Sub-tile decoding: only allocate tile component buffer of the needed dimension
Instead of being the full tile size. * Use a sparse array mechanism to store code-blocks and intermediate stages of IDWT. * IDWT, DC level shift and MCT stages are done just on that smaller array. * Improve copy of tile component array to final image, by saving an intermediate buffer. * For full-tile decoding at reduced resolution, only allocate the tile buffer to the reduced size, instead of the full-resolution size.
This commit is contained in:
parent
aa7198146b
commit
f9e9942330
|
@ -253,7 +253,7 @@ if(BUILD_JPIP_SERVER)
|
|||
endif()
|
||||
add_subdirectory(src/lib)
|
||||
option(BUILD_LUTS_GENERATOR "Build utility to generate t1_luts.h" OFF)
|
||||
option(BUILD_BENCH_DWT "Build bench_dwt utility (development benchmark)" OFF)
|
||||
option(BUILD_UNIT_TESTS "Build unit tests (bench_dwt, test_sparse_array, etc..)" OFF)
|
||||
|
||||
#-----------------------------------------------------------------------------
|
||||
# Build Applications
|
||||
|
|
|
@ -54,6 +54,8 @@ set(OPENJPEG_SRCS
|
|||
${CMAKE_CURRENT_SOURCE_DIR}/opj_malloc.c
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/opj_malloc.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/opj_stdint.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sparse_array.c
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sparse_array.h
|
||||
)
|
||||
if(BUILD_JPIP)
|
||||
add_definitions(-DUSE_JPIP)
|
||||
|
@ -192,12 +194,20 @@ if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
|||
TARGET_LINK_LIBRARIES(${OPENJPEG_LIBRARY_NAME} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
||||
|
||||
if(BUILD_BENCH_DWT)
|
||||
add_executable(bench_dwt bench_dwt.c dwt.c opj_malloc.c thread.c)
|
||||
if(BUILD_UNIT_TESTS)
|
||||
add_executable(bench_dwt bench_dwt.c)
|
||||
if(UNIX)
|
||||
target_link_libraries(bench_dwt m)
|
||||
target_link_libraries(bench_dwt m ${OPENJPEG_LIBRARY_NAME})
|
||||
endif()
|
||||
if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
||||
target_link_libraries(bench_dwt ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
||||
endif(BUILD_BENCH_DWT)
|
||||
|
||||
add_executable(test_sparse_array test_sparse_array.c)
|
||||
if(UNIX)
|
||||
target_link_libraries(test_sparse_array m ${OPENJPEG_LIBRARY_NAME})
|
||||
endif()
|
||||
if(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
||||
target_link_libraries(test_sparse_array ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif(OPJ_USE_THREAD AND Threads_FOUND AND CMAKE_USE_PTHREADS_INIT)
|
||||
endif(BUILD_UNIT_TESTS)
|
||||
|
|
|
@ -198,10 +198,11 @@ int main(int argc, char** argv)
|
|||
|
||||
memset(&tcd, 0, sizeof(tcd));
|
||||
tcd.thread_pool = tp;
|
||||
tcd.decoded_x0 = (OPJ_UINT32)tilec.x0;
|
||||
tcd.decoded_y0 = (OPJ_UINT32)tilec.y0;
|
||||
tcd.decoded_x1 = (OPJ_UINT32)tilec.x1;
|
||||
tcd.decoded_y1 = (OPJ_UINT32)tilec.y1;
|
||||
tcd.whole_tile_decoding = OPJ_TRUE;
|
||||
tcd.win_x0 = (OPJ_UINT32)tilec.x0;
|
||||
tcd.win_y0 = (OPJ_UINT32)tilec.y0;
|
||||
tcd.win_x1 = (OPJ_UINT32)tilec.x1;
|
||||
tcd.win_y1 = (OPJ_UINT32)tilec.y1;
|
||||
tcd.tcd_image = &tcd_image;
|
||||
memset(&tcd_image, 0, sizeof(tcd_image));
|
||||
tcd_image.tiles = &tcd_tile;
|
||||
|
|
|
@ -151,9 +151,9 @@ Inverse wavelet transform in 2-D.
|
|||
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
|
||||
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
|
||||
|
||||
static OPJ_BOOL opj_dwt_decode_partial_tile(opj_tcd_t *p_tcd,
|
||||
opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres);
|
||||
static OPJ_BOOL opj_dwt_decode_partial_tile(
|
||||
opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres);
|
||||
|
||||
static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,
|
||||
void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32));
|
||||
|
@ -1194,50 +1194,16 @@ OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
|
|||
return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1);
|
||||
}
|
||||
|
||||
static OPJ_BOOL opj_dwt_is_whole_tile_decoding(opj_tcd_t *p_tcd,
|
||||
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
|
||||
{
|
||||
opj_image_comp_t* image_comp = &(p_tcd->image->comps[tilec->compno]);
|
||||
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
||||
/* with the tile coordinates */
|
||||
OPJ_UINT32 tcx0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(p_tcd->decoded_x0, image_comp->dx));
|
||||
OPJ_UINT32 tcy0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(p_tcd->decoded_y0, image_comp->dy));
|
||||
OPJ_UINT32 tcx1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(p_tcd->decoded_x1, image_comp->dx));
|
||||
OPJ_UINT32 tcy1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(p_tcd->decoded_y1, image_comp->dy));
|
||||
|
||||
OPJ_UINT32 shift = tilec->numresolutions - numres;
|
||||
|
||||
/* Tolerate small margin within the reduced resolution factor to consider if */
|
||||
/* the whole tile path must be taken */
|
||||
return (tcx0 >= (OPJ_UINT32)tilec->x0 &&
|
||||
tcy0 >= (OPJ_UINT32)tilec->y0 &&
|
||||
tcx1 <= (OPJ_UINT32)tilec->x1 &&
|
||||
tcy1 <= (OPJ_UINT32)tilec->y1 &&
|
||||
(shift >= 32 ||
|
||||
(((tcx0 - (OPJ_UINT32)tilec->x0) >> shift) == 0 &&
|
||||
((tcy0 - (OPJ_UINT32)tilec->y0) >> shift) == 0 &&
|
||||
(((OPJ_UINT32)tilec->x1 - tcx1) >> shift) == 0 &&
|
||||
(((OPJ_UINT32)tilec->y1 - tcy1) >> shift) == 0)));
|
||||
}
|
||||
|
||||
/* <summary> */
|
||||
/* Inverse 5-3 wavelet transform in 2-D. */
|
||||
/* </summary> */
|
||||
OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres)
|
||||
{
|
||||
if (opj_dwt_is_whole_tile_decoding(p_tcd, tilec, numres)) {
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
|
||||
} else {
|
||||
return opj_dwt_decode_partial_tile(p_tcd, tilec, numres);
|
||||
return opj_dwt_decode_partial_tile(tilec, numres);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1403,7 +1369,9 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
|
|||
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
||||
tr->y0); /* height of the resolution level computed */
|
||||
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
|
||||
1].x1 -
|
||||
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
|
||||
size_t h_mem_size;
|
||||
int num_threads;
|
||||
|
||||
|
@ -1552,51 +1520,53 @@ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
|
|||
|
||||
static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
|
||||
OPJ_INT32 cas,
|
||||
const OPJ_INT32* src,
|
||||
OPJ_INT32 sn,
|
||||
OPJ_INT32 win_l_x0,
|
||||
OPJ_INT32 win_l_x1,
|
||||
OPJ_INT32 win_h_x0,
|
||||
OPJ_INT32 win_h_x1)
|
||||
opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 sa_line,
|
||||
OPJ_UINT32 sn,
|
||||
OPJ_UINT32 win_l_x0,
|
||||
OPJ_UINT32 win_l_x1,
|
||||
OPJ_UINT32 win_h_x0,
|
||||
OPJ_UINT32 win_h_x1)
|
||||
{
|
||||
const OPJ_INT32 *ai = src;
|
||||
OPJ_INT32 *bi = dest + cas;
|
||||
OPJ_INT32 i;
|
||||
|
||||
for (i = win_l_x0; i < win_l_x1; i++) {
|
||||
bi[2 * i] = ai[i];
|
||||
}
|
||||
|
||||
ai = src + sn;
|
||||
bi = dest + 1 - cas;
|
||||
for (i = win_h_x0; i < win_h_x1; i++) {
|
||||
bi[2 * i] = ai[i];
|
||||
}
|
||||
OPJ_BOOL ret;
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
win_l_x0, sa_line,
|
||||
win_l_x1, sa_line + 1,
|
||||
dest + cas + 2 * win_l_x0,
|
||||
2, 0, OPJ_TRUE);
|
||||
assert(ret);
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
sn + win_h_x0, sa_line,
|
||||
sn + win_h_x1, sa_line + 1,
|
||||
dest + 1 - cas + 2 * win_h_x0,
|
||||
2, 0, OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
|
||||
|
||||
static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
|
||||
OPJ_INT32 cas,
|
||||
const OPJ_INT32* src,
|
||||
OPJ_INT32 sn,
|
||||
OPJ_INT32 stride,
|
||||
OPJ_INT32 win_l_y0,
|
||||
OPJ_INT32 win_l_y1,
|
||||
OPJ_INT32 win_h_y0,
|
||||
OPJ_INT32 win_h_y1)
|
||||
opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 sa_col,
|
||||
OPJ_UINT32 sn,
|
||||
OPJ_UINT32 win_l_y0,
|
||||
OPJ_UINT32 win_l_y1,
|
||||
OPJ_UINT32 win_h_y0,
|
||||
OPJ_UINT32 win_h_y1)
|
||||
{
|
||||
const OPJ_INT32 *ai = src;
|
||||
OPJ_INT32 *bi = dest + cas;
|
||||
OPJ_INT32 i;
|
||||
|
||||
for (i = win_l_y0; i < win_l_y1; i++) {
|
||||
bi[2 * i] = ai[i * stride];
|
||||
}
|
||||
|
||||
ai = src + sn * stride;
|
||||
bi = dest + 1 - cas;
|
||||
for (i = win_h_y0; i < win_h_y1; i++) {
|
||||
bi[2 * i] = ai[i * stride];
|
||||
}
|
||||
OPJ_BOOL ret;
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
sa_col, win_l_y0,
|
||||
sa_col + 1, win_l_y1,
|
||||
dest + cas + 2 * win_l_y0,
|
||||
0, 2, OPJ_TRUE);
|
||||
assert(ret);
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
sa_col, sn + win_h_y0,
|
||||
sa_col + 1, sn + win_h_y1,
|
||||
dest + 1 - cas + 2 * win_h_y0,
|
||||
0, 2, OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
|
||||
static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
||||
|
@ -1683,10 +1653,68 @@ static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
|
|||
*end = opj_uint_min(*end, max_size);
|
||||
}
|
||||
|
||||
static OPJ_BOOL opj_dwt_decode_partial_tile(opj_tcd_t *tcd,
|
||||
opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres)
|
||||
|
||||
static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
|
||||
opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres)
|
||||
{
|
||||
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
|
||||
OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
|
||||
OPJ_UINT32 resno, bandno, precno, cblkno;
|
||||
opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
|
||||
w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
|
||||
if (sa == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (resno = 0; resno < numres; ++resno) {
|
||||
opj_tcd_resolution_t* res = &tilec->resolutions[resno];
|
||||
|
||||
for (bandno = 0; bandno < res->numbands; ++bandno) {
|
||||
opj_tcd_band_t* band = &res->bands[bandno];
|
||||
|
||||
for (precno = 0; precno < res->pw * res->ph; ++precno) {
|
||||
opj_tcd_precinct_t* precinct = &band->precincts[precno];
|
||||
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
|
||||
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
|
||||
if (cblk->decoded_data != NULL) {
|
||||
OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
|
||||
OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
|
||||
OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
|
||||
OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
|
||||
|
||||
if (band->bandno & 1) {
|
||||
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
||||
x += (OPJ_UINT32)(pres->x1 - pres->x0);
|
||||
}
|
||||
if (band->bandno & 2) {
|
||||
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
||||
y += (OPJ_UINT32)(pres->y1 - pres->y0);
|
||||
}
|
||||
|
||||
if (!opj_sparse_array_int32_write(sa, x, y,
|
||||
x + cblk_w, y + cblk_h,
|
||||
cblk->decoded_data,
|
||||
1, cblk_w, OPJ_TRUE)) {
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return sa;
|
||||
}
|
||||
|
||||
|
||||
static OPJ_BOOL opj_dwt_decode_partial_tile(
|
||||
opj_tcd_tilecomp_t* tilec,
|
||||
OPJ_UINT32 numres)
|
||||
{
|
||||
opj_sparse_array_int32_t* sa;
|
||||
opj_dwt_t h;
|
||||
opj_dwt_t v;
|
||||
OPJ_UINT32 resno;
|
||||
|
@ -1695,38 +1723,42 @@ static OPJ_BOOL opj_dwt_decode_partial_tile(opj_tcd_t *tcd,
|
|||
const OPJ_UINT32 filter_width = 2U;
|
||||
|
||||
opj_tcd_resolution_t* tr = tilec->resolutions;
|
||||
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
||||
|
||||
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
|
||||
tr->x0); /* width of the resolution level computed */
|
||||
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
||||
tr->y0); /* height of the resolution level computed */
|
||||
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
size_t h_mem_size;
|
||||
|
||||
opj_image_comp_t* image_comp = &(tcd->image->comps[tilec->compno]);
|
||||
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
||||
/* with the tile coordinates */
|
||||
OPJ_UINT32 win_tcx0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(tcd->decoded_x0, image_comp->dx));
|
||||
OPJ_UINT32 win_tcy0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(tcd->decoded_y0, image_comp->dy));
|
||||
OPJ_UINT32 win_tcx1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(tcd->decoded_x1, image_comp->dx));
|
||||
OPJ_UINT32 win_tcy1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(tcd->decoded_y1, image_comp->dy));
|
||||
OPJ_UINT32 win_tcx0 = tilec->win_x0;
|
||||
OPJ_UINT32 win_tcy0 = tilec->win_y0;
|
||||
OPJ_UINT32 win_tcx1 = tilec->win_x1;
|
||||
OPJ_UINT32 win_tcy1 = tilec->win_y1;
|
||||
|
||||
sa = opj_dwt_init_sparse_array(tilec, numres);
|
||||
|
||||
if (numres == 1U) {
|
||||
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
||||
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
||||
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
||||
tilec->data_win,
|
||||
1, tr_max->win_x1 - tr_max->win_x0,
|
||||
OPJ_TRUE);
|
||||
assert(ret);
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
h_mem_size = opj_dwt_max_resolution(tr, numres);
|
||||
/* overflow check */
|
||||
if (h_mem_size > (SIZE_MAX / sizeof(OPJ_INT32))) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
||||
|
@ -1734,13 +1766,13 @@ static OPJ_BOOL opj_dwt_decode_partial_tile(opj_tcd_t *tcd,
|
|||
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
|
||||
if (! h.mem) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
||||
v.mem = h.mem;
|
||||
|
||||
for (resno = 1; --numres > 0; resno ++) {
|
||||
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
|
||||
for (resno = 1; resno < numres; resno ++) {
|
||||
OPJ_UINT32 i, j;
|
||||
/* Window of interest subband-based coordinates */
|
||||
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
|
||||
|
@ -1826,47 +1858,74 @@ static OPJ_BOOL opj_dwt_decode_partial_tile(opj_tcd_t *tcd,
|
|||
for (j = 0; j < rh; ++j) {
|
||||
if ((j >= win_ll_y0 && j < win_ll_y1) ||
|
||||
(j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
|
||||
memset(h.mem, 0, (OPJ_UINT32)(h.sn + h.dn) * sizeof(OPJ_INT32));
|
||||
opj_dwt_interleave_partial_h(h.mem,
|
||||
h.cas,
|
||||
&tiledp[j * w],
|
||||
h.sn,
|
||||
(OPJ_INT32)win_ll_x0,
|
||||
(OPJ_INT32)win_ll_x1,
|
||||
(OPJ_INT32)win_hl_x0,
|
||||
(OPJ_INT32)win_hl_x1);
|
||||
sa,
|
||||
j,
|
||||
(OPJ_UINT32)h.sn,
|
||||
win_ll_x0,
|
||||
win_ll_x1,
|
||||
win_hl_x0,
|
||||
win_hl_x1);
|
||||
opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas,
|
||||
(OPJ_INT32)win_ll_x0,
|
||||
(OPJ_INT32)win_ll_x1,
|
||||
(OPJ_INT32)win_hl_x0,
|
||||
(OPJ_INT32)win_hl_x1);
|
||||
memcpy(&tiledp[j * w] + win_tr_x0, h.mem + win_tr_x0,
|
||||
(win_tr_x1 - win_tr_x0) * sizeof(OPJ_INT32));
|
||||
if (!opj_sparse_array_int32_write(sa,
|
||||
win_tr_x0, j,
|
||||
win_tr_x1, j + 1,
|
||||
h.mem + win_tr_x0,
|
||||
1, 0, OPJ_TRUE)) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
opj_aligned_free(h.mem);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = win_tr_x0; i < win_tr_x1; ++i) {
|
||||
memset(v.mem, 0, (OPJ_UINT32)(v.sn + v.dn) * sizeof(OPJ_INT32));
|
||||
opj_dwt_interleave_partial_v(v.mem,
|
||||
v.cas,
|
||||
tiledp + i,
|
||||
v.sn,
|
||||
(OPJ_INT32)w,
|
||||
(OPJ_INT32)win_ll_y0,
|
||||
(OPJ_INT32)win_ll_y1,
|
||||
(OPJ_INT32)win_lh_y0,
|
||||
(OPJ_INT32)win_lh_y1);
|
||||
sa,
|
||||
i,
|
||||
(OPJ_UINT32)v.sn,
|
||||
win_ll_y0,
|
||||
win_ll_y1,
|
||||
win_lh_y0,
|
||||
win_lh_y1);
|
||||
opj_dwt_decode_partial_1(v.mem, v.dn, v.sn, v.cas,
|
||||
(OPJ_INT32)win_ll_y0,
|
||||
(OPJ_INT32)win_ll_y1,
|
||||
(OPJ_INT32)win_lh_y0,
|
||||
(OPJ_INT32)win_lh_y1);
|
||||
for (j = win_tr_y0; j < win_tr_y1; j++) {
|
||||
tiledp[j * w + i] = v.mem[j];
|
||||
if (!opj_sparse_array_int32_write(sa,
|
||||
i, win_tr_y0,
|
||||
i + 1, win_tr_y1,
|
||||
v.mem + win_tr_y0,
|
||||
0, 1, OPJ_TRUE)) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
opj_aligned_free(h.mem);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
opj_aligned_free(h.mem);
|
||||
|
||||
{
|
||||
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
||||
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
||||
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
||||
tilec->data_win,
|
||||
1, tr_max->win_x1 - tr_max->win_x0,
|
||||
OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
|
@ -1924,6 +1983,31 @@ static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|||
}
|
||||
}
|
||||
|
||||
static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt,
|
||||
opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 sa_line,
|
||||
OPJ_UINT32 remaining_height)
|
||||
{
|
||||
OPJ_UINT32 i;
|
||||
for (i = 0; i < remaining_height; i++) {
|
||||
OPJ_BOOL ret;
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
dwt->win_l_x0, sa_line + i,
|
||||
dwt->win_l_x1, sa_line + i + 1,
|
||||
/* Nasty cast from float* to int32* */
|
||||
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
|
||||
8, 0, OPJ_TRUE);
|
||||
assert(ret);
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
(OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
|
||||
(OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
|
||||
/* Nasty cast from float* to int32* */
|
||||
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
|
||||
8, 0, OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
}
|
||||
|
||||
static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
||||
OPJ_FLOAT32* OPJ_RESTRICT a,
|
||||
OPJ_UINT32 width,
|
||||
|
@ -1944,6 +2028,29 @@ static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|||
}
|
||||
}
|
||||
|
||||
static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
||||
opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 sa_col,
|
||||
OPJ_UINT32 nb_elts_read)
|
||||
{
|
||||
OPJ_UINT32 i;
|
||||
for (i = 0; i < nb_elts_read; i++) {
|
||||
OPJ_BOOL ret;
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
sa_col + i, dwt->win_l_x0,
|
||||
sa_col + i + 1, dwt->win_l_x1,
|
||||
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
|
||||
0, 8, OPJ_TRUE);
|
||||
assert(ret);
|
||||
ret = opj_sparse_array_int32_read(sa,
|
||||
sa_col + i, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
|
||||
sa_col + i + 1, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
|
||||
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
|
||||
0, 8, OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __SSE__
|
||||
|
||||
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
|
||||
|
@ -2146,7 +2253,9 @@ OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
|||
OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
|
||||
res->y0); /* height of the resolution level computed */
|
||||
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
|
||||
1].x1 -
|
||||
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
|
||||
|
||||
size_t l_data_size;
|
||||
|
||||
|
@ -2262,10 +2371,10 @@ OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
|||
}
|
||||
|
||||
static
|
||||
OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
||||
opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
||||
OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
||||
OPJ_UINT32 numres)
|
||||
{
|
||||
opj_sparse_array_int32_t* sa;
|
||||
opj_v4dwt_t h;
|
||||
opj_v4dwt_t v;
|
||||
OPJ_UINT32 resno;
|
||||
|
@ -2275,31 +2384,37 @@ OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
|||
const OPJ_UINT32 filter_width = 4U;
|
||||
|
||||
opj_tcd_resolution_t* tr = tilec->resolutions;
|
||||
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
||||
|
||||
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
|
||||
tr->x0); /* width of the resolution level computed */
|
||||
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
||||
tr->y0); /* height of the resolution level computed */
|
||||
|
||||
OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
|
||||
size_t l_data_size;
|
||||
|
||||
opj_image_comp_t* image_comp = &(tcd->image->comps[tilec->compno]);
|
||||
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
||||
/* with the tile coordinates */
|
||||
OPJ_UINT32 win_tcx0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(tcd->decoded_x0, image_comp->dx));
|
||||
OPJ_UINT32 win_tcy0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(tcd->decoded_y0, image_comp->dy));
|
||||
OPJ_UINT32 win_tcx1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(tcd->decoded_x1, image_comp->dx));
|
||||
OPJ_UINT32 win_tcy1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(tcd->decoded_y1, image_comp->dy));
|
||||
OPJ_UINT32 win_tcx0 = tilec->win_x0;
|
||||
OPJ_UINT32 win_tcy0 = tilec->win_y0;
|
||||
OPJ_UINT32 win_tcx1 = tilec->win_x1;
|
||||
OPJ_UINT32 win_tcy1 = tilec->win_y1;
|
||||
|
||||
sa = opj_dwt_init_sparse_array(tilec, numres);
|
||||
|
||||
if (numres == 1U) {
|
||||
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
||||
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
||||
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
||||
tilec->data_win,
|
||||
1, tr_max->win_x1 - tr_max->win_x0,
|
||||
OPJ_TRUE);
|
||||
assert(ret);
|
||||
opj_sparse_array_int32_free(sa);
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
l_data_size = opj_dwt_max_resolution(tr, numres);
|
||||
/* overflow check */
|
||||
|
@ -2320,8 +2435,7 @@ OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
|||
}
|
||||
v.wavelet = h.wavelet;
|
||||
|
||||
for (resno = 1; --numres; resno++) {
|
||||
OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
|
||||
for (resno = 1; resno < numres; resno ++) {
|
||||
OPJ_UINT32 j;
|
||||
/* Window of interest subband-based coordinates */
|
||||
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
|
||||
|
@ -2408,19 +2522,24 @@ OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
|||
h.win_l_x1 = win_ll_x1;
|
||||
h.win_h_x0 = win_hl_x0;
|
||||
h.win_h_x1 = win_hl_x1;
|
||||
for (j = 0; j + 3 < rh; j += 4, aj += w * 4) {
|
||||
for (j = 0; j + 3 < rh; j += 4) {
|
||||
if ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
|
||||
(j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
|
||||
j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
|
||||
OPJ_UINT32 k;
|
||||
opj_v4dwt_interleave_h(&h, aj, w, rh - j);
|
||||
opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j));
|
||||
opj_v4dwt_decode(&h);
|
||||
|
||||
for (k = win_tr_x0; k < win_tr_x1; k++) {
|
||||
aj[k ] = h.wavelet[k].f[0];
|
||||
aj[k + w ] = h.wavelet[k].f[1];
|
||||
aj[k + w * 2] = h.wavelet[k].f[2];
|
||||
aj[k + w * 3] = h.wavelet[k].f[3];
|
||||
for (k = 0; k < 4; k++) {
|
||||
if (!opj_sparse_array_int32_write(sa,
|
||||
win_tr_x0, j + k,
|
||||
win_tr_x1, j + k + 1,
|
||||
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[k],
|
||||
4, 0, OPJ_TRUE)) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
opj_aligned_free(h.wavelet);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2430,18 +2549,18 @@ OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
|||
(j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
|
||||
j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
|
||||
OPJ_UINT32 k;
|
||||
opj_v4dwt_interleave_h(&h, aj, w, rh - j);
|
||||
opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j);
|
||||
opj_v4dwt_decode(&h);
|
||||
for (k = win_tr_x0; k < win_tr_x1; k++) {
|
||||
switch (rh - j) {
|
||||
case 3:
|
||||
aj[k + w * 2] = h.wavelet[k].f[2];
|
||||
/* FALLTHRU */
|
||||
case 2:
|
||||
aj[k + w ] = h.wavelet[k].f[1];
|
||||
/* FALLTHRU */
|
||||
case 1:
|
||||
aj[k ] = h.wavelet[k].f[0];
|
||||
for (k = 0; k < rh - j; k++) {
|
||||
if (!opj_sparse_array_int32_write(sa,
|
||||
win_tr_x0, j + k,
|
||||
win_tr_x1, j + k + 1,
|
||||
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[k],
|
||||
4, 0, OPJ_TRUE)) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
opj_aligned_free(h.wavelet);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2450,21 +2569,41 @@ OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_t *tcd,
|
|||
v.win_l_x1 = win_ll_y1;
|
||||
v.win_h_x0 = win_lh_y0;
|
||||
v.win_h_x1 = win_lh_y1;
|
||||
aj = (OPJ_FLOAT32*) tilec->data;
|
||||
aj += win_tr_x0;
|
||||
for (j = win_tr_x0; j < win_tr_x1; j += 4, aj += 4) {
|
||||
for (j = win_tr_x0; j < win_tr_x1; j += 4) {
|
||||
OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j);
|
||||
OPJ_UINT32 k;
|
||||
|
||||
opj_v4dwt_interleave_v(&v, aj, w, nb_elts);
|
||||
opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts);
|
||||
opj_v4dwt_decode(&v);
|
||||
|
||||
for (k = win_tr_y0; k < win_tr_y1; ++k) {
|
||||
memcpy(&aj[k * w], &v.wavelet[k], nb_elts * sizeof(OPJ_FLOAT32));
|
||||
for (k = 0; k < nb_elts; k++) {
|
||||
if (!opj_sparse_array_int32_write(sa,
|
||||
j + k, win_tr_y0,
|
||||
j + k + 1, win_tr_y1,
|
||||
(OPJ_INT32*)&h.wavelet[win_tr_y0].f[k],
|
||||
0, 4, OPJ_TRUE)) {
|
||||
/* FIXME event manager error callback */
|
||||
opj_sparse_array_int32_free(sa);
|
||||
opj_aligned_free(h.wavelet);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
||||
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
||||
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
||||
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
||||
tilec->data_win,
|
||||
1, tr_max->win_x1 - tr_max->win_x0,
|
||||
OPJ_TRUE);
|
||||
assert(ret);
|
||||
}
|
||||
opj_sparse_array_int32_free(sa);
|
||||
|
||||
opj_aligned_free(h.wavelet);
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
@ -2474,9 +2613,9 @@ OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
|
|||
opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
||||
OPJ_UINT32 numres)
|
||||
{
|
||||
if (opj_dwt_is_whole_tile_decoding(p_tcd, tilec, numres)) {
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
return opj_dwt_decode_tile_97(tilec, numres);
|
||||
} else {
|
||||
return opj_dwt_decode_partial_97(p_tcd, tilec, numres);
|
||||
return opj_dwt_decode_partial_97(tilec, numres);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -63,7 +63,7 @@ OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec);
|
|||
/**
|
||||
Inverse 5-3 wavelet transform in 2-D.
|
||||
Apply a reversible inverse DWT transform to a component of an image.
|
||||
@param tcd TCD handle
|
||||
@param p_tcd TCD handle
|
||||
@param tilec Tile component information (current tile)
|
||||
@param numres Number of resolution levels to decode
|
||||
*/
|
||||
|
@ -93,7 +93,7 @@ OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec);
|
|||
/**
|
||||
Inverse 9-7 wavelet transform in 2-D.
|
||||
Apply an irreversible inverse DWT transform to a component of an image.
|
||||
@param tcd TCD handle
|
||||
@param p_tcd TCD handle
|
||||
@param tilec Tile component information (current tile)
|
||||
@param numres Number of resolution levels to decode
|
||||
*/
|
||||
|
|
|
@ -49,8 +49,6 @@
|
|||
/** @name Local static functions */
|
||||
/*@{*/
|
||||
|
||||
#define OPJ_UNUSED(x) (void)x
|
||||
|
||||
/**
|
||||
* Sets up the procedures to do on reading header. Developpers wanting to extend the library can add their own reading procedures.
|
||||
*/
|
||||
|
@ -371,7 +369,7 @@ static OPJ_BOOL opj_j2k_pre_write_tile(opj_j2k_t * p_j2k,
|
|||
opj_stream_private_t *p_stream,
|
||||
opj_event_mgr_t * p_manager);
|
||||
|
||||
static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
||||
static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd,
|
||||
opj_image_t* p_output_image);
|
||||
|
||||
static void opj_get_tile_dimensions(opj_image_t * l_image,
|
||||
|
@ -8789,7 +8787,7 @@ OPJ_BOOL opj_j2k_read_tile_header(opj_j2k_t * p_j2k,
|
|||
|
||||
*p_tile_index = p_j2k->m_current_tile_number;
|
||||
*p_go_on = OPJ_TRUE;
|
||||
*p_data_size = opj_tcd_get_decoded_tile_size(p_j2k->m_tcd);
|
||||
*p_data_size = opj_tcd_get_decoded_tile_size(p_j2k->m_tcd, OPJ_FALSE);
|
||||
if (*p_data_size == UINT_MAX) {
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
@ -8902,26 +8900,24 @@ OPJ_BOOL opj_j2k_decode_tile(opj_j2k_t * p_j2k,
|
|||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
||||
static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd,
|
||||
opj_image_t* p_output_image)
|
||||
{
|
||||
OPJ_UINT32 i, j, k = 0;
|
||||
OPJ_UINT32 i, j;
|
||||
OPJ_UINT32 l_width_src, l_height_src;
|
||||
OPJ_UINT32 l_width_dest, l_height_dest;
|
||||
OPJ_INT32 l_offset_x0_src, l_offset_y0_src, l_offset_x1_src, l_offset_y1_src;
|
||||
OPJ_SIZE_T l_start_offset_src, l_line_offset_src, l_end_offset_src ;
|
||||
OPJ_SIZE_T l_start_offset_src;
|
||||
OPJ_UINT32 l_start_x_dest, l_start_y_dest;
|
||||
OPJ_UINT32 l_x0_dest, l_y0_dest, l_x1_dest, l_y1_dest;
|
||||
OPJ_SIZE_T l_start_offset_dest, l_line_offset_dest;
|
||||
OPJ_SIZE_T l_start_offset_dest;
|
||||
|
||||
opj_image_comp_t * l_img_comp_src = 00;
|
||||
opj_image_comp_t * l_img_comp_dest = 00;
|
||||
|
||||
opj_tcd_tilecomp_t * l_tilec = 00;
|
||||
opj_image_t * l_image_src = 00;
|
||||
OPJ_UINT32 l_size_comp, l_remaining;
|
||||
OPJ_INT32 * l_dest_ptr;
|
||||
opj_tcd_resolution_t* l_res = 00;
|
||||
|
||||
l_tilec = p_tcd->tcd_image->tiles->comps;
|
||||
l_image_src = p_tcd->image;
|
||||
|
@ -8930,6 +8926,9 @@ static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
|||
l_img_comp_dest = p_output_image->comps;
|
||||
|
||||
for (i = 0; i < l_image_src->numcomps; i++) {
|
||||
OPJ_INT32 res_x0, res_x1, res_y0, res_y1;
|
||||
OPJ_UINT32 src_data_stride;
|
||||
const OPJ_INT32* p_src_data;
|
||||
|
||||
/* Allocate output component buffer if necessary */
|
||||
if (!l_img_comp_dest->data) {
|
||||
|
@ -8953,29 +8952,38 @@ static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
|||
/* Copy info from decoded comp image to output image */
|
||||
l_img_comp_dest->resno_decoded = l_img_comp_src->resno_decoded;
|
||||
|
||||
/*-----*/
|
||||
/* Compute the precision of the output buffer */
|
||||
l_size_comp = l_img_comp_src->prec >> 3; /*(/ 8)*/
|
||||
l_remaining = l_img_comp_src->prec & 7; /* (%8) */
|
||||
l_res = l_tilec->resolutions + l_img_comp_src->resno_decoded;
|
||||
|
||||
if (l_remaining) {
|
||||
++l_size_comp;
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
opj_tcd_resolution_t* l_res = l_tilec->resolutions +
|
||||
l_img_comp_src->resno_decoded;
|
||||
res_x0 = l_res->x0;
|
||||
res_y0 = l_res->y0;
|
||||
res_x1 = l_res->x1;
|
||||
res_y1 = l_res->y1;
|
||||
src_data_stride = (OPJ_UINT32)(
|
||||
l_tilec->resolutions[l_tilec->minimum_num_resolutions - 1].x1 -
|
||||
l_tilec->resolutions[l_tilec->minimum_num_resolutions - 1].x0);
|
||||
p_src_data = l_tilec->data;
|
||||
} else {
|
||||
opj_tcd_resolution_t* l_res = l_tilec->resolutions +
|
||||
l_img_comp_src->resno_decoded;
|
||||
res_x0 = (OPJ_INT32)l_res->win_x0;
|
||||
res_y0 = (OPJ_INT32)l_res->win_y0;
|
||||
res_x1 = (OPJ_INT32)l_res->win_x1;
|
||||
res_y1 = (OPJ_INT32)l_res->win_y1;
|
||||
src_data_stride = l_res->win_x1 - l_res->win_x0;
|
||||
p_src_data = l_tilec->data_win;
|
||||
}
|
||||
|
||||
if (l_size_comp == 3) {
|
||||
l_size_comp = 4;
|
||||
}
|
||||
/*-----*/
|
||||
l_width_src = (OPJ_UINT32)(res_x1 - res_x0);
|
||||
l_height_src = (OPJ_UINT32)(res_y1 - res_y0);
|
||||
|
||||
|
||||
/* Current tile component size*/
|
||||
/*if (i == 0) {
|
||||
fprintf(stdout, "SRC: l_res_x0=%d, l_res_x1=%d, l_res_y0=%d, l_res_y1=%d\n",
|
||||
l_res->x0, l_res->x1, l_res->y0, l_res->y1);
|
||||
res_x0, res_x1, res_y0, res_y1);
|
||||
}*/
|
||||
|
||||
l_width_src = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
l_height_src = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
|
||||
/* Border of the current output component*/
|
||||
l_x0_dest = opj_uint_ceildivpow2(l_img_comp_dest->x0, l_img_comp_dest->factor);
|
||||
|
@ -8996,53 +9004,53 @@ static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
|||
* l_start_y_dest, l_width_dest, l_height_dest) which will be modified
|
||||
* by this input area.
|
||||
* */
|
||||
assert(l_res->x0 >= 0);
|
||||
assert(l_res->x1 >= 0);
|
||||
if (l_x0_dest < (OPJ_UINT32)l_res->x0) {
|
||||
l_start_x_dest = (OPJ_UINT32)l_res->x0 - l_x0_dest;
|
||||
assert(res_x0 >= 0);
|
||||
assert(res_x1 >= 0);
|
||||
if (l_x0_dest < (OPJ_UINT32)res_x0) {
|
||||
l_start_x_dest = (OPJ_UINT32)res_x0 - l_x0_dest;
|
||||
l_offset_x0_src = 0;
|
||||
|
||||
if (l_x1_dest >= (OPJ_UINT32)l_res->x1) {
|
||||
if (l_x1_dest >= (OPJ_UINT32)res_x1) {
|
||||
l_width_dest = l_width_src;
|
||||
l_offset_x1_src = 0;
|
||||
} else {
|
||||
l_width_dest = l_x1_dest - (OPJ_UINT32)l_res->x0 ;
|
||||
l_width_dest = l_x1_dest - (OPJ_UINT32)res_x0 ;
|
||||
l_offset_x1_src = (OPJ_INT32)(l_width_src - l_width_dest);
|
||||
}
|
||||
} else {
|
||||
l_start_x_dest = 0U;
|
||||
l_offset_x0_src = (OPJ_INT32)l_x0_dest - l_res->x0;
|
||||
l_offset_x0_src = (OPJ_INT32)l_x0_dest - res_x0;
|
||||
|
||||
if (l_x1_dest >= (OPJ_UINT32)l_res->x1) {
|
||||
if (l_x1_dest >= (OPJ_UINT32)res_x1) {
|
||||
l_width_dest = l_width_src - (OPJ_UINT32)l_offset_x0_src;
|
||||
l_offset_x1_src = 0;
|
||||
} else {
|
||||
l_width_dest = l_img_comp_dest->w ;
|
||||
l_offset_x1_src = l_res->x1 - (OPJ_INT32)l_x1_dest;
|
||||
l_offset_x1_src = res_x1 - (OPJ_INT32)l_x1_dest;
|
||||
}
|
||||
}
|
||||
|
||||
if (l_y0_dest < (OPJ_UINT32)l_res->y0) {
|
||||
l_start_y_dest = (OPJ_UINT32)l_res->y0 - l_y0_dest;
|
||||
if (l_y0_dest < (OPJ_UINT32)res_y0) {
|
||||
l_start_y_dest = (OPJ_UINT32)res_y0 - l_y0_dest;
|
||||
l_offset_y0_src = 0;
|
||||
|
||||
if (l_y1_dest >= (OPJ_UINT32)l_res->y1) {
|
||||
if (l_y1_dest >= (OPJ_UINT32)res_y1) {
|
||||
l_height_dest = l_height_src;
|
||||
l_offset_y1_src = 0;
|
||||
} else {
|
||||
l_height_dest = l_y1_dest - (OPJ_UINT32)l_res->y0 ;
|
||||
l_height_dest = l_y1_dest - (OPJ_UINT32)res_y0 ;
|
||||
l_offset_y1_src = (OPJ_INT32)(l_height_src - l_height_dest);
|
||||
}
|
||||
} else {
|
||||
l_start_y_dest = 0U;
|
||||
l_offset_y0_src = (OPJ_INT32)l_y0_dest - l_res->y0;
|
||||
l_offset_y0_src = (OPJ_INT32)l_y0_dest - res_y0;
|
||||
|
||||
if (l_y1_dest >= (OPJ_UINT32)l_res->y1) {
|
||||
if (l_y1_dest >= (OPJ_UINT32)res_y1) {
|
||||
l_height_dest = l_height_src - (OPJ_UINT32)l_offset_y0_src;
|
||||
l_offset_y1_src = 0;
|
||||
} else {
|
||||
l_height_dest = l_img_comp_dest->h ;
|
||||
l_offset_y1_src = l_res->y1 - (OPJ_INT32)l_y1_dest;
|
||||
l_offset_y1_src = res_y1 - (OPJ_INT32)l_y1_dest;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -9058,114 +9066,24 @@ static OPJ_BOOL opj_j2k_update_image_data(opj_tcd_t * p_tcd, OPJ_BYTE * p_data,
|
|||
|
||||
/* Compute the input buffer offset */
|
||||
l_start_offset_src = (OPJ_SIZE_T)l_offset_x0_src + (OPJ_SIZE_T)l_offset_y0_src
|
||||
* (OPJ_SIZE_T)l_width_src;
|
||||
l_line_offset_src = (OPJ_SIZE_T)l_offset_x1_src + (OPJ_SIZE_T)l_offset_x0_src;
|
||||
l_end_offset_src = (OPJ_SIZE_T)l_offset_y1_src * (OPJ_SIZE_T)l_width_src -
|
||||
(OPJ_SIZE_T)l_offset_x0_src;
|
||||
* (OPJ_SIZE_T)src_data_stride;
|
||||
|
||||
/* Compute the output buffer offset */
|
||||
l_start_offset_dest = (OPJ_SIZE_T)l_start_x_dest + (OPJ_SIZE_T)l_start_y_dest
|
||||
* (OPJ_SIZE_T)l_img_comp_dest->w;
|
||||
l_line_offset_dest = (OPJ_SIZE_T)l_img_comp_dest->w - (OPJ_SIZE_T)l_width_dest;
|
||||
|
||||
/* Move the output buffer to the first place where we will write*/
|
||||
l_dest_ptr = l_img_comp_dest->data + l_start_offset_dest;
|
||||
|
||||
/*if (i == 0) {
|
||||
fprintf(stdout, "COMPO[%d]:\n",i);
|
||||
fprintf(stdout, "SRC: l_start_x_src=%d, l_start_y_src=%d, l_width_src=%d, l_height_src=%d\n"
|
||||
"\t tile offset:%d, %d, %d, %d\n"
|
||||
"\t buffer offset: %d; %d, %d\n",
|
||||
l_res->x0, l_res->y0, l_width_src, l_height_src,
|
||||
l_offset_x0_src, l_offset_y0_src, l_offset_x1_src, l_offset_y1_src,
|
||||
l_start_offset_src, l_line_offset_src, l_end_offset_src);
|
||||
|
||||
fprintf(stdout, "DEST: l_start_x_dest=%d, l_start_y_dest=%d, l_width_dest=%d, l_height_dest=%d\n"
|
||||
"\t start offset: %d, line offset= %d\n",
|
||||
l_start_x_dest, l_start_y_dest, l_width_dest, l_height_dest, l_start_offset_dest, l_line_offset_dest);
|
||||
}*/
|
||||
|
||||
switch (l_size_comp) {
|
||||
case 1: {
|
||||
OPJ_CHAR * l_src_ptr = (OPJ_CHAR*) p_data;
|
||||
l_src_ptr += l_start_offset_src; /* Move to the first place where we will read*/
|
||||
|
||||
if (l_img_comp_src->sgnd) {
|
||||
for (j = 0 ; j < l_height_dest ; ++j) {
|
||||
for (k = 0 ; k < l_width_dest ; ++k) {
|
||||
*(l_dest_ptr++) = (OPJ_INT32)(*
|
||||
(l_src_ptr++)); /* Copy only the data needed for the output image */
|
||||
}
|
||||
|
||||
l_dest_ptr +=
|
||||
l_line_offset_dest; /* Move to the next place where we will write */
|
||||
l_src_ptr += l_line_offset_src ; /* Move to the next place where we will read */
|
||||
}
|
||||
} else {
|
||||
for (j = 0 ; j < l_height_dest ; ++j) {
|
||||
for (k = 0 ; k < l_width_dest ; ++k) {
|
||||
*(l_dest_ptr++) = (OPJ_INT32)((*(l_src_ptr++)) & 0xff);
|
||||
}
|
||||
|
||||
l_dest_ptr += l_line_offset_dest;
|
||||
l_src_ptr += l_line_offset_src;
|
||||
}
|
||||
}
|
||||
|
||||
l_src_ptr +=
|
||||
l_end_offset_src; /* Move to the end of this component-part of the input buffer */
|
||||
p_data = (OPJ_BYTE*)
|
||||
l_src_ptr; /* Keep the current position for the next component-part */
|
||||
}
|
||||
break;
|
||||
case 2: {
|
||||
OPJ_INT16 * l_src_ptr = (OPJ_INT16 *) p_data;
|
||||
l_src_ptr += l_start_offset_src;
|
||||
|
||||
if (l_img_comp_src->sgnd) {
|
||||
for (j = 0; j < l_height_dest; ++j) {
|
||||
for (k = 0; k < l_width_dest; ++k) {
|
||||
OPJ_INT16 val;
|
||||
memcpy(&val, l_src_ptr, sizeof(val));
|
||||
l_src_ptr ++;
|
||||
*(l_dest_ptr++) = val;
|
||||
}
|
||||
|
||||
l_dest_ptr += l_line_offset_dest;
|
||||
l_src_ptr += l_line_offset_src ;
|
||||
}
|
||||
} else {
|
||||
for (j = 0; j < l_height_dest; ++j) {
|
||||
for (k = 0; k < l_width_dest; ++k) {
|
||||
OPJ_INT16 val;
|
||||
memcpy(&val, l_src_ptr, sizeof(val));
|
||||
l_src_ptr ++;
|
||||
*(l_dest_ptr++) = val & 0xffff;
|
||||
}
|
||||
|
||||
l_dest_ptr += l_line_offset_dest;
|
||||
l_src_ptr += l_line_offset_src ;
|
||||
}
|
||||
}
|
||||
|
||||
l_src_ptr += l_end_offset_src;
|
||||
p_data = (OPJ_BYTE*) l_src_ptr;
|
||||
}
|
||||
break;
|
||||
case 4: {
|
||||
OPJ_INT32 * l_src_ptr = (OPJ_INT32 *) p_data;
|
||||
{
|
||||
const OPJ_INT32 * l_src_ptr = p_src_data;
|
||||
l_src_ptr += l_start_offset_src;
|
||||
|
||||
for (j = 0; j < l_height_dest; ++j) {
|
||||
memcpy(l_dest_ptr, l_src_ptr, l_width_dest * sizeof(OPJ_INT32));
|
||||
l_dest_ptr += l_width_dest + l_line_offset_dest;
|
||||
l_src_ptr += l_width_dest + l_line_offset_src ;
|
||||
l_dest_ptr += l_img_comp_dest->w;
|
||||
l_src_ptr += src_data_stride;
|
||||
}
|
||||
|
||||
l_src_ptr += l_end_offset_src;
|
||||
p_data = (OPJ_BYTE*) l_src_ptr;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
++l_img_comp_dest;
|
||||
|
@ -10548,10 +10466,9 @@ static OPJ_BOOL opj_j2k_decode_tiles(opj_j2k_t *p_j2k,
|
|||
{
|
||||
OPJ_BOOL l_go_on = OPJ_TRUE;
|
||||
OPJ_UINT32 l_current_tile_no;
|
||||
OPJ_UINT32 l_data_size, l_max_data_size;
|
||||
OPJ_UINT32 l_data_size;
|
||||
OPJ_INT32 l_tile_x0, l_tile_y0, l_tile_x1, l_tile_y1;
|
||||
OPJ_UINT32 l_nb_comps;
|
||||
OPJ_BYTE * l_current_data;
|
||||
OPJ_UINT32 nr_tiles = 0;
|
||||
|
||||
/* Particular case for whole single tile decoding */
|
||||
|
@ -10595,13 +10512,6 @@ static OPJ_BOOL opj_j2k_decode_tiles(opj_j2k_t *p_j2k,
|
|||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
l_current_data = (OPJ_BYTE*)opj_malloc(1000);
|
||||
if (! l_current_data) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory to decode tiles\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_max_data_size = 1000;
|
||||
|
||||
for (;;) {
|
||||
if (! opj_j2k_read_tile_header(p_j2k,
|
||||
&l_current_tile_no,
|
||||
|
@ -10612,7 +10522,6 @@ static OPJ_BOOL opj_j2k_decode_tiles(opj_j2k_t *p_j2k,
|
|||
&l_go_on,
|
||||
p_stream,
|
||||
p_manager)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
||||
|
@ -10620,34 +10529,22 @@ static OPJ_BOOL opj_j2k_decode_tiles(opj_j2k_t *p_j2k,
|
|||
break;
|
||||
}
|
||||
|
||||
if (l_data_size > l_max_data_size) {
|
||||
OPJ_BYTE *l_new_current_data = (OPJ_BYTE *) opj_realloc(l_current_data,
|
||||
l_data_size);
|
||||
if (! l_new_current_data) {
|
||||
opj_free(l_current_data);
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory to decode tile %d/%d\n",
|
||||
l_current_tile_no + 1, p_j2k->m_cp.th * p_j2k->m_cp.tw);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_current_data = l_new_current_data;
|
||||
l_max_data_size = l_data_size;
|
||||
}
|
||||
|
||||
if (! opj_j2k_decode_tile(p_j2k, l_current_tile_no, l_current_data, l_data_size,
|
||||
if (! opj_j2k_decode_tile(p_j2k, l_current_tile_no, NULL, 0,
|
||||
p_stream, p_manager)) {
|
||||
opj_free(l_current_data);
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Failed to decode tile %d/%d\n",
|
||||
l_current_tile_no + 1, p_j2k->m_cp.th * p_j2k->m_cp.tw);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
||||
opj_event_msg(p_manager, EVT_INFO, "Tile %d/%d has been decoded.\n",
|
||||
l_current_tile_no + 1, p_j2k->m_cp.th * p_j2k->m_cp.tw);
|
||||
|
||||
if (! opj_j2k_update_image_data(p_j2k->m_tcd, l_current_data,
|
||||
if (! opj_j2k_update_image_data(p_j2k->m_tcd,
|
||||
p_j2k->m_output_image)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
opj_j2k_tcp_data_destroy(&p_j2k->m_cp.tcps[l_current_tile_no]);
|
||||
|
||||
opj_event_msg(p_manager, EVT_INFO,
|
||||
"Image data has been updated with tile %d.\n\n", l_current_tile_no + 1);
|
||||
|
||||
|
@ -10660,8 +10557,6 @@ static OPJ_BOOL opj_j2k_decode_tiles(opj_j2k_t *p_j2k,
|
|||
}
|
||||
}
|
||||
|
||||
opj_free(l_current_data);
|
||||
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
|
@ -10694,24 +10589,15 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
OPJ_BOOL l_go_on = OPJ_TRUE;
|
||||
OPJ_UINT32 l_current_tile_no;
|
||||
OPJ_UINT32 l_tile_no_to_dec;
|
||||
OPJ_UINT32 l_data_size, l_max_data_size;
|
||||
OPJ_UINT32 l_data_size;
|
||||
OPJ_INT32 l_tile_x0, l_tile_y0, l_tile_x1, l_tile_y1;
|
||||
OPJ_UINT32 l_nb_comps;
|
||||
OPJ_BYTE * l_current_data;
|
||||
OPJ_UINT32 l_nb_tiles;
|
||||
OPJ_UINT32 i;
|
||||
|
||||
l_current_data = (OPJ_BYTE*)opj_malloc(1000);
|
||||
if (! l_current_data) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory to decode one tile\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_max_data_size = 1000;
|
||||
|
||||
/*Allocate and initialize some elements of codestrem index if not already done*/
|
||||
if (!p_j2k->cstr_index->tile_index) {
|
||||
if (!opj_j2k_allocate_tile_element_cstr_index(p_j2k)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
|
@ -10726,7 +10612,6 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
if (!(opj_stream_read_seek(p_stream,
|
||||
p_j2k->m_specific_param.m_decoder.m_last_sot_read_pos + 2, p_manager))) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Problem with seek function\n");
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
} else {
|
||||
|
@ -10734,7 +10619,6 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
p_j2k->cstr_index->tile_index[l_tile_no_to_dec].tp_index[0].start_pos + 2,
|
||||
p_manager))) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Problem with seek function\n");
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
|
@ -10763,7 +10647,6 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
&l_go_on,
|
||||
p_stream,
|
||||
p_manager)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
||||
|
@ -10771,33 +10654,19 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
break;
|
||||
}
|
||||
|
||||
if (l_data_size > l_max_data_size) {
|
||||
OPJ_BYTE *l_new_current_data = (OPJ_BYTE *) opj_realloc(l_current_data,
|
||||
l_data_size);
|
||||
if (! l_new_current_data) {
|
||||
opj_free(l_current_data);
|
||||
l_current_data = NULL;
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory to decode tile %d/%d\n",
|
||||
l_current_tile_no + 1, p_j2k->m_cp.th * p_j2k->m_cp.tw);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_current_data = l_new_current_data;
|
||||
l_max_data_size = l_data_size;
|
||||
}
|
||||
|
||||
if (! opj_j2k_decode_tile(p_j2k, l_current_tile_no, l_current_data, l_data_size,
|
||||
if (! opj_j2k_decode_tile(p_j2k, l_current_tile_no, NULL, 0,
|
||||
p_stream, p_manager)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
opj_event_msg(p_manager, EVT_INFO, "Tile %d/%d has been decoded.\n",
|
||||
l_current_tile_no + 1, p_j2k->m_cp.th * p_j2k->m_cp.tw);
|
||||
|
||||
if (! opj_j2k_update_image_data(p_j2k->m_tcd, l_current_data,
|
||||
if (! opj_j2k_update_image_data(p_j2k->m_tcd,
|
||||
p_j2k->m_output_image)) {
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
opj_j2k_tcp_data_destroy(&p_j2k->m_cp.tcps[l_current_tile_no]);
|
||||
|
||||
opj_event_msg(p_manager, EVT_INFO,
|
||||
"Image data has been updated with tile %d.\n\n", l_current_tile_no + 1);
|
||||
|
||||
|
@ -10806,7 +10675,6 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
if (!(opj_stream_read_seek(p_stream, p_j2k->cstr_index->main_head_end + 2,
|
||||
p_manager))) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Problem with seek function\n");
|
||||
opj_free(l_current_data);
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
break;
|
||||
|
@ -10818,8 +10686,6 @@ static OPJ_BOOL opj_j2k_decode_one_tile(opj_j2k_t *p_j2k,
|
|||
|
||||
}
|
||||
|
||||
opj_free(l_current_data);
|
||||
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
|
|
|
@ -216,6 +216,8 @@ static INLINE long opj_lrintf(float f)
|
|||
/* Type to use for bit-fields in internal headers */
|
||||
typedef unsigned int OPJ_BITFIELD;
|
||||
|
||||
#define OPJ_UNUSED(x) (void)x
|
||||
|
||||
#include "opj_inttypes.h"
|
||||
#include "opj_clock.h"
|
||||
#include "opj_malloc.h"
|
||||
|
@ -243,6 +245,7 @@ typedef unsigned int OPJ_BITFIELD;
|
|||
#include "t2.h"
|
||||
#include "mct.h"
|
||||
#include "opj_intmath.h"
|
||||
#include "sparse_array.h"
|
||||
|
||||
#ifdef USE_JPIP
|
||||
#include "cidx_manager.h"
|
||||
|
|
|
@ -0,0 +1,233 @@
|
|||
/*
|
||||
* The copyright in this software is being made available under the 2-clauses
|
||||
* BSD License, included below. This software may be subject to other third
|
||||
* party and contributor rights, including patent rights, and no such rights
|
||||
* are granted under this license.
|
||||
*
|
||||
* Copyright (c) 2017, IntoPix SA <contact@intopix.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "opj_includes.h"
|
||||
|
||||
|
||||
struct opj_sparse_array_int32 {
|
||||
OPJ_UINT32 width;
|
||||
OPJ_UINT32 height;
|
||||
OPJ_UINT32 block_width;
|
||||
OPJ_UINT32 block_height;
|
||||
OPJ_UINT32 block_count_hor;
|
||||
OPJ_UINT32 block_count_ver;
|
||||
OPJ_INT32** data_blocks;
|
||||
};
|
||||
|
||||
opj_sparse_array_int32_t* opj_sparse_array_int32_create(OPJ_UINT32 width,
|
||||
OPJ_UINT32 height,
|
||||
OPJ_UINT32 block_width,
|
||||
OPJ_UINT32 block_height)
|
||||
{
|
||||
opj_sparse_array_int32_t* sa;
|
||||
|
||||
if (width == 0 || height == 0 || block_width == 0 || block_height == 0) {
|
||||
return NULL;
|
||||
}
|
||||
if (block_width > ((OPJ_UINT32)~0U) / block_height / sizeof(OPJ_INT32)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
sa = opj_calloc(1, sizeof(opj_sparse_array_int32_t));
|
||||
sa->width = width;
|
||||
sa->height = height;
|
||||
sa->block_width = block_width;
|
||||
sa->block_height = block_height;
|
||||
sa->block_count_hor = opj_uint_ceildiv(width, block_width);
|
||||
sa->block_count_ver = opj_uint_ceildiv(height, block_height);
|
||||
if (sa->block_count_hor > ((OPJ_UINT32)~0U) / sa->block_count_ver) {
|
||||
opj_free(sa);
|
||||
return NULL;
|
||||
}
|
||||
sa->data_blocks = opj_calloc(sizeof(OPJ_INT32*),
|
||||
sa->block_count_hor * sa->block_count_ver);
|
||||
if (sa->data_blocks == NULL) {
|
||||
opj_free(sa);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return sa;
|
||||
}
|
||||
|
||||
void opj_sparse_array_int32_free(opj_sparse_array_int32_t* sa)
|
||||
{
|
||||
if (sa) {
|
||||
OPJ_UINT32 i;
|
||||
for (i = 0; i < sa->block_count_hor * sa->block_count_ver; i++) {
|
||||
if (sa->data_blocks[i]) {
|
||||
opj_free(sa->data_blocks[i]);
|
||||
}
|
||||
}
|
||||
opj_free(sa->data_blocks);
|
||||
opj_free(sa);
|
||||
}
|
||||
}
|
||||
|
||||
OPJ_BOOL opj_sparse_array_is_region_valid(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1)
|
||||
{
|
||||
return !(x0 >= sa->width || x1 <= x0 || x1 > sa->width ||
|
||||
y0 >= sa->height || y1 <= y0 || y1 > sa->height);
|
||||
}
|
||||
|
||||
static OPJ_BOOL opj_sparse_array_int32_read_or_write(
|
||||
opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1,
|
||||
OPJ_INT32* buf,
|
||||
OPJ_UINT32 buf_col_stride,
|
||||
OPJ_UINT32 buf_line_stride,
|
||||
OPJ_BOOL forgiving,
|
||||
OPJ_BOOL is_read_op)
|
||||
{
|
||||
OPJ_UINT32 y, block_y;
|
||||
OPJ_UINT32 y_incr = 0;
|
||||
if (!opj_sparse_array_is_region_valid(sa, x0, y0, x1, y1)) {
|
||||
return forgiving;
|
||||
}
|
||||
|
||||
block_y = y0 / sa->block_height;
|
||||
for (y = y0; y < y1; block_y ++, y += y_incr) {
|
||||
OPJ_UINT32 x, block_x;
|
||||
OPJ_UINT32 x_incr = 0;
|
||||
OPJ_UINT32 block_y_offset;
|
||||
y_incr = (y == y0) ? sa->block_height - (y0 % sa->block_height) :
|
||||
sa->block_height;
|
||||
block_y_offset = sa->block_height - y_incr;
|
||||
y_incr = opj_uint_min(y_incr, y1 - y);
|
||||
block_x = x0 / sa->block_width;
|
||||
for (x = x0; x < x1; block_x ++, x += x_incr) {
|
||||
OPJ_UINT32 j;
|
||||
OPJ_UINT32 block_x_offset;
|
||||
OPJ_INT32* src_block;
|
||||
x_incr = (x == x0) ? sa->block_width - (x0 % sa->block_width) : sa->block_width;
|
||||
block_x_offset = sa->block_width - x_incr;
|
||||
x_incr = opj_uint_min(x_incr, x1 - x);
|
||||
src_block = sa->data_blocks[block_y * sa->block_count_hor + block_x];
|
||||
if (is_read_op) {
|
||||
if (src_block == NULL) {
|
||||
for (j = 0; j < y_incr; j++) {
|
||||
if (buf_col_stride == 1) {
|
||||
memset(buf + (y - y0 + j) * buf_line_stride + (x - x0) * buf_col_stride,
|
||||
0,
|
||||
sizeof(OPJ_INT32) * x_incr);
|
||||
} else {
|
||||
OPJ_UINT32 k;
|
||||
for (k = 0; k < x_incr; k++) {
|
||||
*(buf + (y - y0 + j) * buf_line_stride + (x - x0 + k) * buf_col_stride) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (j = 0; j < y_incr; j++) {
|
||||
if (buf_col_stride == 1) {
|
||||
memcpy(buf + (y - y0 + j) * buf_line_stride + (x - x0) * buf_col_stride,
|
||||
src_block + (block_y_offset + j) * sa->block_width + block_x_offset,
|
||||
sizeof(OPJ_INT32) * x_incr);
|
||||
} else {
|
||||
OPJ_UINT32 k;
|
||||
for (k = 0; k < x_incr; k++) {
|
||||
*(buf + (y - y0 + j) * buf_line_stride + (x - x0 + k) * buf_col_stride) =
|
||||
*(src_block + (block_y_offset + j) * sa->block_width + block_x_offset + k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (src_block == NULL) {
|
||||
src_block = opj_calloc(1,
|
||||
sa->block_width * sa->block_height * sizeof(OPJ_INT32));
|
||||
if (src_block == NULL) {
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
sa->data_blocks[block_y * sa->block_count_hor + block_x] = src_block;
|
||||
}
|
||||
|
||||
for (j = 0; j < y_incr; j++) {
|
||||
if (buf_col_stride == 1) {
|
||||
memcpy(src_block + (block_y_offset + j) * sa->block_width + block_x_offset,
|
||||
buf + (y - y0 + j) * buf_line_stride + (x - x0) * buf_col_stride,
|
||||
sizeof(OPJ_INT32) * x_incr);
|
||||
} else {
|
||||
OPJ_UINT32 k;
|
||||
for (k = 0; k < x_incr; k++) {
|
||||
*(src_block + (block_y_offset + j) * sa->block_width + block_x_offset + k) =
|
||||
*(buf + (y - y0 + j) * buf_line_stride + (x - x0 + k) * buf_col_stride);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
OPJ_BOOL opj_sparse_array_int32_read(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1,
|
||||
OPJ_INT32* dest,
|
||||
OPJ_UINT32 dest_col_stride,
|
||||
OPJ_UINT32 dest_line_stride,
|
||||
OPJ_BOOL forgiving)
|
||||
{
|
||||
return opj_sparse_array_int32_read_or_write(sa, x0, y0, x1, y1,
|
||||
dest,
|
||||
dest_col_stride,
|
||||
dest_line_stride,
|
||||
forgiving,
|
||||
OPJ_TRUE);
|
||||
}
|
||||
|
||||
OPJ_BOOL opj_sparse_array_int32_write(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1,
|
||||
const OPJ_INT32* src,
|
||||
OPJ_UINT32 src_col_stride,
|
||||
OPJ_UINT32 src_line_stride,
|
||||
OPJ_BOOL forgiving)
|
||||
{
|
||||
return opj_sparse_array_int32_read_or_write(sa, x0, y0, x1, y1,
|
||||
(OPJ_INT32*)src,
|
||||
src_col_stride,
|
||||
src_line_stride,
|
||||
forgiving,
|
||||
OPJ_FALSE);
|
||||
}
|
|
@ -0,0 +1,141 @@
|
|||
/*
|
||||
* The copyright in this software is being made available under the 2-clauses
|
||||
* BSD License, included below. This software may be subject to other third
|
||||
* party and contributor rights, including patent rights, and no such rights
|
||||
* are granted under this license.
|
||||
*
|
||||
* Copyright (c) 2017, IntoPix SA <contact@intopix.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "opj_includes.h"
|
||||
|
||||
#ifndef OPJ_SPARSE_ARRAY_H
|
||||
#define OPJ_SPARSE_ARRAY_H
|
||||
/**
|
||||
@file sparse_array.h
|
||||
@brief Sparse array management
|
||||
|
||||
The functions in this file manage sparse arrays. Sparse arrays are arrays with
|
||||
potential big dimensions, but with very few samples actually set. Such sparse
|
||||
arrays require allocating a low amount of memory, by just allocating memory
|
||||
for blocks of the array that are set. The minimum memory allocation unit is a
|
||||
a block. There is a trade-off to pick up an appropriate dimension for blocks.
|
||||
If it is too big, and pixels set are far from each other, too much memory will
|
||||
be used. If blocks are too small, the book-keeping costs of blocks will raise.
|
||||
*/
|
||||
|
||||
/** @defgroup SPARSE_ARRAY SPARSE ARRAYS - Sparse arrays */
|
||||
/*@{*/
|
||||
|
||||
/** Opaque type for sparse arrays that contain int32 values */
|
||||
typedef struct opj_sparse_array_int32 opj_sparse_array_int32_t;
|
||||
|
||||
/** Creates a new sparse array.
|
||||
* @param width total width of the array.
|
||||
* @param height total height of the array
|
||||
* @param block_width width of a block.
|
||||
* @param block_height height of a block.
|
||||
* @return a new sparse array instance, or NULL in case of failure.
|
||||
*/
|
||||
opj_sparse_array_int32_t* opj_sparse_array_int32_create(OPJ_UINT32 width,
|
||||
OPJ_UINT32 height,
|
||||
OPJ_UINT32 block_width,
|
||||
OPJ_UINT32 block_height);
|
||||
|
||||
/** Frees a sparse array.
|
||||
* @param sa sparse array instance.
|
||||
*/
|
||||
void opj_sparse_array_int32_free(opj_sparse_array_int32_t* sa);
|
||||
|
||||
/** Returns whether region bounds are valid (non empty and within array bounds)
|
||||
* @param sa sparse array instance.
|
||||
* @param x0 left x coordinate of the region.
|
||||
* @param y0 top x coordinate of the region.
|
||||
* @param x1 right x coordinate (not included) of the region. Must be greater than x0.
|
||||
* @param y1 bottom y coordinate (not included) of the region. Must be greater than y0.
|
||||
* @return OPJ_TRUE or OPJ_FALSE.
|
||||
*/
|
||||
OPJ_BOOL opj_sparse_array_is_region_valid(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1);
|
||||
|
||||
/** Read the content of a rectangular region of the sparse array into a
|
||||
* user buffer.
|
||||
*
|
||||
* Regions not written with opj_sparse_array_int32_write() are read as 0.
|
||||
*
|
||||
* @param sa sparse array instance.
|
||||
* @param x0 left x coordinate of the region to read in the sparse array.
|
||||
* @param y0 top x coordinate of the region to read in the sparse array.
|
||||
* @param x1 right x coordinate (not included) of the region to read in the sparse array. Must be greater than x0.
|
||||
* @param y1 bottom y coordinate (not included) of the region to read in the sparse array. Must be greater than y0.
|
||||
* @param dest user buffer to fill. Must be at least sizeof(int32) * ( (y1 - y0 - 1) * dest_line_stride + (x1 - x0 - 1) * dest_col_stride + 1) bytes large.
|
||||
* @param dest_col_stride spacing (in elements, not in bytes) in x dimension between consecutive elements of the user buffer.
|
||||
* @param dest_line_stride spacing (in elements, not in bytes) in y dimension between consecutive elements of the user buffer.
|
||||
* @param forgiving if set to TRUE and the region is invalid, OPJ_TRUE will still be returned.
|
||||
* @return OPJ_TRUE in case of success.
|
||||
*/
|
||||
OPJ_BOOL opj_sparse_array_int32_read(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1,
|
||||
OPJ_INT32* dest,
|
||||
OPJ_UINT32 dest_col_stride,
|
||||
OPJ_UINT32 dest_line_stride,
|
||||
OPJ_BOOL forgiving);
|
||||
|
||||
|
||||
/** Write the content of a rectangular region into the sparse array from a
|
||||
* user buffer.
|
||||
*
|
||||
* Blocks intersecting the region are allocated, if not already done.
|
||||
*
|
||||
* @param sa sparse array instance.
|
||||
* @param x0 left x coordinate of the region to write into the sparse array.
|
||||
* @param y0 top x coordinate of the region to write into the sparse array.
|
||||
* @param x1 right x coordinate (not included) of the region to write into the sparse array. Must be greater than x0.
|
||||
* @param y1 bottom y coordinate (not included) of the region to write into the sparse array. Must be greater than y0.
|
||||
* @param src user buffer to fill. Must be at least sizeof(int32) * ( (y1 - y0 - 1) * src_line_stride + (x1 - x0 - 1) * src_col_stride + 1) bytes large.
|
||||
* @param src_col_stride spacing (in elements, not in bytes) in x dimension between consecutive elements of the user buffer.
|
||||
* @param src_line_stride spacing (in elements, not in bytes) in y dimension between consecutive elements of the user buffer.
|
||||
* @param forgiving if set to TRUE and the region is invalid, OPJ_TRUE will still be returned.
|
||||
* @return OPJ_TRUE in case of success.
|
||||
*/
|
||||
OPJ_BOOL opj_sparse_array_int32_write(opj_sparse_array_int32_t* sa,
|
||||
OPJ_UINT32 x0,
|
||||
OPJ_UINT32 y0,
|
||||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1,
|
||||
const OPJ_INT32* src,
|
||||
OPJ_UINT32 src_col_stride,
|
||||
OPJ_UINT32 src_line_stride,
|
||||
OPJ_BOOL forgiving);
|
||||
|
||||
/*@}*/
|
||||
|
||||
#endif /* OPJ_SPARSE_ARRAY_H */
|
|
@ -1601,7 +1601,9 @@ static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls)
|
|||
band = job->band;
|
||||
tilec = job->tilec;
|
||||
tccp = job->tccp;
|
||||
tile_w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
tile_w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - 1].x1
|
||||
-
|
||||
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
|
||||
|
||||
if (!*(job->pret)) {
|
||||
opj_free(job);
|
||||
|
@ -1640,7 +1642,7 @@ static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls)
|
|||
y += pres->y1 - pres->y0;
|
||||
}
|
||||
|
||||
datap = t1->data;
|
||||
datap = cblk->decoded_data ? cblk->decoded_data : t1->data;
|
||||
cblk_w = t1->w;
|
||||
cblk_h = t1->h;
|
||||
|
||||
|
@ -1665,7 +1667,35 @@ static void opj_t1_clbl_decode_processor(void* user_data, opj_tls_t* tls)
|
|||
}
|
||||
}
|
||||
}
|
||||
if (tccp->qmfbid == 1) {
|
||||
|
||||
if (cblk->decoded_data) {
|
||||
if (tccp->qmfbid == 1) {
|
||||
for (j = 0; j < cblk_h; ++j) {
|
||||
i = 0;
|
||||
for (; i < (cblk_w & ~(OPJ_UINT32)3U); i += 4U) {
|
||||
OPJ_INT32 tmp0 = datap[(j * cblk_w) + i + 0U];
|
||||
OPJ_INT32 tmp1 = datap[(j * cblk_w) + i + 1U];
|
||||
OPJ_INT32 tmp2 = datap[(j * cblk_w) + i + 2U];
|
||||
OPJ_INT32 tmp3 = datap[(j * cblk_w) + i + 3U];
|
||||
datap[(j * cblk_w) + i + 0U] = tmp0 / 2;
|
||||
datap[(j * cblk_w) + i + 1U] = tmp1 / 2;
|
||||
datap[(j * cblk_w) + i + 2U] = tmp2 / 2;
|
||||
datap[(j * cblk_w) + i + 3U] = tmp3 / 2;
|
||||
}
|
||||
for (; i < cblk_w; ++i) {
|
||||
datap[(j * cblk_w) + i] /= 2;
|
||||
}
|
||||
}
|
||||
} else { /* if (tccp->qmfbid == 0) */
|
||||
for (j = 0; j < cblk_h; ++j) {
|
||||
for (i = 0; i < cblk_w; ++i) {
|
||||
OPJ_FLOAT32 tmp = ((OPJ_FLOAT32)(*datap)) * band->stepsize;
|
||||
memcpy(datap, &tmp, sizeof(tmp));
|
||||
datap++;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (tccp->qmfbid == 1) {
|
||||
OPJ_INT32* OPJ_RESTRICT tiledp = &tilec->data[(OPJ_UINT32)y * tile_w +
|
||||
(OPJ_UINT32)x];
|
||||
for (j = 0; j < cblk_h; ++j) {
|
||||
|
@ -1724,7 +1754,6 @@ void opj_t1_decode_cblks(opj_tcd_t* tcd,
|
|||
|
||||
for (precno = 0; precno < res->pw * res->ph; ++precno) {
|
||||
opj_tcd_precinct_t* precinct = &band->precincts[precno];
|
||||
OPJ_BOOL skip_precinct = OPJ_FALSE;
|
||||
|
||||
if (!opj_tcd_is_subband_area_of_interest(tcd,
|
||||
tilec->compno,
|
||||
|
@ -1734,51 +1763,46 @@ void opj_t1_decode_cblks(opj_tcd_t* tcd,
|
|||
(OPJ_UINT32)precinct->y0,
|
||||
(OPJ_UINT32)precinct->x1,
|
||||
(OPJ_UINT32)precinct->y1)) {
|
||||
skip_precinct = OPJ_TRUE;
|
||||
/* TODO: do a continue here once the below 0 initialization */
|
||||
/* of tiledp is removed */
|
||||
continue;
|
||||
}
|
||||
|
||||
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
|
||||
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
|
||||
opj_t1_cblk_decode_processing_job_t* job;
|
||||
|
||||
if (skip_precinct ||
|
||||
!opj_tcd_is_subband_area_of_interest(tcd,
|
||||
tilec->compno,
|
||||
resno,
|
||||
band->bandno,
|
||||
(OPJ_UINT32)cblk->x0,
|
||||
(OPJ_UINT32)cblk->y0,
|
||||
(OPJ_UINT32)cblk->x1,
|
||||
(OPJ_UINT32)cblk->y1)) {
|
||||
assert(cblk->decoded_data == NULL);
|
||||
|
||||
/* TODO: remove this once we don't iterate over */
|
||||
/* tile pixels that are not in the subwindow of interest */
|
||||
OPJ_UINT32 j;
|
||||
OPJ_INT32 x = cblk->x0 - band->x0;
|
||||
OPJ_INT32 y = cblk->y0 - band->y0;
|
||||
OPJ_INT32* OPJ_RESTRICT tiledp;
|
||||
OPJ_UINT32 tile_w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
|
||||
if (!opj_tcd_is_subband_area_of_interest(tcd,
|
||||
tilec->compno,
|
||||
resno,
|
||||
band->bandno,
|
||||
(OPJ_UINT32)cblk->x0,
|
||||
(OPJ_UINT32)cblk->y0,
|
||||
(OPJ_UINT32)cblk->x1,
|
||||
(OPJ_UINT32)cblk->y1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!tcd->whole_tile_decoding) {
|
||||
OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
|
||||
OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
|
||||
|
||||
if (band->bandno & 1) {
|
||||
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
||||
x += pres->x1 - pres->x0;
|
||||
if (cblk_w == 0 || cblk_h == 0) {
|
||||
continue;
|
||||
}
|
||||
if (band->bandno & 2) {
|
||||
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
||||
y += pres->y1 - pres->y0;
|
||||
/* Zero-init required */
|
||||
cblk->decoded_data = opj_calloc(1, cblk_w * cblk_h * sizeof(OPJ_INT32));
|
||||
if (cblk->decoded_data == NULL) {
|
||||
if (p_manager_mutex) {
|
||||
opj_mutex_lock(p_manager_mutex);
|
||||
}
|
||||
opj_event_msg(p_manager, EVT_ERROR,
|
||||
"Cannot allocate cblk->decoded_data\n");
|
||||
if (p_manager_mutex) {
|
||||
opj_mutex_unlock(p_manager_mutex);
|
||||
}
|
||||
*pret = OPJ_FALSE;
|
||||
return;
|
||||
}
|
||||
|
||||
tiledp = &tilec->data[(OPJ_UINT32)y * tile_w +
|
||||
(OPJ_UINT32)x];
|
||||
|
||||
for (j = 0; j < cblk_h; ++j) {
|
||||
memset(tiledp + j * tile_w, 0, cblk_w * sizeof(OPJ_INT32));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
job = (opj_t1_cblk_decode_processing_job_t*) opj_calloc(1,
|
||||
|
@ -1827,6 +1851,7 @@ static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
|
|||
OPJ_BYTE* cblkdata = NULL;
|
||||
OPJ_UINT32 cblkdataindex = 0;
|
||||
OPJ_BYTE type = T1_TYPE_MQ; /* BYPASS mode */
|
||||
OPJ_INT32* original_t1_data = NULL;
|
||||
|
||||
mqc->lut_ctxno_zc_orient = lut_ctxno_zc + (orient << 9);
|
||||
|
||||
|
@ -1893,6 +1918,13 @@ static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
|
|||
cblkdata = cblk->chunks[0].data;
|
||||
}
|
||||
|
||||
/* For subtile decoding, directly decode in the decoded_data buffer of */
|
||||
/* the code-block. Hack t1->data to point to it, and restore it later */
|
||||
if (cblk->decoded_data) {
|
||||
original_t1_data = t1->data;
|
||||
t1->data = cblk->decoded_data;
|
||||
}
|
||||
|
||||
for (segno = 0; segno < cblk->real_num_segs; ++segno) {
|
||||
opj_tcd_seg_t *seg = &cblk->segs[segno];
|
||||
|
||||
|
@ -1972,6 +2004,11 @@ static OPJ_BOOL opj_t1_decode_cblk(opj_t1_t *t1,
|
|||
}
|
||||
}
|
||||
|
||||
/* Restore original t1->data is needed */
|
||||
if (cblk->decoded_data) {
|
||||
t1->data = original_t1_data;
|
||||
}
|
||||
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
|
|
|
@ -190,6 +190,10 @@ static OPJ_BOOL opj_tcd_rate_allocate_encode(opj_tcd_t *p_tcd,
|
|||
opj_codestream_info_t *p_cstr_info,
|
||||
opj_event_mgr_t *p_manager);
|
||||
|
||||
|
||||
static OPJ_BOOL opj_tcd_is_whole_tilecomp_decoding(opj_tcd_t *tcd,
|
||||
OPJ_UINT32 compno);
|
||||
|
||||
/* ----------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
|
@ -679,7 +683,7 @@ OPJ_BOOL opj_alloc_tile_component_data(opj_tcd_tilecomp_t *l_tilec)
|
|||
((l_tilec->data_size_needed > l_tilec->data_size) &&
|
||||
(l_tilec->ownsData == OPJ_FALSE))) {
|
||||
l_tilec->data = (OPJ_INT32 *) opj_image_data_alloc(l_tilec->data_size_needed);
|
||||
if (! l_tilec->data) {
|
||||
if (!l_tilec->data && l_tilec->data_size_needed != 0) {
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
/*fprintf(stderr, "tAllocate data of tilec (int): %d x OPJ_UINT32n",l_data_size);*/
|
||||
|
@ -794,22 +798,6 @@ static INLINE OPJ_BOOL opj_tcd_init_tile(opj_tcd_t *p_tcd, OPJ_UINT32 p_tile_no,
|
|||
l_tilec->compno = compno;
|
||||
/*fprintf(stderr, "\tTile compo border = %d,%d,%d,%d\n", l_tilec->x0, l_tilec->y0,l_tilec->x1,l_tilec->y1);*/
|
||||
|
||||
/* compute l_data_size with overflow check */
|
||||
l_data_size = (OPJ_UINT32)(l_tilec->x1 - l_tilec->x0);
|
||||
/* issue 733, l_data_size == 0U, probably something wrong should be checked before getting here */
|
||||
if ((l_data_size > 0U) &&
|
||||
((((OPJ_UINT32) - 1) / l_data_size) < (OPJ_UINT32)(l_tilec->y1 -
|
||||
l_tilec->y0))) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = l_data_size * (OPJ_UINT32)(l_tilec->y1 - l_tilec->y0);
|
||||
|
||||
if ((((OPJ_UINT32) - 1) / (OPJ_UINT32)sizeof(OPJ_UINT32)) < l_data_size) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = l_data_size * (OPJ_UINT32)sizeof(OPJ_UINT32);
|
||||
l_tilec->numresolutions = l_tccp->numresolutions;
|
||||
if (l_tccp->numresolutions < l_cp->m_specific_param.m_dec.m_reduce) {
|
||||
l_tilec->minimum_num_resolutions = 1;
|
||||
|
@ -818,15 +806,37 @@ static INLINE OPJ_BOOL opj_tcd_init_tile(opj_tcd_t *p_tcd, OPJ_UINT32 p_tile_no,
|
|||
l_cp->m_specific_param.m_dec.m_reduce;
|
||||
}
|
||||
|
||||
l_tilec->data_size_needed = l_data_size;
|
||||
if (p_tcd->m_is_decoder && !opj_alloc_tile_component_data(l_tilec)) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
if (isEncoder) {
|
||||
/* compute l_data_size with overflow check */
|
||||
l_data_size = (OPJ_UINT32)(l_tilec->x1 - l_tilec->x0);
|
||||
/* issue 733, l_data_size == 0U, probably something wrong should be checked before getting here */
|
||||
if ((l_data_size > 0U) &&
|
||||
((((OPJ_UINT32) - 1) / l_data_size) < (OPJ_UINT32)(l_tilec->y1 -
|
||||
l_tilec->y0))) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = l_data_size * (OPJ_UINT32)(l_tilec->y1 - l_tilec->y0);
|
||||
|
||||
if ((((OPJ_UINT32) - 1) / (OPJ_UINT32)sizeof(OPJ_UINT32)) < l_data_size) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = l_data_size * (OPJ_UINT32)sizeof(OPJ_UINT32);
|
||||
|
||||
l_tilec->data_size_needed = l_data_size;
|
||||
}
|
||||
|
||||
l_data_size = l_tilec->numresolutions * (OPJ_UINT32)sizeof(
|
||||
opj_tcd_resolution_t);
|
||||
|
||||
opj_aligned_free(l_tilec->data_win);
|
||||
l_tilec->data_win = NULL;
|
||||
l_tilec->win_x0 = 0;
|
||||
l_tilec->win_y0 = 0;
|
||||
l_tilec->win_x1 = 0;
|
||||
l_tilec->win_y1 = 0;
|
||||
|
||||
if (l_tilec->resolutions == 00) {
|
||||
l_tilec->resolutions = (opj_tcd_resolution_t *) opj_malloc(l_data_size);
|
||||
if (! l_tilec->resolutions) {
|
||||
|
@ -875,6 +885,28 @@ static INLINE OPJ_BOOL opj_tcd_init_tile(opj_tcd_t *p_tcd, OPJ_UINT32 p_tile_no,
|
|||
l_res->y0 = opj_int_ceildivpow2(l_tilec->y0, (OPJ_INT32)l_level_no);
|
||||
l_res->x1 = opj_int_ceildivpow2(l_tilec->x1, (OPJ_INT32)l_level_no);
|
||||
l_res->y1 = opj_int_ceildivpow2(l_tilec->y1, (OPJ_INT32)l_level_no);
|
||||
|
||||
if (!isEncoder && resno + 1 == l_tilec->minimum_num_resolutions) {
|
||||
/* compute l_data_size with overflow check */
|
||||
OPJ_UINT32 res_w = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
OPJ_UINT32 res_h = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
|
||||
/* issue 733, l_data_size == 0U, probably something wrong should be checked before getting here */
|
||||
if (res_h > 0 && res_h > (((OPJ_UINT32) - 1) / res_h)) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = res_w * res_h;
|
||||
|
||||
if ((((OPJ_UINT32) - 1) / (OPJ_UINT32)sizeof(OPJ_UINT32)) < l_data_size) {
|
||||
opj_event_msg(manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size *= (OPJ_UINT32)sizeof(OPJ_UINT32);
|
||||
|
||||
l_tilec->data_size_needed = l_data_size;
|
||||
}
|
||||
|
||||
/*fprintf(stderr, "\t\t\tres_x0= %d, res_y0 =%d, res_x1=%d, res_y1=%d\n", l_res->x0, l_res->y0, l_res->x1, l_res->y1);*/
|
||||
/* p. 35, table A-23, ISO/IEC FDIS154444-1 : 2000 (18 august 2000) */
|
||||
l_pdx = l_tccp->prcw[resno];
|
||||
|
@ -1249,6 +1281,9 @@ static OPJ_BOOL opj_tcd_code_block_dec_allocate(opj_tcd_cblk_dec_t *
|
|||
OPJ_UINT32 l_numchunksalloc = p_code_block->numchunksalloc;
|
||||
OPJ_UINT32 i;
|
||||
|
||||
opj_free(p_code_block->decoded_data);
|
||||
p_code_block->decoded_data = 00;
|
||||
|
||||
memset(p_code_block, 0, sizeof(opj_tcd_cblk_dec_t));
|
||||
p_code_block->segs = l_segs;
|
||||
p_code_block->m_current_max_segs = l_current_max_segs;
|
||||
|
@ -1262,7 +1297,8 @@ static OPJ_BOOL opj_tcd_code_block_dec_allocate(opj_tcd_cblk_dec_t *
|
|||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
OPJ_UINT32 opj_tcd_get_decoded_tile_size(opj_tcd_t *p_tcd)
|
||||
OPJ_UINT32 opj_tcd_get_decoded_tile_size(opj_tcd_t *p_tcd,
|
||||
OPJ_BOOL take_into_account_partial_decoding)
|
||||
{
|
||||
OPJ_UINT32 i;
|
||||
OPJ_UINT32 l_data_size = 0;
|
||||
|
@ -1288,8 +1324,13 @@ OPJ_UINT32 opj_tcd_get_decoded_tile_size(opj_tcd_t *p_tcd)
|
|||
}
|
||||
|
||||
l_res = l_tile_comp->resolutions + l_tile_comp->minimum_num_resolutions - 1;
|
||||
l_temp = (OPJ_UINT32)((l_res->x1 - l_res->x0) * (l_res->y1 -
|
||||
l_res->y0)); /* x1*y1 can't overflow */
|
||||
if (take_into_account_partial_decoding && !p_tcd->whole_tile_decoding) {
|
||||
l_temp = (l_res->win_x1 - l_res->win_x0) *
|
||||
(l_res->win_y1 - l_res->win_y0);
|
||||
} else {
|
||||
l_temp = (OPJ_UINT32)((l_res->x1 - l_res->x0) * (l_res->y1 -
|
||||
l_res->y0)); /* x1*y1 can't overflow */
|
||||
}
|
||||
if (l_size_comp && UINT_MAX / l_size_comp < l_temp) {
|
||||
return UINT_MAX;
|
||||
}
|
||||
|
@ -1401,10 +1442,10 @@ OPJ_BOOL opj_tcd_encode_tile(opj_tcd_t *p_tcd,
|
|||
}
|
||||
|
||||
OPJ_BOOL opj_tcd_decode_tile(opj_tcd_t *p_tcd,
|
||||
OPJ_UINT32 decoded_x0,
|
||||
OPJ_UINT32 decoded_y0,
|
||||
OPJ_UINT32 decoded_x1,
|
||||
OPJ_UINT32 decoded_y1,
|
||||
OPJ_UINT32 win_x0,
|
||||
OPJ_UINT32 win_y0,
|
||||
OPJ_UINT32 win_x1,
|
||||
OPJ_UINT32 win_y1,
|
||||
OPJ_BYTE *p_src,
|
||||
OPJ_UINT32 p_max_length,
|
||||
OPJ_UINT32 p_tile_no,
|
||||
|
@ -1413,12 +1454,66 @@ OPJ_BOOL opj_tcd_decode_tile(opj_tcd_t *p_tcd,
|
|||
)
|
||||
{
|
||||
OPJ_UINT32 l_data_read;
|
||||
OPJ_UINT32 compno;
|
||||
|
||||
p_tcd->tcd_tileno = p_tile_no;
|
||||
p_tcd->tcp = &(p_tcd->cp->tcps[p_tile_no]);
|
||||
p_tcd->decoded_x0 = decoded_x0;
|
||||
p_tcd->decoded_y0 = decoded_y0;
|
||||
p_tcd->decoded_x1 = decoded_x1;
|
||||
p_tcd->decoded_y1 = decoded_y1;
|
||||
p_tcd->win_x0 = win_x0;
|
||||
p_tcd->win_y0 = win_y0;
|
||||
p_tcd->win_x1 = win_x1;
|
||||
p_tcd->win_y1 = win_y1;
|
||||
p_tcd->whole_tile_decoding = OPJ_TRUE;
|
||||
|
||||
for (compno = 0; compno < p_tcd->image->numcomps; compno++) {
|
||||
if (!opj_tcd_is_whole_tilecomp_decoding(p_tcd, compno)) {
|
||||
p_tcd->whole_tile_decoding = OPJ_FALSE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
for (compno = 0; compno < p_tcd->image->numcomps; compno++) {
|
||||
if (!opj_alloc_tile_component_data(&(p_tcd->tcd_image->tiles->comps[compno]))) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Compute restricted tile-component and tile-resolution coordinates */
|
||||
/* of the window of interest, but defer the memory allocation until */
|
||||
/* we know the resno_decoded */
|
||||
for (compno = 0; compno < p_tcd->image->numcomps; compno++) {
|
||||
OPJ_UINT32 resno;
|
||||
opj_tcd_tilecomp_t* tilec = &(p_tcd->tcd_image->tiles->comps[compno]);
|
||||
opj_image_comp_t* image_comp = &(p_tcd->image->comps[compno]);
|
||||
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
||||
/* with the tile coordinates */
|
||||
tilec->win_x0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(p_tcd->win_x0, image_comp->dx));
|
||||
tilec->win_y0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(p_tcd->win_y0, image_comp->dy));
|
||||
tilec->win_x1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(p_tcd->win_x1, image_comp->dx));
|
||||
tilec->win_y1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(p_tcd->win_y1, image_comp->dy));
|
||||
|
||||
for (resno = 0; resno < tilec->numresolutions; ++resno) {
|
||||
opj_tcd_resolution_t *res = tilec->resolutions + resno;
|
||||
res->win_x0 = opj_uint_ceildivpow2(tilec->win_x0,
|
||||
tilec->numresolutions - 1 - resno);
|
||||
res->win_y0 = opj_uint_ceildivpow2(tilec->win_y0,
|
||||
tilec->numresolutions - 1 - resno);
|
||||
res->win_x1 = opj_uint_ceildivpow2(tilec->win_x1,
|
||||
tilec->numresolutions - 1 - resno);
|
||||
res->win_y1 = opj_uint_ceildivpow2(tilec->win_y1,
|
||||
tilec->numresolutions - 1 - resno);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef TODO_MSD /* FIXME */
|
||||
/* INDEX >> */
|
||||
|
@ -1461,6 +1556,42 @@ OPJ_BOOL opj_tcd_decode_tile(opj_tcd_t *p_tcd,
|
|||
}
|
||||
/* FIXME _ProfStop(PGROUP_T1); */
|
||||
|
||||
|
||||
/* For subtile decoding, now we know the resno_decoded, we can allocate */
|
||||
/* the tile data buffer */
|
||||
if (!p_tcd->whole_tile_decoding) {
|
||||
for (compno = 0; compno < p_tcd->image->numcomps; compno++) {
|
||||
opj_tcd_tilecomp_t* tilec = &(p_tcd->tcd_image->tiles->comps[compno]);
|
||||
opj_image_comp_t* image_comp = &(p_tcd->image->comps[compno]);
|
||||
opj_tcd_resolution_t *res = tilec->resolutions + image_comp->resno_decoded;
|
||||
OPJ_UINT32 w = res->win_x1 - res->win_x0;
|
||||
OPJ_UINT32 h = res->win_y1 - res->win_y0;
|
||||
OPJ_UINT32 l_data_size;
|
||||
|
||||
opj_aligned_free(tilec->data_win);
|
||||
tilec->data_win = NULL;
|
||||
|
||||
if (w > 0 && h > 0) {
|
||||
if (w > ((OPJ_UINT32) - 1) / h) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size = w * h;
|
||||
if (l_data_size > ((OPJ_UINT32) - 1) / sizeof(OPJ_INT32)) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
l_data_size *= (OPJ_UINT32)sizeof(OPJ_INT32);
|
||||
|
||||
tilec->data_win = opj_aligned_malloc(l_data_size);
|
||||
if (tilec->data_win == NULL) {
|
||||
opj_event_msg(p_manager, EVT_ERROR, "Not enough memory for tile data\n");
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*----------------DWT---------------------*/
|
||||
|
||||
/* FIXME _ProfStart(PGROUP_DWT); */
|
||||
|
@ -1502,7 +1633,7 @@ OPJ_BOOL opj_tcd_update_tile_data(opj_tcd_t *p_tcd,
|
|||
OPJ_UINT32 l_size_comp, l_remaining;
|
||||
OPJ_UINT32 l_stride, l_width, l_height;
|
||||
|
||||
l_data_size = opj_tcd_get_decoded_tile_size(p_tcd);
|
||||
l_data_size = opj_tcd_get_decoded_tile_size(p_tcd, OPJ_TRUE);
|
||||
if (l_data_size == UINT_MAX || l_data_size > p_dest_length) {
|
||||
return OPJ_FALSE;
|
||||
}
|
||||
|
@ -1511,12 +1642,23 @@ OPJ_BOOL opj_tcd_update_tile_data(opj_tcd_t *p_tcd,
|
|||
l_img_comp = p_tcd->image->comps;
|
||||
|
||||
for (i = 0; i < p_tcd->image->numcomps; ++i) {
|
||||
const OPJ_INT32* l_src_data;
|
||||
l_size_comp = l_img_comp->prec >> 3; /*(/ 8)*/
|
||||
l_remaining = l_img_comp->prec & 7; /* (%8) */
|
||||
l_res = l_tilec->resolutions + l_img_comp->resno_decoded;
|
||||
l_width = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
l_height = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
l_stride = (OPJ_UINT32)(l_tilec->x1 - l_tilec->x0) - l_width;
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
l_width = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
l_height = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
l_stride = (OPJ_UINT32)(l_tilec->resolutions[l_tilec->minimum_num_resolutions -
|
||||
1].x1 -
|
||||
l_tilec->resolutions[l_tilec->minimum_num_resolutions - 1].x0) - l_width;
|
||||
l_src_data = l_tilec->data;
|
||||
} else {
|
||||
l_width = l_res->win_x1 - l_res->win_x0;
|
||||
l_height = l_res->win_y1 - l_res->win_y0;
|
||||
l_stride = 0;
|
||||
l_src_data = l_tilec->data_win;
|
||||
}
|
||||
|
||||
if (l_remaining) {
|
||||
++l_size_comp;
|
||||
|
@ -1529,7 +1671,7 @@ OPJ_BOOL opj_tcd_update_tile_data(opj_tcd_t *p_tcd,
|
|||
switch (l_size_comp) {
|
||||
case 1: {
|
||||
OPJ_CHAR * l_dest_ptr = (OPJ_CHAR *) p_dest;
|
||||
const OPJ_INT32 * l_src_ptr = l_tilec->data;
|
||||
const OPJ_INT32 * l_src_ptr = l_src_data;
|
||||
|
||||
if (l_img_comp->sgnd) {
|
||||
for (j = 0; j < l_height; ++j) {
|
||||
|
@ -1551,7 +1693,7 @@ OPJ_BOOL opj_tcd_update_tile_data(opj_tcd_t *p_tcd,
|
|||
}
|
||||
break;
|
||||
case 2: {
|
||||
const OPJ_INT32 * l_src_ptr = l_tilec->data;
|
||||
const OPJ_INT32 * l_src_ptr = l_src_data;
|
||||
OPJ_INT16 * l_dest_ptr = (OPJ_INT16 *) p_dest;
|
||||
|
||||
if (l_img_comp->sgnd) {
|
||||
|
@ -1579,7 +1721,7 @@ OPJ_BOOL opj_tcd_update_tile_data(opj_tcd_t *p_tcd,
|
|||
break;
|
||||
case 4: {
|
||||
OPJ_INT32 * l_dest_ptr = (OPJ_INT32 *) p_dest;
|
||||
OPJ_INT32 * l_src_ptr = l_tilec->data;
|
||||
const OPJ_INT32 * l_src_ptr = l_src_data;
|
||||
|
||||
for (j = 0; j < l_height; ++j) {
|
||||
memcpy(l_dest_ptr, l_src_ptr, l_width * sizeof(OPJ_INT32));
|
||||
|
@ -1674,6 +1816,9 @@ static void opj_tcd_free_tile(opj_tcd_t *p_tcd)
|
|||
l_tile_comp->data_size = 0;
|
||||
l_tile_comp->data_size_needed = 0;
|
||||
}
|
||||
|
||||
opj_aligned_free(l_tile_comp->data_win);
|
||||
|
||||
++l_tile_comp;
|
||||
}
|
||||
|
||||
|
@ -1764,18 +1909,6 @@ static OPJ_BOOL opj_tcd_dwt_decode(opj_tcd_t *p_tcd)
|
|||
opj_image_comp_t * l_img_comp = p_tcd->image->comps;
|
||||
|
||||
for (compno = 0; compno < l_tile->numcomps; compno++) {
|
||||
/*
|
||||
if (tcd->cp->reduce != 0) {
|
||||
tcd->image->comps[compno].resno_decoded =
|
||||
tile->comps[compno].numresolutions - tcd->cp->reduce - 1;
|
||||
if (tcd->image->comps[compno].resno_decoded < 0)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
numres2decode = tcd->image->comps[compno].resno_decoded + 1;
|
||||
if(numres2decode > 0){
|
||||
*/
|
||||
|
||||
if (l_tccp->qmfbid == 1) {
|
||||
if (! opj_dwt_decode(p_tcd, l_tile_comp,
|
||||
|
@ -1796,6 +1929,7 @@ static OPJ_BOOL opj_tcd_dwt_decode(opj_tcd_t *p_tcd)
|
|||
|
||||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
static OPJ_BOOL opj_tcd_mct_decode(opj_tcd_t *p_tcd, opj_event_mgr_t *p_manager)
|
||||
{
|
||||
opj_tcd_tile_t * l_tile = p_tcd->tcd_image->tiles;
|
||||
|
@ -1807,17 +1941,40 @@ static OPJ_BOOL opj_tcd_mct_decode(opj_tcd_t *p_tcd, opj_event_mgr_t *p_manager)
|
|||
return OPJ_TRUE;
|
||||
}
|
||||
|
||||
l_samples = (OPJ_UINT32)((l_tile_comp->x1 - l_tile_comp->x0) *
|
||||
(l_tile_comp->y1 - l_tile_comp->y0));
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
/* A bit inefficient: we process more data than needed if */
|
||||
/* resno_decoded < l_tile_comp->minimum_num_resolutions-1, */
|
||||
/* but we would need to take into account a stride then */
|
||||
l_samples = (OPJ_UINT32)((
|
||||
l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].x1 -
|
||||
l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].x0) *
|
||||
(l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].y1 -
|
||||
l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].y0));
|
||||
} else {
|
||||
opj_tcd_resolution_t* l_res;
|
||||
l_res = l_tile_comp->resolutions + p_tcd->image->comps[0].resno_decoded;
|
||||
l_samples = (l_res->win_x1 - l_res->win_x0) *
|
||||
(l_res->win_y1 - l_res->win_y0);
|
||||
}
|
||||
|
||||
if (l_tile->numcomps >= 3) {
|
||||
opj_tcd_resolution_t* res_comp0 = l_tile->comps[0].resolutions +
|
||||
p_tcd->image->comps[0].resno_decoded;
|
||||
opj_tcd_resolution_t* res_comp1 = l_tile->comps[1].resolutions +
|
||||
p_tcd->image->comps[1].resno_decoded;
|
||||
opj_tcd_resolution_t* res_comp2 = l_tile->comps[2].resolutions +
|
||||
p_tcd->image->comps[2].resno_decoded;
|
||||
OPJ_INT32 l_res_samples = (OPJ_INT32)(res_comp0->x1 - res_comp0->x0) *
|
||||
(res_comp0->y1 - res_comp0->y0);
|
||||
/* testcase 1336.pdf.asan.47.376 */
|
||||
if ((l_tile->comps[0].x1 - l_tile->comps[0].x0) * (l_tile->comps[0].y1 -
|
||||
l_tile->comps[0].y0) < (OPJ_INT32)l_samples ||
|
||||
(l_tile->comps[1].x1 - l_tile->comps[1].x0) * (l_tile->comps[1].y1 -
|
||||
l_tile->comps[1].y0) < (OPJ_INT32)l_samples ||
|
||||
(l_tile->comps[2].x1 - l_tile->comps[2].x0) * (l_tile->comps[2].y1 -
|
||||
l_tile->comps[2].y0) < (OPJ_INT32)l_samples) {
|
||||
if (p_tcd->image->comps[0].resno_decoded !=
|
||||
p_tcd->image->comps[1].resno_decoded ||
|
||||
p_tcd->image->comps[0].resno_decoded !=
|
||||
p_tcd->image->comps[2].resno_decoded ||
|
||||
(res_comp1->x1 - res_comp1->x0) * (res_comp1->y1 -
|
||||
res_comp1->y0) != l_res_samples ||
|
||||
(res_comp2->x1 - res_comp2->x0) * (res_comp2->y1 -
|
||||
res_comp2->y0) != l_res_samples) {
|
||||
opj_event_msg(p_manager, EVT_ERROR,
|
||||
"Tiles don't all have the same dimension. Skip the MCT step.\n");
|
||||
return OPJ_FALSE;
|
||||
|
@ -1834,7 +1991,11 @@ static OPJ_BOOL opj_tcd_mct_decode(opj_tcd_t *p_tcd, opj_event_mgr_t *p_manager)
|
|||
}
|
||||
|
||||
for (i = 0; i < l_tile->numcomps; ++i) {
|
||||
l_data[i] = (OPJ_BYTE*) l_tile_comp->data;
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
l_data[i] = (OPJ_BYTE*) l_tile_comp->data;
|
||||
} else {
|
||||
l_data[i] = (OPJ_BYTE*) l_tile_comp->data_win;
|
||||
}
|
||||
++l_tile_comp;
|
||||
}
|
||||
|
||||
|
@ -1855,15 +2016,29 @@ static OPJ_BOOL opj_tcd_mct_decode(opj_tcd_t *p_tcd, opj_event_mgr_t *p_manager)
|
|||
opj_free(l_data);
|
||||
} else {
|
||||
if (l_tcp->tccps->qmfbid == 1) {
|
||||
opj_mct_decode(l_tile->comps[0].data,
|
||||
l_tile->comps[1].data,
|
||||
l_tile->comps[2].data,
|
||||
l_samples);
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
opj_mct_decode(l_tile->comps[0].data,
|
||||
l_tile->comps[1].data,
|
||||
l_tile->comps[2].data,
|
||||
l_samples);
|
||||
} else {
|
||||
opj_mct_decode(l_tile->comps[0].data_win,
|
||||
l_tile->comps[1].data_win,
|
||||
l_tile->comps[2].data_win,
|
||||
l_samples);
|
||||
}
|
||||
} else {
|
||||
opj_mct_decode_real((OPJ_FLOAT32*)l_tile->comps[0].data,
|
||||
(OPJ_FLOAT32*)l_tile->comps[1].data,
|
||||
(OPJ_FLOAT32*)l_tile->comps[2].data,
|
||||
l_samples);
|
||||
if (p_tcd->whole_tile_decoding) {
|
||||
opj_mct_decode_real((OPJ_FLOAT32*)l_tile->comps[0].data,
|
||||
(OPJ_FLOAT32*)l_tile->comps[1].data,
|
||||
(OPJ_FLOAT32*)l_tile->comps[2].data,
|
||||
l_samples);
|
||||
} else {
|
||||
opj_mct_decode_real((OPJ_FLOAT32*)l_tile->comps[0].data_win,
|
||||
(OPJ_FLOAT32*)l_tile->comps[1].data_win,
|
||||
(OPJ_FLOAT32*)l_tile->comps[2].data_win,
|
||||
l_samples);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -1896,12 +2071,24 @@ static OPJ_BOOL opj_tcd_dc_level_shift_decode(opj_tcd_t *p_tcd)
|
|||
|
||||
for (compno = 0; compno < l_tile->numcomps; compno++) {
|
||||
l_res = l_tile_comp->resolutions + l_img_comp->resno_decoded;
|
||||
l_width = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
l_height = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
l_stride = (OPJ_UINT32)(l_tile_comp->x1 - l_tile_comp->x0) - l_width;
|
||||
|
||||
assert(l_height == 0 ||
|
||||
l_width + l_stride <= l_tile_comp->data_size / l_height); /*MUPDF*/
|
||||
if (!p_tcd->whole_tile_decoding) {
|
||||
l_width = l_res->win_x1 - l_res->win_x0;
|
||||
l_height = l_res->win_y1 - l_res->win_y0;
|
||||
l_stride = 0;
|
||||
l_current_ptr = l_tile_comp->data_win;
|
||||
} else {
|
||||
l_width = (OPJ_UINT32)(l_res->x1 - l_res->x0);
|
||||
l_height = (OPJ_UINT32)(l_res->y1 - l_res->y0);
|
||||
l_stride = (OPJ_UINT32)(
|
||||
l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].x1 -
|
||||
l_tile_comp->resolutions[l_tile_comp->minimum_num_resolutions - 1].x0)
|
||||
- l_width;
|
||||
l_current_ptr = l_tile_comp->data;
|
||||
|
||||
assert(l_height == 0 ||
|
||||
l_width + l_stride <= l_tile_comp->data_size / l_height); /*MUPDF*/
|
||||
}
|
||||
|
||||
if (l_img_comp->sgnd) {
|
||||
l_min = -(1 << (l_img_comp->prec - 1));
|
||||
|
@ -1911,7 +2098,6 @@ static OPJ_BOOL opj_tcd_dc_level_shift_decode(opj_tcd_t *p_tcd)
|
|||
l_max = (OPJ_INT32)((1U << l_img_comp->prec) - 1);
|
||||
}
|
||||
|
||||
l_current_ptr = l_tile_comp->data;
|
||||
|
||||
if (l_tccp->qmfbid == 1) {
|
||||
for (j = 0; j < l_height; ++j) {
|
||||
|
@ -1981,6 +2167,9 @@ static void opj_tcd_code_block_dec_deallocate(opj_tcd_precinct_t * p_precinct)
|
|||
l_code_block->chunks = 00;
|
||||
}
|
||||
|
||||
opj_free(l_code_block->decoded_data);
|
||||
l_code_block->decoded_data = NULL;
|
||||
|
||||
++l_code_block;
|
||||
}
|
||||
|
||||
|
@ -2396,16 +2585,16 @@ OPJ_BOOL opj_tcd_is_subband_area_of_interest(opj_tcd_t *tcd,
|
|||
/* with the tile coordinates */
|
||||
OPJ_UINT32 tcx0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(tcd->decoded_x0, image_comp->dx));
|
||||
opj_uint_ceildiv(tcd->win_x0, image_comp->dx));
|
||||
OPJ_UINT32 tcy0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(tcd->decoded_y0, image_comp->dy));
|
||||
opj_uint_ceildiv(tcd->win_y0, image_comp->dy));
|
||||
OPJ_UINT32 tcx1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(tcd->decoded_x1, image_comp->dx));
|
||||
opj_uint_ceildiv(tcd->win_x1, image_comp->dx));
|
||||
OPJ_UINT32 tcy1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(tcd->decoded_y1, image_comp->dy));
|
||||
opj_uint_ceildiv(tcd->win_y1, image_comp->dy));
|
||||
/* Compute number of decomposition for this band. See table F-1 */
|
||||
OPJ_UINT32 nb = (resno == 0) ?
|
||||
tilec->numresolutions - 1 :
|
||||
|
@ -2452,3 +2641,44 @@ OPJ_BOOL opj_tcd_is_subband_area_of_interest(opj_tcd_t *tcd,
|
|||
#endif
|
||||
return intersects;
|
||||
}
|
||||
|
||||
/** Returns whether a tile componenent is fully decoded, taking into account
|
||||
* p_tcd->win_* members.
|
||||
*
|
||||
* @param p_tcd TCD handle.
|
||||
* @param compno Component number
|
||||
* @return OPJ_TRUE whether the tile componenent is fully decoded
|
||||
*/
|
||||
static OPJ_BOOL opj_tcd_is_whole_tilecomp_decoding(opj_tcd_t *p_tcd,
|
||||
OPJ_UINT32 compno)
|
||||
{
|
||||
opj_tcd_tilecomp_t* tilec = &(p_tcd->tcd_image->tiles->comps[compno]);
|
||||
opj_image_comp_t* image_comp = &(p_tcd->image->comps[compno]);
|
||||
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
||||
/* with the tile coordinates */
|
||||
OPJ_UINT32 tcx0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->x0,
|
||||
opj_uint_ceildiv(p_tcd->win_x0, image_comp->dx));
|
||||
OPJ_UINT32 tcy0 = opj_uint_max(
|
||||
(OPJ_UINT32)tilec->y0,
|
||||
opj_uint_ceildiv(p_tcd->win_y0, image_comp->dy));
|
||||
OPJ_UINT32 tcx1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->x1,
|
||||
opj_uint_ceildiv(p_tcd->win_x1, image_comp->dx));
|
||||
OPJ_UINT32 tcy1 = opj_uint_min(
|
||||
(OPJ_UINT32)tilec->y1,
|
||||
opj_uint_ceildiv(p_tcd->win_y1, image_comp->dy));
|
||||
|
||||
OPJ_UINT32 shift = tilec->numresolutions - tilec->minimum_num_resolutions;
|
||||
/* Tolerate small margin within the reduced resolution factor to consider if */
|
||||
/* the whole tile path must be taken */
|
||||
return (tcx0 >= (OPJ_UINT32)tilec->x0 &&
|
||||
tcy0 >= (OPJ_UINT32)tilec->y0 &&
|
||||
tcx1 <= (OPJ_UINT32)tilec->x1 &&
|
||||
tcy1 <= (OPJ_UINT32)tilec->y1 &&
|
||||
(shift >= 32 ||
|
||||
(((tcx0 - (OPJ_UINT32)tilec->x0) >> shift) == 0 &&
|
||||
((tcy0 - (OPJ_UINT32)tilec->y0) >> shift) == 0 &&
|
||||
(((OPJ_UINT32)tilec->x1 - tcx1) >> shift) == 0 &&
|
||||
(((OPJ_UINT32)tilec->y1 - tcy1) >> shift) == 0)));
|
||||
}
|
||||
|
|
|
@ -134,6 +134,8 @@ typedef struct opj_tcd_cblk_dec {
|
|||
OPJ_UINT32 m_current_max_segs; /* allocated number of segs[] items */
|
||||
OPJ_UINT32 numchunks; /* Number of valid chunks items */
|
||||
OPJ_UINT32 numchunksalloc; /* Number of chunks item allocated */
|
||||
/* Decoded code-block. Only used for subtile decoding. Otherwise tilec->data is directly updated */
|
||||
OPJ_INT32* decoded_data;
|
||||
} opj_tcd_cblk_dec_t;
|
||||
|
||||
/** Precinct structure */
|
||||
|
@ -175,6 +177,12 @@ typedef struct opj_tcd_resolution {
|
|||
OPJ_UINT32 numbands;
|
||||
/* subband information */
|
||||
opj_tcd_band_t bands[3];
|
||||
|
||||
/* dimension of the resolution limited to window of interest. Only valid if tcd->whole_tile_decoding is set */
|
||||
OPJ_UINT32 win_x0;
|
||||
OPJ_UINT32 win_y0;
|
||||
OPJ_UINT32 win_x1;
|
||||
OPJ_UINT32 win_y1;
|
||||
} opj_tcd_resolution_t;
|
||||
|
||||
/** Tile-component structure */
|
||||
|
@ -191,7 +199,8 @@ typedef struct opj_tcd_tilecomp {
|
|||
opj_tcd_resolution_t *resolutions;
|
||||
/* size of data for resolutions (in bytes) */
|
||||
OPJ_UINT32 resolutions_size;
|
||||
/* data of the component */
|
||||
|
||||
/* data of the component. For decoding, only valid if tcd->whole_tile_decoding is set (so exclusive of data_win member) */
|
||||
OPJ_INT32 *data;
|
||||
/* if true, then need to free after usage, otherwise do not free */
|
||||
OPJ_BOOL ownsData;
|
||||
|
@ -199,6 +208,15 @@ typedef struct opj_tcd_tilecomp {
|
|||
OPJ_UINT32 data_size_needed;
|
||||
/* size of the data of the component */
|
||||
OPJ_UINT32 data_size;
|
||||
|
||||
/** data of the component limited to window of interest. Only valid for decoding and if tcd->whole_tile_decoding is NOT set (so exclusive of data member) */
|
||||
OPJ_INT32 *data_win;
|
||||
/* dimension of the component limited to window of interest. Only valid for decoding and if tcd->whole_tile_decoding is NOT set */
|
||||
OPJ_UINT32 win_x0;
|
||||
OPJ_UINT32 win_y0;
|
||||
OPJ_UINT32 win_x1;
|
||||
OPJ_UINT32 win_y1;
|
||||
|
||||
/* add fixed_quality */
|
||||
OPJ_INT32 numpix;
|
||||
} opj_tcd_tilecomp_t;
|
||||
|
@ -256,10 +274,12 @@ typedef struct opj_tcd {
|
|||
/** Thread pool */
|
||||
opj_thread_pool_t* thread_pool;
|
||||
/** Coordinates of the window of interest, in grid reference space */
|
||||
OPJ_UINT32 decoded_x0;
|
||||
OPJ_UINT32 decoded_y0;
|
||||
OPJ_UINT32 decoded_x1;
|
||||
OPJ_UINT32 decoded_y1;
|
||||
OPJ_UINT32 win_x0;
|
||||
OPJ_UINT32 win_y0;
|
||||
OPJ_UINT32 win_x1;
|
||||
OPJ_UINT32 win_y1;
|
||||
/** Only valid for decoding. Whether the whole tile is decoded, or just the region in win_x0/win_y0/win_x1/win_y1 */
|
||||
OPJ_BOOL whole_tile_decoding;
|
||||
} opj_tcd_t;
|
||||
|
||||
/** @name Exported functions */
|
||||
|
@ -331,7 +351,8 @@ OPJ_BOOL opj_tcd_rateallocate(opj_tcd_t *tcd,
|
|||
/**
|
||||
* Gets the maximum tile size that will be taken by the tile once decoded.
|
||||
*/
|
||||
OPJ_UINT32 opj_tcd_get_decoded_tile_size(opj_tcd_t *p_tcd);
|
||||
OPJ_UINT32 opj_tcd_get_decoded_tile_size(opj_tcd_t *p_tcd,
|
||||
OPJ_BOOL take_into_account_partial_decoding);
|
||||
|
||||
/**
|
||||
* Encodes a tile from the raw image into the given buffer.
|
||||
|
@ -356,10 +377,10 @@ OPJ_BOOL opj_tcd_encode_tile(opj_tcd_t *p_tcd,
|
|||
/**
|
||||
Decode a tile from a buffer into a raw image
|
||||
@param tcd TCD handle
|
||||
@param decoded_x0 Upper left x of region to decode (in grid coordinates)
|
||||
@param decoded_y0 Upper left y of region to decode (in grid coordinates)
|
||||
@param decoded_x1 Lower right x of region to decode (in grid coordinates)
|
||||
@param decoded_y1 Lower right y of region to decode (in grid coordinates)
|
||||
@param win_x0 Upper left x of region to decode (in grid coordinates)
|
||||
@param win_y0 Upper left y of region to decode (in grid coordinates)
|
||||
@param win_x1 Lower right x of region to decode (in grid coordinates)
|
||||
@param win_y1 Lower right y of region to decode (in grid coordinates)
|
||||
@param src Source buffer
|
||||
@param len Length of source buffer
|
||||
@param tileno Number that identifies one of the tiles to be decoded
|
||||
|
@ -367,10 +388,10 @@ Decode a tile from a buffer into a raw image
|
|||
@param manager the event manager.
|
||||
*/
|
||||
OPJ_BOOL opj_tcd_decode_tile(opj_tcd_t *tcd,
|
||||
OPJ_UINT32 decoded_x0,
|
||||
OPJ_UINT32 decoded_y0,
|
||||
OPJ_UINT32 decoded_x1,
|
||||
OPJ_UINT32 decoded_y1,
|
||||
OPJ_UINT32 win_x0,
|
||||
OPJ_UINT32 win_y0,
|
||||
OPJ_UINT32 win_x1,
|
||||
OPJ_UINT32 win_y1,
|
||||
OPJ_BYTE *src,
|
||||
OPJ_UINT32 len,
|
||||
OPJ_UINT32 tileno,
|
||||
|
@ -427,7 +448,7 @@ void opj_tcd_reinit_segment(opj_tcd_seg_t* seg);
|
|||
|
||||
|
||||
/** Returns whether a sub-band region contributes to the area of interest
|
||||
* tcd->decoded_x0,tcd->decoded_y0,tcd->decoded_x1,tcd->decoded_y1.
|
||||
* tcd->win_x0,tcd->win_y0,tcd->win_x1,tcd->win_y1.
|
||||
*
|
||||
* @param tcd TCD handle.
|
||||
* @param compno Component number
|
||||
|
@ -449,7 +470,6 @@ OPJ_BOOL opj_tcd_is_subband_area_of_interest(opj_tcd_t *tcd,
|
|||
OPJ_UINT32 x1,
|
||||
OPJ_UINT32 y1);
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------------- */
|
||||
/*@}*/
|
||||
|
||||
|
|
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
* The copyright in this software is being made available under the 2-clauses
|
||||
* BSD License, included below. This software may be subject to other third
|
||||
* party and contributor rights, including patent rights, and no such rights
|
||||
* are granted under this license.
|
||||
*
|
||||
* Copyright (c) 2017, IntoPix SA <contact@intopix.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "opj_includes.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
OPJ_UINT32 i, j, w, h;
|
||||
OPJ_INT32 buffer[ 99 * 101 ];
|
||||
OPJ_BOOL ret;
|
||||
opj_sparse_array_int32_t* sa;
|
||||
|
||||
sa = opj_sparse_array_int32_create(0, 1, 1, 1);
|
||||
assert(sa == NULL);
|
||||
opj_sparse_array_int32_free(sa);
|
||||
|
||||
sa = opj_sparse_array_int32_create(1, 0, 1, 1);
|
||||
assert(sa == NULL);
|
||||
|
||||
sa = opj_sparse_array_int32_create(1, 1, 0, 1);
|
||||
assert(sa == NULL);
|
||||
|
||||
sa = opj_sparse_array_int32_create(1, 1, 1, 0);
|
||||
assert(sa == NULL);
|
||||
|
||||
sa = opj_sparse_array_int32_create(99, 101, ~0U, ~0U);
|
||||
assert(sa == NULL);
|
||||
|
||||
sa = opj_sparse_array_int32_create(99, 101, 15, 17);
|
||||
opj_sparse_array_int32_free(sa);
|
||||
|
||||
sa = opj_sparse_array_int32_create(99, 101, 15, 17);
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 0, 1, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 1, 0, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 100, 1, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 1, 102, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 1, 0, 0, 1, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 1, 1, 0, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(!ret);
|
||||
ret = opj_sparse_array_int32_read(sa, 99, 101, 99, 101, buffer, 1, 1,
|
||||
OPJ_FALSE);
|
||||
assert(!ret);
|
||||
|
||||
buffer[0] = 1;
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 1, 1, buffer, 1, 1, OPJ_FALSE);
|
||||
assert(ret);
|
||||
assert(buffer[0] == 0);
|
||||
|
||||
memset(buffer, 0xFF, sizeof(buffer));
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 99, 101, buffer, 1, 99, OPJ_FALSE);
|
||||
assert(ret);
|
||||
for (i = 0; i < 99 * 101; i++) {
|
||||
assert(buffer[i] == 0);
|
||||
}
|
||||
|
||||
buffer[0] = 1;
|
||||
ret = opj_sparse_array_int32_write(sa, 4, 5, 4 + 1, 5 + 1, buffer, 1, 1,
|
||||
OPJ_FALSE);
|
||||
assert(ret);
|
||||
buffer[0] = 2;
|
||||
ret = opj_sparse_array_int32_write(sa, 4, 5, 4 + 1, 5 + 1, buffer, 1, 1,
|
||||
OPJ_FALSE);
|
||||
assert(ret);
|
||||
|
||||
buffer[0] = 0;
|
||||
buffer[1] = 0xFF;
|
||||
ret = opj_sparse_array_int32_read(sa, 4, 5, 4 + 1, 5 + 1, buffer, 1, 1,
|
||||
OPJ_FALSE);
|
||||
assert(ret);
|
||||
assert(buffer[0] == 2);
|
||||
assert(buffer[1] == 0xFF);
|
||||
|
||||
w = 15 + 1;
|
||||
h = 17 + 1;
|
||||
memset(buffer, 0xFF, sizeof(buffer));
|
||||
ret = opj_sparse_array_int32_read(sa, 2, 1, 2 + w, 1 + h, buffer, 1, w,
|
||||
OPJ_FALSE);
|
||||
assert(ret);
|
||||
for (j = 0; j < h; j++) {
|
||||
for (i = 0; i < w; i++) {
|
||||
if (i == 4 - 2 && j == 5 - 1) {
|
||||
assert(buffer[ j * w + i ] == 2);
|
||||
} else {
|
||||
assert(buffer[ j * w + i ] == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
opj_sparse_array_int32_free(sa);
|
||||
|
||||
|
||||
sa = opj_sparse_array_int32_create(99, 101, 15, 17);
|
||||
memset(buffer, 0xFF, sizeof(buffer));
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 2, 1, buffer, 2, 4, OPJ_FALSE);
|
||||
assert(ret);
|
||||
assert(buffer[0] == 0);
|
||||
assert(buffer[1] == -1);
|
||||
assert(buffer[2] == 0);
|
||||
|
||||
buffer[0] = 1;
|
||||
buffer[2] = 3;
|
||||
ret = opj_sparse_array_int32_write(sa, 0, 0, 2, 1, buffer, 2, 4, OPJ_FALSE);
|
||||
assert(ret);
|
||||
|
||||
memset(buffer, 0xFF, sizeof(buffer));
|
||||
ret = opj_sparse_array_int32_read(sa, 0, 0, 2, 1, buffer, 2, 4, OPJ_FALSE);
|
||||
assert(ret);
|
||||
assert(buffer[0] == 1);
|
||||
assert(buffer[1] == -1);
|
||||
assert(buffer[2] == 3);
|
||||
|
||||
opj_sparse_array_int32_free(sa);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue