Add a -allow-partial option to opj_decompress utility and a opj_decoder_set_strict_mode() option to the API
Co-authored-by: Chris Hafey <chafey@gmail.com>
* -PLT switch added to opj_compress
* Add a opj_encoder_set_extra_options() function that
accepts a PLT=YES option, and could be expanded later
for other uses.
-------
Testing with a Sentinel2 10m band, T36JTT_20160914T074612_B02.jp2,
coming from S2A_MSIL1C_20160914T074612_N0204_R135_T36JTT_20160914T081456.SAFE
Decompress it to TIFF:
```
opj_uncompress -i T36JTT_20160914T074612_B02.jp2 -o T36JTT_20160914T074612_B02.tif
```
Recompress it with similar parameters as original:
```
opj_compress -n 5 -c [256,256],[256,256],[256,256],[256,256],[256,256] -t 1024,1024 -PLT -i T36JTT_20160914T074612_B02.tif -o T36JTT_20160914T074612_B02_PLT.jp2
```
Dump codestream detail with GDAL dump_jp2.py utility (https://github.com/OSGeo/gdal/blob/master/gdal/swig/python/samples/dump_jp2.py)
```
python dump_jp2.py T36JTT_20160914T074612_B02.jp2 > /tmp/dump_sentinel2_ori.txt
python dump_jp2.py T36JTT_20160914T074612_B02_PLT.jp2 > /tmp/dump_sentinel2_openjpeg_plt.txt
```
The diff between both show very similar structure, and identical number of packets in PLT markers
Now testing with Kakadu (KDU803_Demo_Apps_for_Linux-x86-64_200210)
Full file decompression:
```
kdu_expand -i T36JTT_20160914T074612_B02_PLT.jp2 -o tmp.tif
Consumed 121 tile-part(s) from a total of 121 tile(s).
Consumed 80,318,806 codestream bytes (excluding any file format) = 5.329697
bits/pel.
Processed using the multi-threaded environment, with
8 parallel threads of execution
```
Partial decompresson (presumably using PLT markers):
```
kdu_expand -i T36JTT_20160914T074612_B02.jp2 -o tmp.pgm -region "{0.5,0.5},{0.01,0.01}"
kdu_expand -i T36JTT_20160914T074612_B02_PLT.jp2 -o tmp2.pgm -region "{0.5,0.5},{0.01,0.01}"
diff tmp.pgm tmp2.pgm && echo "same !"
```
-------
Funded by ESA for S2-MPC project
* Fix some potential overflow issues
Put sizeof to the beginning of the multiplication to enforce that
size_t instead of smaller integer types is used for the calculation.
This fixes warnings from LGTM:
Multiplication result may overflow 'unsigned int'
before it is converted to 'unsigned long'.
It also allows removing some type casts.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
* Fix code indentation
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Compiler warnings:
src/lib/openjp2/jp2.c:1008:35: warning:
too many arguments for format [-Wformat-extra-args]
src/lib/openjp2/j2k.c:1928:73: warning:
format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘OPJ_OFF_T {aka long int}’ [-Wformat=]
Signed-off-by: Stefan Weil <sw@weilnetz.de>
This adds a opj_set_decoded_components(opj_codec_t *p_codec,
OPJ_UINT32 numcomps, const OPJ_UINT32* comps_indices) function,
and equivalent "opj_decompress -c compno[,compno]*" option.
When specified, neither the MCT transform nor JP2 channel transformations
will be applied.
Tests added for various combinations of whole image vs tiled-based decoding,
full or reduced resolution, use of decode area or not.
PR #975 introduced a check that rejects images that have different bit depth/sign
per compoment in SIZ marker if the JP2 IHDR box has BPC != 255
This didn't work properly if decoding a .j2k file since the new bit added in
opj_cp_t wasn't initialized to the right value.
For clarity, tThis new bit has also been renamed to allow_different_bit_depth_sign
But looking closer at the code, it seems we were already tolerant to inconsistencies.
For example we parsed a JP2 BPCC box even if BPC != 255 (just a warning is emitted)
So failing hard in opj_j2k_read_siz() wouldn't be very inconsistent, and that
alone cannot protect against other issues, so just emit a warning if BPC != 255
and the SIZ marker contains different bit depth/sign per component.
Note: we could also check that the content of JP2 BPCC box is consistant with the one
of the SIZ marker.
By default, only the main thread is used. If opj_codec_set_threads() is not used,
but the OPJ_NUM_THREADS environment variable is set, its value will be
used to initialize the number of threads. The value can be either an integer
number, or "ALL_CPUS". If OPJ_NUM_THREADS is set and this function is called,
this function will override the behaviour of the environment variable.