripe + // for cases of (height & 3) == 0 and 3 + // the should have been processed previously + if ((height & 3) == 1 || (height & 3) == 2) { + //generate mbr of first stripe + OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1; + OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1; + //integrate horizontally + OPJ_UINT32 prev = 0; + OPJ_INT32 i; + for (i = 0; i < width; i += 8, mbr++, sig++) { + OPJ_UINT32 t, z; + + mbr[0] = sig[0]; + mbr[0] |= prev >> 28; //for first column, left neighbors + mbr[0] |= sig[0] << 4; //left neighbors + mbr[0] |= sig[0] >> 4; //left neighbors + mbr[0] |= sig[1] << 28; //for last column, right neighbors + prev = sig[0]; + + //integrate vertically + t = mbr[0], z = mbr[0]; + z |= (t & 0x77777777) << 1; //above neighbors + z |= (t & 0xEEEEEEEE) >> 1; //below neighbors + mbr[0] = z & ~sig[0]; //remove already significance samples + } + } + + st = height; + st -= height > 6 ? (((height + 1) & 3) + 3) : height; + for (y = st; y < height; y += 4) { + OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; + OPJ_UINT32 val; + OPJ_INT32 i; + + OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples + if (height - y == 3) { + pattern = 0x77777777u; + } else if (height - y == 2) { + pattern = 0x33333333u; + } else if (height - y == 1) { + pattern = 0x11111111u; + } + + //add membership from the next stripe, obtained above + if (height - y > 4) { + OPJ_UINT32 prev = 0; + OPJ_INT32 i; + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; + for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { + OPJ_UINT32 t = nxt_sig[0]; + t |= prev >> 28; //for first column, left neighbors + t |= nxt_sig[0] << 4; //left neighbors + t |= nxt_sig[0] >> 4; //left neighbors + t |= nxt_sig[1] << 28; //for last column, right neighbors + prev = nxt_sig[0]; + + cur_mbr[0] |= (t & 0x11111111) << 3; + //remove already significance samples + cur_mbr[0] &= ~cur_sig[0]; + } + } + + //find new locations and get signs + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; + nxt_mbr = y & 0x4 ? mbr1 : mbr2; + val = 3u << (p - 2); + for (i = 0; i < width; i += 8, + cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { + OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples + OPJ_UINT32 new_sig = 0; + OPJ_UINT32 ux, tx; + if (mbr) { + OPJ_INT32 n; + for (n = 0; n < 8; n += 4) { + OPJ_UINT32 col_mask; + OPJ_UINT32 inv_sig; + OPJ_INT32 end; + OPJ_INT32 j; + + OPJ_UINT32 cwd = frwd_fetch(&sigprop); + OPJ_UINT32 cnt = 0; + + OPJ_UINT32 *dp = decoded_data + y * stride; + dp += i + n; + + col_mask = 0xFu << (4 * n); + + inv_sig = ~cur_sig[0] & pattern; + + end = n + 4 + i < width ? n + 4 : width - i; + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & mbr) == 0) { + continue; + } + + //scan 4 mbr + sample_mask = 0x11111111u & col_mask; + if (mbr & sample_mask) { + assert(dp[0] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x32u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x74u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[2 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xE8u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[3 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xC0u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + } + + //signs here + if (new_sig & (0xFFFFu << (4 * n))) { + OPJ_UINT32 col_mask; + OPJ_INT32 j; + OPJ_UINT32 *dp = decoded_data + y * stride; + dp += i + n; + col_mask = 0xFu << (4 * n); + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + if ((col_mask & new_sig) == 0) { + continue; + } + + //scan 4 signs + sample_mask = 0x11111111u & col_mask; + if (new_sig & sample_mask) { + assert(dp[0] == 0); + dp[0] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[stride] == 0); + dp[stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[2 * stride] == 0); + dp[2 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[3 * stride] == 0); + dp[3 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + } + + } + frwd_advance(&sigprop, cnt); + cnt = 0; + + //update next columns + if (n == 4) { + //horizontally + OPJ_UINT32 t = new_sig >> 28; + t |= ((t & 0xE) >> 1) | ((t & 7) << 1); + cur_mbr[1] |= t & ~cur_sig[1]; + } + } + } + //propagate down (vertically propagation) + new_sig |= cur_sig[0]; + ux = (new_sig & 0x88888888) >> 3; + tx = ux | (ux << 4) | (ux >> 4); + if (i > 0) { + nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; + } + nxt_mbr[0] |= tx & ~nxt_sig[0]; + nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; } - } - //update the next stripe (vertically propagation) - new_sig |= cur_sig[0]; - ux = (new_sig & 0x88888888) >> 3; - tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors - if (i > 0) - nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; - nxt_mbr[0] |= tx & ~nxt_sig[0]; - nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; } - - //clear current sigma - //mbr need not be cleared because it is overwritten - cur_sig = y & 0x4 ? sigma2 : sigma1; - memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2); - } - } - } - - //terminating - if (num_passes > 1) { - OPJ_INT32 st; - - if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) - {//do magref - OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed - OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride; - OPJ_UINT32 half = 1u << (p - 2); - for (OPJ_INT32 i = 0; i < width; i += 8) - { - OPJ_UINT32 cwd = rev_fetch_mrp(&magref); - OPJ_UINT32 sig = *cur_sig++; - OPJ_UINT32 col_mask = 0xF; - OPJ_UINT32 *dp = dpp + i; - if (sig) - { - for (int j = 0; j < 8; ++j, dp++) - { - if (sig & col_mask) - { - OPJ_UINT32 sample_mask = 0x11111111 & col_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - assert(dp[0] != 0); - sym = cwd & 1; - dp[0] ^= (1 - sym) << (p - 1); - dp[0] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - assert(dp[stride] != 0); - sym = cwd & 1; - dp[stride] ^= (1 - sym) << (p - 1); - dp[stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - assert(dp[2 * stride] != 0); - sym = cwd & 1; - dp[2 * stride] ^= (1 - sym) << (p - 1); - dp[2 * stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - - if (sig & sample_mask) - { - OPJ_UINT32 sym; - assert(dp[3 * stride] != 0); - sym = cwd & 1; - dp[3 * stride] ^= (1 - sym) << (p - 1); - dp[3 * stride] |= half; - cwd >>= 1; - } - sample_mask += sample_mask; - } - col_mask <<= 4; - } - } - rev_advance_mrp(&magref, population_count(sig)); - } } - //do the last incomplete stripe - // for cases of (height & 3) == 0 and 3 - // the should have been processed previously - if ((height & 3) == 1 || (height & 3) == 2) { - //generate mbr of first stripe - OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1; - OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1; - //integrate horizontally - OPJ_UINT32 prev = 0; - for (OPJ_INT32 i = 0; i < width; i += 8, mbr++, sig++) - { - OPJ_UINT32 t, z; - - mbr[0] = sig[0]; - mbr[0] |= prev >> 28; //for first column, left neighbors - mbr[0] |= sig[0] << 4; //left neighbors - mbr[0] |= sig[0] >> 4; //left neighbors - mbr[0] |= sig[1] << 28; //for last column, right neighbors - prev = sig[0]; - - //integrate vertically - t = mbr[0], z = mbr[0]; - z |= (t & 0x77777777) << 1; //above neighbors - z |= (t & 0xEEEEEEEE) >> 1; //below neighbors - mbr[0] = z & ~sig[0]; //remove already significance samples - } - } - - st = height; - st -= height > 6 ? (((height + 1) & 3) + 3) : height; - for (OPJ_INT32 y = st; y < height; y += 4) - { - OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; - OPJ_UINT32 val; - - OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples - if (height - y == 3) - pattern = 0x77777777u; - else if (height - y == 2) - pattern = 0x33333333u; - else if (height - y == 1) - pattern = 0x11111111u; - - //add membership from the next stripe, obtained above - if (height - y > 4) - { - OPJ_UINT32 prev = 0; - cur_sig = y & 0x4 ? sigma2 : sigma1; - cur_mbr = y & 0x4 ? mbr2 : mbr1; - nxt_sig = y & 0x4 ? sigma1 : sigma2; - - for (OPJ_INT32 i=0; i> 28; //for first column, left neighbors - t |= nxt_sig[0] << 4; //left neighbors - t |= nxt_sig[0] >> 4; //left neighbors - t |= nxt_sig[1] << 28; //for last column, right neighbors - prev = nxt_sig[0]; - - cur_mbr[0] |= (t & 0x11111111) << 3; - //remove already significance samples - cur_mbr[0] &= ~cur_sig[0]; + OPJ_INT32 x, y; + for (y = 0; y < height; ++y) { + OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride; + for (x = 0; x < width; ++x, ++sp) { + OPJ_INT32 val = (*sp & 0x7FFFFFFF); + *sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val; + } } - } - - //find new locations and get signs - cur_sig = y & 0x4 ? sigma2 : sigma1; - cur_mbr = y & 0x4 ? mbr2 : mbr1; - nxt_sig = y & 0x4 ? sigma1 : sigma2; - nxt_mbr = y & 0x4 ? mbr1 : mbr2; - val = 3u << (p - 2); - for (OPJ_INT32 i = 0; i < width; i += 8, - cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) - { - OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples - OPJ_UINT32 new_sig = 0; - OPJ_UINT32 ux, tx; - if (mbr) - { - for (OPJ_INT32 n = 0; n < 8; n += 4) - { - OPJ_UINT32 col_mask; - OPJ_UINT32 inv_sig; - OPJ_INT32 end; - - OPJ_UINT32 cwd = frwd_fetch(&sigprop); - OPJ_UINT32 cnt = 0; - - OPJ_UINT32 *dp = decoded_data + y * stride; - dp += i + n; - - col_mask = 0xFu << (4 * n); - - inv_sig = ~cur_sig[0] & pattern; - - end = n + 4 + i < width ? n + 4 : width - i; - for (OPJ_INT32 j = n; j < end; ++j, ++dp, col_mask <<= 4) - { - OPJ_UINT32 sample_mask; - - if ((col_mask & mbr) == 0) - continue; - - //scan 4 mbr - sample_mask = 0x11111111u & col_mask; - if (mbr & sample_mask) - { - assert(dp[0] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0x32u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (mbr & sample_mask) - { - assert(dp[stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0x74u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (mbr & sample_mask) - { - assert(dp[2 * stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0xE8u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (mbr & sample_mask) - { - assert(dp[3 * stride] == 0); - if (cwd & 1) - { - OPJ_UINT32 t; - new_sig |= sample_mask; - t = 0xC0u << (j * 4); - mbr |= t & inv_sig; - } - cwd >>= 1; ++cnt; - } - } - - //signs here - if (new_sig & (0xFFFFu << (4 * n))) - { - OPJ_UINT32 col_mask; - OPJ_UINT32 *dp = decoded_data + y * stride; - dp += i + n; - col_mask = 0xFu << (4 * n); - - for (OPJ_INT32 j = n; j < end; ++j, ++dp, col_mask <<= 4) - { - OPJ_UINT32 sample_mask; - if ((col_mask & new_sig) == 0) - continue; - - //scan 4 signs - sample_mask = 0x11111111u & col_mask; - if (new_sig & sample_mask) - { - assert(dp[0] == 0); - dp[0] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[stride] == 0); - dp[stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[2 * stride] == 0); - dp[2 * stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - - sample_mask += sample_mask; - if (new_sig & sample_mask) - { - assert(dp[3 * stride] == 0); - dp[3 * stride] |= ((cwd & 1) << 31) | val; - cwd >>= 1; ++cnt; - } - } - - } - frwd_advance(&sigprop, cnt); - cnt = 0; - - //update next columns - if (n == 4) - { - //horizontally - OPJ_UINT32 t = new_sig >> 28; - t |= ((t & 0xE) >> 1) | ((t & 7) << 1); - cur_mbr[1] |= t & ~cur_sig[1]; - } - } - } - //propagate down (vertically propagation) - new_sig |= cur_sig[0]; - ux = (new_sig & 0x88888888) >> 3; - tx = ux | (ux << 4) | (ux >> 4); - if (i > 0) - nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; - nxt_mbr[0] |= tx & ~nxt_sig[0]; - nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; - } } - } - //int shift = 29 - missing_msbs; - for (OPJ_INT32 y = 0; y < height; ++y) - { - OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride; - for (OPJ_INT32 x = 0; x < width; ++x, ++sp) - { - OPJ_INT32 val = (*sp & 0x7FFFFFFF); - *sp = ((OPJ_UINT32)*sp & 0x80000000) ? -val : val; - } - } - - return OPJ_TRUE; + return OPJ_TRUE; } diff --git a/src/lib/openjp2/j2k.c b/src/lib/openjp2/j2k.c index 8bbf0be8..6586c701 100644 --- a/src/lib/openjp2/j2k.c +++ b/src/lib/openjp2/j2k.c @@ -10617,12 +10617,18 @@ static OPJ_BOOL opj_j2k_read_SPCod_SPCoc(opj_j2k_t *p_j2k, /* SPcod (G) / SPcoc (D) */ opj_read_bytes(l_current_ptr, &l_tccp->cblksty, 1); ++l_current_ptr; - if ((l_tccp->cblksty & 0x80U) != 0 || (l_tccp->cblksty & 0x48U) == 0x48U) { - /* For HT, we only support one mode, bit 6 set, meaning that "all code-blocks - within the corresponding tile-component shall be HT code-blocks, and - bit 3 is reset, meaning that "No vertically causal context". */ + if ((l_tccp->cblksty & J2K_CCP_CBLKSTY_HTMIXED) != 0) { + /* We do not support HT mixed mode yet*/ opj_event_msg(p_manager, EVT_ERROR, - "Error reading SPCod SPCoc element, Invalid code-block style found\n"); + "Error reading SPCod SPCoc element. Unsupported Mixed HT code-block style found\n"); + return OPJ_FALSE; + } + + if ((l_tccp->cblksty & (J2K_CCP_CBLKSTY_HT | J2K_CCP_CBLKSTY_VSC)) == + (J2K_CCP_CBLKSTY_HT | J2K_CCP_CBLKSTY_VSC)) { + /* For HT, we do not support vertically causal mode yet. */ + opj_event_msg(p_manager, EVT_ERROR, + "Error reading SPCod SPCoc element. Unsupported HT mode with vertically causal mode. \n"); return OPJ_FALSE; } diff --git a/src/lib/openjp2/j2k.h b/src/lib/openjp2/j2k.h index ac69a376..51e7c23e 100644 --- a/src/lib/openjp2/j2k.h +++ b/src/lib/openjp2/j2k.h @@ -61,7 +61,8 @@ The functions in J2K.C have for goal to read/write the several parts of the code #define J2K_CCP_CBLKSTY_VSC 0x08 /**< Vertically stripe causal context */ #define J2K_CCP_CBLKSTY_PTERM 0x10 /**< Predictable termination */ #define J2K_CCP_CBLKSTY_SEGSYM 0x20 /**< Segmentation symbols are used */ -#define J2K_CCP_CBLKSTY_HT 0x40 /**< (high throughput) HT codeblock */ +#define J2K_CCP_CBLKSTY_HT 0x40 /**< (high throughput) HT codeblocks */ +#define J2K_CCP_CBLKSTY_HTMIXED 0x80 /**< MIXED mode HT codeblocks */ #define J2K_CCP_QNTSTY_NOQNT 0 #define J2K_CCP_QNTSTY_SIQNT 1 #define J2K_CCP_QNTSTY_SEQNT 2 diff --git a/src/lib/openjp2/t1.c b/src/lib/openjp2/t1.c index bb97c7ea..f5fd2339 100644 --- a/src/lib/openjp2/t1.c +++ b/src/lib/openjp2/t1.c @@ -1700,8 +1700,7 @@ static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls) opj_free(job); return; } - } - else { + } else { if (OPJ_FALSE == opj_t1_decode_cblk( t1, cblk, diff --git a/src/lib/openjp2/t2.c b/src/lib/openjp2/t2.c index 4626d69b..48f8949b 100644 --- a/src/lib/openjp2/t2.c +++ b/src/lib/openjp2/t2.c @@ -1261,61 +1261,61 @@ static OPJ_BOOL opj_t2_read_packet_header(opj_t2_t* p_t2, if ((p_tcp->tccps[p_pi->compno].cblksty & J2K_CCP_CBLKSTY_HT) != 0) do { - OPJ_UINT32 bit_number; - l_cblk->segs[l_segno].numnewpasses = l_segno == 0 ? 1u : (OPJ_UINT32)n; - bit_number = l_cblk->numlenbits + opj_uint_floorlog2( - l_cblk->segs[l_segno].numnewpasses); - if (bit_number > 32) { - opj_event_msg(p_manager, EVT_ERROR, - "Invalid bit number %d in opj_t2_read_packet_header()\n", - bit_number); - opj_bio_destroy(l_bio); - return OPJ_FALSE; - } - l_cblk->segs[l_segno].newlen = opj_bio_read(l_bio, bit_number); - JAS_FPRINTF(stderr, "included=%d numnewpasses=%d increment=%d len=%d \n", - l_included, l_cblk->segs[l_segno].numnewpasses, l_increment, - l_cblk->segs[l_segno].newlen); + OPJ_UINT32 bit_number; + l_cblk->segs[l_segno].numnewpasses = l_segno == 0 ? 1 : (OPJ_UINT32)n; + bit_number = l_cblk->numlenbits + opj_uint_floorlog2( + l_cblk->segs[l_segno].numnewpasses); + if (bit_number > 32) { + opj_event_msg(p_manager, EVT_ERROR, + "Invalid bit number %d in opj_t2_read_packet_header()\n", + bit_number); + opj_bio_destroy(l_bio); + return OPJ_FALSE; + } + l_cblk->segs[l_segno].newlen = opj_bio_read(l_bio, bit_number); + JAS_FPRINTF(stderr, "included=%d numnewpasses=%d increment=%d len=%d \n", + l_included, l_cblk->segs[l_segno].numnewpasses, l_increment, + l_cblk->segs[l_segno].newlen); - n -= (OPJ_INT32)l_cblk->segs[l_segno].numnewpasses; - if (n > 0) { - ++l_segno; + n -= (OPJ_INT32)l_cblk->segs[l_segno].numnewpasses; + if (n > 0) { + ++l_segno; - if (! opj_t2_init_seg(l_cblk, l_segno, p_tcp->tccps[p_pi->compno].cblksty, 0)) { - opj_bio_destroy(l_bio); - return OPJ_FALSE; - } - } + if (! opj_t2_init_seg(l_cblk, l_segno, p_tcp->tccps[p_pi->compno].cblksty, 0)) { + opj_bio_destroy(l_bio); + return OPJ_FALSE; + } + } } while (n > 0); - else + else do { - OPJ_UINT32 bit_number; - l_cblk->segs[l_segno].numnewpasses = (OPJ_UINT32)opj_int_min((OPJ_INT32)( - l_cblk->segs[l_segno].maxpasses - l_cblk->segs[l_segno].numpasses), n); - bit_number = l_cblk->numlenbits + opj_uint_floorlog2( - l_cblk->segs[l_segno].numnewpasses); - if (bit_number > 32) { - opj_event_msg(p_manager, EVT_ERROR, - "Invalid bit number %d in opj_t2_read_packet_header()\n", - bit_number); - opj_bio_destroy(l_bio); - return OPJ_FALSE; - } - l_cblk->segs[l_segno].newlen = opj_bio_read(l_bio, bit_number); - JAS_FPRINTF(stderr, "included=%d numnewpasses=%d increment=%d len=%d \n", - l_included, l_cblk->segs[l_segno].numnewpasses, l_increment, - l_cblk->segs[l_segno].newlen); + OPJ_UINT32 bit_number; + l_cblk->segs[l_segno].numnewpasses = (OPJ_UINT32)opj_int_min((OPJ_INT32)( + l_cblk->segs[l_segno].maxpasses - l_cblk->segs[l_segno].numpasses), n); + bit_number = l_cblk->numlenbits + opj_uint_floorlog2( + l_cblk->segs[l_segno].numnewpasses); + if (bit_number > 32) { + opj_event_msg(p_manager, EVT_ERROR, + "Invalid bit number %d in opj_t2_read_packet_header()\n", + bit_number); + opj_bio_destroy(l_bio); + return OPJ_FALSE; + } + l_cblk->segs[l_segno].newlen = opj_bio_read(l_bio, bit_number); + JAS_FPRINTF(stderr, "included=%d numnewpasses=%d increment=%d len=%d \n", + l_included, l_cblk->segs[l_segno].numnewpasses, l_increment, + l_cblk->segs[l_segno].newlen); - n -= (OPJ_INT32)l_cblk->segs[l_segno].numnewpasses; - if (n > 0) { - ++l_segno; + n -= (OPJ_INT32)l_cblk->segs[l_segno].numnewpasses; + if (n > 0) { + ++l_segno; - if (! opj_t2_init_seg(l_cblk, l_segno, p_tcp->tccps[p_pi->compno].cblksty, 0)) { - opj_bio_destroy(l_bio); - return OPJ_FALSE; - } - } - } while (n > 0); + if (! opj_t2_init_seg(l_cblk, l_segno, p_tcp->tccps[p_pi->compno].cblksty, 0)) { + opj_bio_destroy(l_bio); + return OPJ_FALSE; + } + } + } while (n > 0); ++l_cblk; } diff --git a/src/lib/openjp2/tcd.h b/src/lib/openjp2/tcd.h index a89279d0..340c2bf8 100644 --- a/src/lib/openjp2/tcd.h +++ b/src/lib/openjp2/tcd.h @@ -122,12 +122,12 @@ typedef struct opj_tcd_cblk_dec { opj_tcd_seg_data_chunk_t* chunks; /* Array of chunks */ /* position of the code-blocks : left upper corner (x0, y0) right low corner (x1,y1) */ OPJ_INT32 x0, y0, x1, y1; - /* Mb is The maximum number of bit-planes available for the representation of - coefficients in any sub-band, b, as defined in Equation (E-2). See + /* Mb is The maximum number of bit-planes available for the representation of + coefficients in any sub-band, b, as defined in Equation (E-2). See Section B.10.5 of the standard */ OPJ_UINT32 Mb; /* currently used only to check if HT decoding is correct */ /* numbps is Mb - P as defined in Section B.10.5 of the standard */ - OPJ_UINT32 numbps; + OPJ_UINT32 numbps; /* number of bits for len, for the current packet. Transitory value */ OPJ_UINT32 numlenbits; /* number of pass added to the code-blocks, for the current packet. Transitory value */