/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2007, Jonathan Ballard * Copyright (c) 2007, Callum Lerwick * Copyright (c) 2017, IntoPIX SA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #define OPJ_SKIP_POISON #include "opj_includes.h" #ifdef __SSE__ #include #endif #ifdef __SSE2__ #include #endif #ifdef __SSSE3__ #include #endif #if defined(__GNUC__) #pragma GCC poison malloc calloc realloc free #endif /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ #define OPJ_WS(i) v->mem[(i)*2] #define OPJ_WD(i) v->mem[(1+(i)*2)] #define PARALLEL_COLS_53 8 /** @name Local data structures */ /*@{*/ typedef struct dwt_local { OPJ_INT32* mem; OPJ_INT32 dn; OPJ_INT32 sn; OPJ_INT32 cas; } opj_dwt_t; typedef union { OPJ_FLOAT32 f[4]; } opj_v4_t; typedef struct v4dwt_local { opj_v4_t* wavelet ; OPJ_INT32 dn ; OPJ_INT32 sn ; OPJ_INT32 cas ; } opj_v4dwt_t ; static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */ static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */ static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */ static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */ static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */ static const OPJ_FLOAT32 opj_c13318 = 1.625732422f; /*@}*/ /** Virtual function type for wavelet transform in 1-D */ typedef void (*DWT1DFN)(const opj_dwt_t* v); /** @name Local static functions */ /*@{*/ /** Forward lazy transform (horizontal) */ static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Forward lazy transform (vertical) */ static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); /** Forward 5-3 wavelet transform in 1-D */ static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Forward 9-7 wavelet transform in 1-D */ static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Explicit calculation of the Quantization Stepsizes */ static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize); /** Inverse wavelet transform in 2-D. */ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec, void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32)); static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, OPJ_UINT32 i); /* */ /* Inverse 9-7 wavelet transform in 1-D. */ /* */ static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt); static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT w, OPJ_FLOAT32* OPJ_RESTRICT a, OPJ_INT32 x, OPJ_INT32 size); static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT v, OPJ_FLOAT32* OPJ_RESTRICT a, OPJ_INT32 x, OPJ_INT32 nb_elts_read); #ifdef __SSE__ static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c); static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c); #else static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c); static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c); #endif /*@}*/ /*@}*/ #define OPJ_S(i) a[(i)*2] #define OPJ_D(i) a[(1+(i)*2)] #define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i))) #define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i))) /* new */ #define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i))) #define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i))) /* */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* */ static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} }; /* */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* */ static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} }; /* ========================================================== local functions ========================================================== */ /* */ /* Forward lazy transform (horizontal). */ /* */ static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a + cas; for (i = 0; i < sn; ++i) { *l_dest++ = *l_src; l_src += 2; } l_dest = b + sn; l_src = a + 1 - cas; for (i = 0; i < dn; ++i) { *l_dest++ = *l_src; l_src += 2; } } /* */ /* Forward lazy transform (vertical). */ /* */ static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) { OPJ_INT32 i = sn; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a + cas; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; } /* b[i*x]=a[2*i+cas]; */ l_dest = b + sn * x; l_src = a + 1 - cas; i = dn; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ } #ifdef STANDARD_SLOW_VERSION /* */ /* Inverse lazy transform (horizontal). */ /* */ static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = h->mem + h->cas; OPJ_INT32 i = h->sn; while (i--) { *bi = *(ai++); bi += 2; } ai = a + h->sn; bi = h->mem + 1 - h->cas; i = h->dn ; while (i--) { *bi = *(ai++); bi += 2; } } /* */ /* Inverse lazy transform (vertical). */ /* */ static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = v->mem + v->cas; OPJ_INT32 i = v->sn; while (i--) { *bi = *ai; bi += 2; ai += x; } ai = a + (v->sn * x); bi = v->mem + 1 - v->cas; i = v->dn ; while (i--) { *bi = *ai; bi += 2; ai += x; } } #endif /* STANDARD_SLOW_VERSION */ /* */ /* Forward 5-3 wavelet transform in 1-D. */ /* */ static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) { OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; } for (i = 0; i < sn; i++) { OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; } } } else { if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ OPJ_S(0) *= 2; } else { for (i = 0; i < dn; i++) { OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; } for (i = 0; i < sn; i++) { OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; } } } } #ifdef STANDARD_SLOW_VERSION /* */ /* Inverse 5-3 wavelet transform in 1-D. */ /* */ static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) { OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; } for (i = 0; i < dn; i++) { OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; } } } else { if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ OPJ_S(0) /= 2; } else { for (i = 0; i < sn; i++) { OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; } for (i = 0; i < dn; i++) { OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; } } } } static void opj_dwt_decode_1(const opj_dwt_t *v) { opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); } #endif /* STANDARD_SLOW_VERSION */ #if !defined(STANDARD_SLOW_VERSION) static void opj_idwt53_h_cas0(OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp) { OPJ_INT32 i, j; const OPJ_INT32* in_even = &tiledp[0]; const OPJ_INT32* in_odd = &tiledp[sn]; #ifdef TWO_PASS_VERSION /* For documentation purpose: performs lifting in two iterations, */ /* but withtmp explicit interleaving */ assert(len > 1); /* Even */ tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); for (i = 2, j = 0; i <= len - 2; i += 2, j++) { tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); } if (len & 1) { /* if len is odd */ tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); } /* Odd */ for (i = 1, j = 0; i < len - 1; i += 2, j++) { tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); } if (!(len & 1)) { /* if len is even */ tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; } #else OPJ_INT32 d1c, d1n, s1n, s0c, s0n; assert(len > 1); /* Improved version of the TWO_PASS_VERSION: */ /* Performs lifting in one single iteration. Saves memory */ /* accesses and explicit interleaving. */ s1n = in_even[0]; d1n = in_odd[0]; s0n = s1n - ((d1n + 1) >> 1); for (i = 0, j = 1; i < (len - 3); i += 2, j++) { d1c = d1n; s0c = s0n; s1n = in_even[j]; d1n = in_odd[j]; s0n = s1n - ((d1c + d1n + 2) >> 2); tmp[i ] = s0c; tmp[i + 1] = d1c + ((s0c + s0n) >> 1); } tmp[i] = s0n; if (len & 1) { tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); } else { tmp[len - 1] = d1n + s0n; } #endif memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); } #if !defined(STANDARD_SLOW_VERSION) && defined(__SSE2__) static void opj_idwt53_h_cas0_SSE2(OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp) { OPJ_INT32 i; const OPJ_INT32* in_even = &tiledp[0]; const OPJ_INT32* in_odd = &tiledp[sn]; const __m128i two = _mm_set1_epi32(2); const __m128i *ie_p = (const __m128i *)in_even; const __m128i *io_p = (const __m128i *)in_odd; __m128i *o_p = (__m128i *)tmp; __m128i d1c, d1n, s1n, s0c, s0n; __m128i r0, r1; assert((len > 1) && ((len & 7) == 0)); /* Initial load */ s1n = _mm_loadu_si128(ie_p++); d1n = _mm_loadu_si128(io_p++); /* Take one cycle of advance for 's' */ /* r0 = (d1n[2],d1n[1],d1n[0],d1n[0]) */ r0 = _mm_shuffle_epi32(d1n, _MM_SHUFFLE(2, 1, 0, 0)); r1 = _mm_add_epi32(d1n, two); r0 = _mm_add_epi32(r0, r1); s0n = _mm_sub_epi32(s1n, _mm_srai_epi32(r0, 2)); /* Main loop */ for (i = 8; i < len; i += 8) { /* Next cycle */ d1c = d1n; s0c = s0n; /* Load new data */ s1n = _mm_loadu_si128(ie_p++); d1n = _mm_loadu_si128(io_p++); /* Compute the next 's' */ #ifdef __SSSE3__ /* r0 = (d1n[2],d1n[1],d1n[0],d1c[3]) */ r0 = _mm_alignr_epi8(d1n, d1c, 12); #else r0 = _mm_or_si128(_mm_slli_si128(d1n, 4), _mm_srli_si128(d1c, 12)); #endif r1 = _mm_add_epi32(d1n, two); r0 = _mm_add_epi32(r0, r1); s0n = _mm_sub_epi32(s1n, _mm_srai_epi32(r0, 2)); /* Compute the current 'd' */ #ifdef __SSSE3__ /* r0 = (s0n[3],s0c[2],s0c[2],s0c[1]) */ r0 = _mm_alignr_epi8(s0n, s0c, 4); #else r0 = _mm_or_si128(_mm_slli_si128(s0n, 12), _mm_srli_si128(s0c, 4)); #endif r0 = _mm_add_epi32(r0, s0c); r0 = _mm_add_epi32(d1c, _mm_srai_epi32(r0, 1)); /* Interlace and store */ _mm_store_si128(o_p++, _mm_unpacklo_epi32(s0c, r0)); _mm_store_si128(o_p++, _mm_unpackhi_epi32(s0c, r0)); } /* Compute the last 'd' */ /* r0 = (s0n[3],s0n[3],s0n[2],s0n[1]) */ r0 = _mm_shuffle_epi32(s0n, _MM_SHUFFLE(3, 3, 2, 1)); r0 = _mm_add_epi32(r0, s0n); r0 = _mm_add_epi32(d1n, _mm_srai_epi32(r0, 1)); /* Interlace and store */ _mm_store_si128(o_p++, _mm_unpacklo_epi32(s0n, r0)); _mm_store_si128(o_p++, _mm_unpackhi_epi32(s0n, r0)); memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); } #endif /* !defined(STANDARD_SLOW_VERSION) && defined(__SSE2__) */ static void opj_idwt53_h_cas1(OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp) { OPJ_INT32 i, j; const OPJ_INT32* in_even = &tiledp[sn]; const OPJ_INT32* in_odd = &tiledp[0]; #ifdef TWO_PASS_VERSION /* For documentation purpose: performs lifting in two iterations, */ /* but withtmp explicit interleaving */ assert(len > 2); /* Odd */ for (i = 1, j = 0; i < len - 1; i += 2, j++) { tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); } if (!(len & 1)) { tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); } /* Even */ tmp[0] = in_even[0] + tmp[1]; for (i = 2, j = 1; i < len - 1; i += 2, j++) { tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); } if (len & 1) { tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; } #else OPJ_INT32 s1, s2, dc, dn; assert(len > 2); /* Improved version of the TWO_PASS_VERSION: */ /* Performs lifting in one single iteration. Saves memory */ /* accesses and explicit interleaving. */ s1 = in_even[1]; dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); tmp[0] = in_even[0] + dc; for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { s2 = in_even[j + 1]; dn = in_odd[j] - ((s1 + s2 + 2) >> 2); tmp[i ] = dc; tmp[i + 1] = s1 + ((dn + dc) >> 1); dc = dn; s1 = s2; } tmp[i] = dc; if (!(len & 1)) { dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); tmp[len - 2] = s1 + ((dn + dc) >> 1); tmp[len - 1] = dn; } else { tmp[len - 1] = s1 + dc; } #endif memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); } #endif /* !defined(STANDARD_SLOW_VERSION) */ /* */ /* Inverse 5-3 wavelet transform in 1-D for one row. */ /* */ /* Performs interleave, inverse wavelet transform and copy back to buffer */ static void opj_idwt53_h(const opj_dwt_t *dwt, OPJ_INT32* tiledp) { #ifdef STANDARD_SLOW_VERSION /* For documentation purpose */ opj_dwt_interleave_h(dwt, tiledp); opj_dwt_decode_1(dwt); memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); #else const OPJ_INT32 sn = dwt->sn; const OPJ_INT32 len = sn + dwt->dn; if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ #if __SSE2__ if (len > 1 && (len & 7) == 0) { opj_idwt53_h_cas0_SSE2(dwt->mem, sn, len, tiledp); return; } #endif if (len > 1) { opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); } else { /* Unmodified value */ } } else { /* Left-most sample is on odd coordinate */ if (len == 1) { tiledp[0] /= 2; } else if (len == 2) { OPJ_INT32* out = dwt->mem; const OPJ_INT32* in_even = &tiledp[sn]; const OPJ_INT32* in_odd = &tiledp[0]; out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); out[0] = in_even[0] + out[1]; memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); } else if (len > 2) { opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); } } #endif } #if defined(__SSE2__) && !defined(STANDARD_SLOW_VERSION) /* Conveniency macros to improve the readabilty of the formulas */ #define LOADU(x) _mm_loadu_si128((const __m128i*)(x)) #define STORE(x,y) _mm_store_si128((__m128i*)(x),(y)) #define ADD(x,y) _mm_add_epi32((x),(y)) #define ADD3(x,y,z) ADD(ADD(x,y),z) #define SUB(x,y) _mm_sub_epi32((x),(y)) #define SAR(x,y) _mm_srai_epi32((x),(y)) /** Vertical inverse 5x3 wavelet transform for 8 columns, when top-most * pixel is on even coordinate */ static void opj_idwt53_v_cas0_8cols_SSE2( OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp_col, const OPJ_INT32 stride) { const OPJ_INT32* in_even = &tiledp_col[0]; const OPJ_INT32* in_odd = &tiledp_col[sn * stride]; OPJ_INT32 i, j; __m128i d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; __m128i d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; const __m128i two = _mm_set1_epi32(2); assert(len > 1); assert(PARALLEL_COLS_53 == 8); s1n_0 = LOADU(in_even + 0); s1n_1 = LOADU(in_even + 4); d1n_0 = LOADU(in_odd); d1n_1 = LOADU(in_odd + 4); /* s0n = s1n - ((d1n + 1) >> 1); <==> */ /* s0n = s1n - ((d1n + d1n + 2) >> 2); */ s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); for (i = 0, j = 1; i < (len - 3); i += 2, j++) { d1c_0 = d1n_0; s0c_0 = s0n_0; d1c_1 = d1n_1; s0c_1 = s0n_1; s1n_0 = LOADU(in_even + j * stride); s1n_1 = LOADU(in_even + j * stride + 4); d1n_0 = LOADU(in_odd + j * stride); d1n_1 = LOADU(in_odd + j * stride + 4); /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 4, s0c_1); /* d1c + ((s0c + s0n) >> 1) */ STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 4, ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); } STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 4, s0n_1); if (len & 1) { __m128i tmp_len_minus_1; s1n_0 = LOADU(in_even + ((len - 1) / 2) * stride); /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); STORE(tmp + 8 * (len - 1), tmp_len_minus_1); /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ STORE(tmp + 8 * (len - 2), ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); s1n_1 = LOADU(in_even + ((len - 1) / 2) * stride + 4); /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 4, tmp_len_minus_1); /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 4, ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); } else { STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(d1n_0, s0n_0)); STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 4, ADD(d1n_1, s0n_1)); } for (i = 0; i < len; ++i) { memcpy(&tiledp_col[i * stride], &tmp[PARALLEL_COLS_53 * i], PARALLEL_COLS_53 * sizeof(OPJ_INT32)); } } /** Vertical inverse 5x3 wavelet transform for 8 columns, when top-most * pixel is on odd coordinate */ static void opj_idwt53_v_cas1_8cols_SSE2( OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp_col, const OPJ_INT32 stride) { OPJ_INT32 i, j; __m128i s1_0, s2_0, dc_0, dn_0; __m128i s1_1, s2_1, dc_1, dn_1; const __m128i two = _mm_set1_epi32(2); const OPJ_INT32* in_even = &tiledp_col[sn * stride]; const OPJ_INT32* in_odd = &tiledp_col[0]; assert(len > 2); assert(PARALLEL_COLS_53 == 8); s1_0 = LOADU(in_even + stride); /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ dc_0 = SUB(LOADU(in_odd + 0), SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); s1_1 = LOADU(in_even + stride + 4); /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ dc_1 = SUB(LOADU(in_odd + 4), SAR(ADD3(LOADU(in_even + 4), s1_1, two), 2)); STORE(tmp + PARALLEL_COLS_53 * 0 + 4, ADD(LOADU(in_even + 4), dc_1)); for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { s2_0 = LOADU(in_even + (j + 1) * stride); s2_1 = LOADU(in_even + (j + 1) * stride + 4); /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ dn_0 = SUB(LOADU(in_odd + j * stride), SAR(ADD3(s1_0, s2_0, two), 2)); dn_1 = SUB(LOADU(in_odd + j * stride + 4), SAR(ADD3(s1_1, s2_1, two), 2)); STORE(tmp + PARALLEL_COLS_53 * i, dc_0); STORE(tmp + PARALLEL_COLS_53 * i + 4, dc_1); /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 4, ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); dc_0 = dn_0; s1_0 = s2_0; dc_1 = dn_1; s1_1 = s2_1; } STORE(tmp + PARALLEL_COLS_53 * i, dc_0); STORE(tmp + PARALLEL_COLS_53 * i + 4, dc_1); if (!(len & 1)) { /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ dn_0 = SUB(LOADU(in_odd + (len / 2 - 1) * stride), SAR(ADD3(s1_0, s1_0, two), 2)); dn_1 = SUB(LOADU(in_odd + (len / 2 - 1) * stride + 4), SAR(ADD3(s1_1, s1_1, two), 2)); /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 4, ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 4, dn_1); } else { STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 4, ADD(s1_1, dc_1)); } for (i = 0; i < len; ++i) { memcpy(&tiledp_col[i * stride], &tmp[PARALLEL_COLS_53 * i], PARALLEL_COLS_53 * sizeof(OPJ_INT32)); } } #undef LOADU #undef STORE #undef ADD #undef ADD3 #undef SUB #undef SAR #endif /* defined(__SSE2__) && !defined(STANDARD_SLOW_VERSION) */ #if !defined(STANDARD_SLOW_VERSION) /** Vertical inverse 5x3 wavelet transform for one column, when top-most * pixel is on even coordinate */ static void opj_idwt3_v_cas0(OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp_col, const OPJ_INT32 stride) { OPJ_INT32 i, j; OPJ_INT32 d1c, d1n, s1n, s0c, s0n; assert(len > 1); /* Performs lifting in one single iteration. Saves memory */ /* accesses and explicit interleaving. */ s1n = tiledp_col[0]; d1n = tiledp_col[sn * stride]; s0n = s1n - ((d1n + 1) >> 1); for (i = 0, j = 0; i < (len - 3); i += 2, j++) { d1c = d1n; s0c = s0n; s1n = tiledp_col[(j + 1) * stride]; d1n = tiledp_col[(sn + j + 1) * stride]; s0n = s1n - ((d1c + d1n + 2) >> 2); tmp[i ] = s0c; tmp[i + 1] = d1c + ((s0c + s0n) >> 1); } tmp[i] = s0n; if (len & 1) { tmp[len - 1] = tiledp_col[((len - 1) / 2) * stride] - ((d1n + 1) >> 1); tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); } else { tmp[len - 1] = d1n + s0n; } for (i = 0; i < len; ++i) { tiledp_col[i * stride] = tmp[i]; } } /** Vertical inverse 5x3 wavelet transform for one column, when top-most * pixel is on odd coordinate */ static void opj_idwt3_v_cas1(OPJ_INT32* tmp, const OPJ_INT32 sn, const OPJ_INT32 len, OPJ_INT32* tiledp_col, const OPJ_INT32 stride) { OPJ_INT32 i, j; OPJ_INT32 s1, s2, dc, dn; const OPJ_INT32* in_even = &tiledp_col[sn * stride]; const OPJ_INT32* in_odd = &tiledp_col[0]; assert(len > 2); /* Performs lifting in one single iteration. Saves memory */ /* accesses and explicit interleaving. */ s1 = in_even[stride]; dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); tmp[0] = in_even[0] + dc; for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { s2 = in_even[(j + 1) * stride]; dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); tmp[i ] = dc; tmp[i + 1] = s1 + ((dn + dc) >> 1); dc = dn; s1 = s2; } tmp[i] = dc; if (!(len & 1)) { dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); tmp[len - 2] = s1 + ((dn + dc) >> 1); tmp[len - 1] = dn; } else { tmp[len - 1] = s1 + dc; } for (i = 0; i < len; ++i) { tiledp_col[i * stride] = tmp[i]; } } #endif /* !defined(STANDARD_SLOW_VERSION) */ /* */ /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ /* */ /* Performs interleave, inverse wavelet transform and copy back to buffer */ static void opj_idwt53_v(const opj_dwt_t *dwt, OPJ_INT32* tiledp_col, OPJ_INT32 stride, OPJ_INT32 nb_cols) { #ifdef STANDARD_SLOW_VERSION /* For documentation purpose */ OPJ_INT32 k, c; for (c = 0; c < nb_cols; c ++) { opj_dwt_interleave_v(dwt, tiledp_col + c, stride); opj_dwt_decode_1(dwt); for (k = 0; k < dwt->sn + dwt->dn; ++k) { tiledp_col[c + k * stride] = dwt->mem[k]; } } #else const OPJ_INT32 sn = dwt->sn; const OPJ_INT32 len = sn + dwt->dn; if (dwt->cas == 0) { /* If len == 1, unmodified value */ #if __SSE2__ if (len > 1 && nb_cols == PARALLEL_COLS_53) { /* Same as below general case, except that thanks to SSE2 */ /* we can efficently process 8 columns in parallel */ opj_idwt53_v_cas0_8cols_SSE2(dwt->mem, sn, len, tiledp_col, stride); return; } #endif if (len > 1) { OPJ_INT32 c; for (c = 0; c < nb_cols; c++, tiledp_col++) { opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); } return; } } else { if (len == 1) { OPJ_INT32 c; for (c = 0; c < nb_cols; c++, tiledp_col++) { tiledp_col[0] /= 2; } return; } if (len == 2) { OPJ_INT32 c; OPJ_INT32* out = dwt->mem; for (c = 0; c < nb_cols; c++, tiledp_col++) { OPJ_INT32 i; const OPJ_INT32* in_even = &tiledp_col[sn * stride]; const OPJ_INT32* in_odd = &tiledp_col[0]; out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); out[0] = in_even[0] + out[1]; for (i = 0; i < len; ++i) { tiledp_col[i * stride] = out[i]; } } return; } #ifdef __SSE2__ if (len > 2 && nb_cols == PARALLEL_COLS_53) { /* Same as below general case, except that thanks to SSE2 */ /* we can efficently process 8 columns in parallel */ opj_idwt53_v_cas1_8cols_SSE2(dwt->mem, sn, len, tiledp_col, stride); return; } #endif if (len > 2) { OPJ_INT32 c; for (c = 0; c < nb_cols; c++, tiledp_col++) { opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); } return; } } #endif } /* */ /* Forward 9-7 wavelet transform in 1-D. */ /* */ static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) { OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993); } for (i = 0; i < sn; i++) { OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434); } for (i = 0; i < dn; i++) { OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233); } for (i = 0; i < sn; i++) { OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633); } for (i = 0; i < dn; i++) { OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */ } for (i = 0; i < sn; i++) { OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */ } } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) { OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993); } for (i = 0; i < sn; i++) { OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434); } for (i = 0; i < dn; i++) { OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233); } for (i = 0; i < sn; i++) { OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633); } for (i = 0; i < dn; i++) { OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */ } for (i = 0; i < sn; i++) { OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */ } } } } static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) { OPJ_INT32 p, n; p = opj_int_floorlog2(stepsize) - 13; n = 11 - opj_int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; } /* ========================================================== DWT interface ========================================================== */ /* */ /* Forward 5-3 wavelet transform in 2-D. */ /* */ static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec, void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32)) { OPJ_INT32 i, j, k; OPJ_INT32 *a = 00; OPJ_INT32 *aj = 00; OPJ_INT32 *bj = 00; OPJ_INT32 w, l; OPJ_INT32 rw; /* width of the resolution level computed */ OPJ_INT32 rh; /* height of the resolution level computed */ size_t l_data_size; opj_tcd_resolution_t * l_cur_res = 0; opj_tcd_resolution_t * l_last_res = 0; w = tilec->x1 - tilec->x0; l = (OPJ_INT32)tilec->numresolutions - 1; a = tilec->data; l_cur_res = tilec->resolutions + l; l_last_res = l_cur_res - 1; l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); /* overflow check */ if (l_data_size > (SIZE_MAX / sizeof(OPJ_INT32))) { /* FIXME event manager error callback */ return OPJ_FALSE; } l_data_size *= sizeof(OPJ_INT32); bj = (OPJ_INT32*)opj_malloc(l_data_size); /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ /* in that case, so do not error out */ if (l_data_size != 0 && ! bj) { return OPJ_FALSE; } i = l; while (i--) { OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */ OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */ OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 dn, sn; rw = l_cur_res->x1 - l_cur_res->x0; rh = l_cur_res->y1 - l_cur_res->y0; rw1 = l_last_res->x1 - l_last_res->x0; rh1 = l_last_res->y1 - l_last_res->y0; cas_row = l_cur_res->x0 & 1; cas_col = l_cur_res->y0 & 1; sn = rh1; dn = rh - rh1; for (j = 0; j < rw; ++j) { aj = a + j; for (k = 0; k < rh; ++k) { bj[k] = aj[k * w]; } (*p_function)(bj, dn, sn, cas_col); opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } sn = rw1; dn = rw - rw1; for (j = 0; j < rh; j++) { aj = a + j * w; for (k = 0; k < rw; k++) { bj[k] = aj[k]; } (*p_function)(bj, dn, sn, cas_row); opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } l_cur_res = l_last_res; --l_last_res; } opj_free(bj); return OPJ_TRUE; } /* Forward 5-3 wavelet transform in 2-D. */ /* */ OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec) { return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1); } /* */ /* Inverse 5-3 wavelet transform in 2-D. */ /* */ OPJ_BOOL opj_dwt_decode(opj_thread_pool_t* tp, opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) { return opj_dwt_decode_tile(tp, tilec, numres); } /* */ /* Get gain of 5-3 wavelet transform. */ /* */ OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) { if (orient == 0) { return 0; } if (orient == 1 || orient == 2) { return 1; } return 2; } /* */ /* Get norm of 5-3 wavelet. */ /* */ OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) { return opj_dwt_norms[orient][level]; } /* */ /* Forward 9-7 wavelet transform in 2-D. */ /* */ OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec) { return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real); } /* */ /* Get gain of 9-7 wavelet transform. */ /* */ OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) { (void)orient; return 0; } /* */ /* Get norm of 9-7 wavelet. */ /* */ OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) { return opj_dwt_norms_real[orient][level]; } void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) { OPJ_UINT32 numbands, bandno; numbands = 3 * tccp->numresolutions - 2; for (bandno = 0; bandno < numbands; bandno++) { OPJ_FLOAT64 stepsize; OPJ_UINT32 resno, level, orient, gain; resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); level = tccp->numresolutions - 1 - resno; gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2)); if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level]; stepsize = (1 << (gain)) / norm; } opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); } } /* */ /* Determine maximum computed resolution level for inverse wavelet transform */ /* */ static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, OPJ_UINT32 i) { OPJ_UINT32 mr = 0; OPJ_UINT32 w; while (--i) { ++r; if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { mr = w ; } if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { mr = w ; } } return mr ; } typedef struct { opj_dwt_t h; OPJ_UINT32 rw; OPJ_UINT32 w; OPJ_INT32 * OPJ_RESTRICT tiledp; OPJ_UINT32 min_j; OPJ_UINT32 max_j; } opj_dwd_decode_h_job_t; static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) { OPJ_UINT32 j; opj_dwd_decode_h_job_t* job; (void)tls; job = (opj_dwd_decode_h_job_t*)user_data; for (j = job->min_j; j < job->max_j; j++) { opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); } opj_aligned_free(job->h.mem); opj_free(job); } typedef struct { opj_dwt_t v; OPJ_UINT32 rh; OPJ_UINT32 w; OPJ_INT32 * OPJ_RESTRICT tiledp; OPJ_UINT32 min_j; OPJ_UINT32 max_j; } opj_dwd_decode_v_job_t; static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) { OPJ_UINT32 j; opj_dwd_decode_v_job_t* job; (void)tls; job = (opj_dwd_decode_v_job_t*)user_data; for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; j += PARALLEL_COLS_53) { opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_INT32)job->w, PARALLEL_COLS_53); } if (j < job->max_j) opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_INT32)job->w, (OPJ_INT32)(job->max_j - j)); opj_aligned_free(job->v.mem); opj_free(job); } /* */ /* Inverse wavelet transform in 2-D. */ /* */ static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) { opj_dwt_t h; opj_dwt_t v; opj_tcd_resolution_t* tr = tilec->resolutions; OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */ OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */ OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); size_t h_mem_size; int num_threads; if (numres == 1U) { return OPJ_TRUE; } num_threads = opj_thread_pool_get_thread_count(tp); h_mem_size = opj_dwt_max_resolution(tr, numres); /* overflow check */ if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { /* FIXME event manager error callback */ return OPJ_FALSE; } /* We need PARALLEL_COLS_53 times the height of the array, */ /* since for the vertical pass */ /* we process PARALLEL_COLS_53 columns at a time */ h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32); h.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); if (! h.mem) { /* FIXME event manager error callback */ return OPJ_FALSE; } v.mem = h.mem; while (--numres) { OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; OPJ_UINT32 j; ++tr; h.sn = (OPJ_INT32)rw; v.sn = (OPJ_INT32)rh; rw = (OPJ_UINT32)(tr->x1 - tr->x0); rh = (OPJ_UINT32)(tr->y1 - tr->y0); h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); h.cas = tr->x0 % 2; if (num_threads <= 1 || rh <= 1) { for (j = 0; j < rh; ++j) { opj_idwt53_h(&h, &tiledp[j * w]); } } else { OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; OPJ_UINT32 step_j; if (rh < num_jobs) { num_jobs = rh; } step_j = (rh / num_jobs); for (j = 0; j < num_jobs; j++) { opj_dwd_decode_h_job_t* job; job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t)); if (!job) { /* It would be nice to fallback to single thread case, but */ /* unfortunately some jobs may be launched and have modified */ /* tiledp, so it is not practical to recover from that error */ /* FIXME event manager error callback */ opj_thread_pool_wait_completion(tp, 0); opj_aligned_free(h.mem); return OPJ_FALSE; } job->h = h; job->rw = rw; job->w = w; job->tiledp = tiledp; job->min_j = j * step_j; job->max_j = (j + 1U) * step_j; /* this can overflow */ if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ job->max_j = rh; } job->h.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); if (!job->h.mem) { /* FIXME event manager error callback */ opj_thread_pool_wait_completion(tp, 0); opj_free(job); opj_aligned_free(h.mem); return OPJ_FALSE; } opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); } opj_thread_pool_wait_completion(tp, 0); } v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); v.cas = tr->y0 % 2; if (num_threads <= 1 || rw <= 1) { for (j = 0; j + PARALLEL_COLS_53 <= rw; j += PARALLEL_COLS_53) { opj_idwt53_v(&v, &tiledp[j], (OPJ_INT32)w, PARALLEL_COLS_53); } if (j < rw) { opj_idwt53_v(&v, &tiledp[j], (OPJ_INT32)w, (OPJ_INT32)(rw - j)); } } else { OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; OPJ_UINT32 step_j; if (rw < num_jobs) { num_jobs = rw; } step_j = (rw / num_jobs); for (j = 0; j < num_jobs; j++) { opj_dwd_decode_v_job_t* job; job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t)); if (!job) { /* It would be nice to fallback to single thread case, but */ /* unfortunately some jobs may be launched and have modified */ /* tiledp, so it is not practical to recover from that error */ /* FIXME event manager error callback */ opj_thread_pool_wait_completion(tp, 0); opj_aligned_free(v.mem); return OPJ_FALSE; } job->v = v; job->rh = rh; job->w = w; job->tiledp = tiledp; job->min_j = j * step_j; job->max_j = (j + 1U) * step_j; /* this can overflow */ if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ job->max_j = rw; } job->v.mem = (OPJ_INT32*)opj_aligned_malloc(h_mem_size); if (!job->v.mem) { /* FIXME event manager error callback */ opj_thread_pool_wait_completion(tp, 0); opj_free(job); opj_aligned_free(v.mem); return OPJ_FALSE; } opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); } opj_thread_pool_wait_completion(tp, 0); } } opj_aligned_free(h.mem); return OPJ_TRUE; } static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT w, OPJ_FLOAT32* OPJ_RESTRICT a, OPJ_INT32 x, OPJ_INT32 size) { OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(w->wavelet + w->cas); OPJ_INT32 count = w->sn; OPJ_INT32 i, k; for (k = 0; k < 2; ++k) { if (count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0) { /* Fast code path */ for (i = 0; i < count; ++i) { OPJ_INT32 j = i; bi[i * 8 ] = a[j]; j += x; bi[i * 8 + 1] = a[j]; j += x; bi[i * 8 + 2] = a[j]; j += x; bi[i * 8 + 3] = a[j]; } } else { /* Slow code path */ for (i = 0; i < count; ++i) { OPJ_INT32 j = i; bi[i * 8 ] = a[j]; j += x; if (j >= size) { continue; } bi[i * 8 + 1] = a[j]; j += x; if (j >= size) { continue; } bi[i * 8 + 2] = a[j]; j += x; if (j >= size) { continue; } bi[i * 8 + 3] = a[j]; /* This one*/ } } bi = (OPJ_FLOAT32*)(w->wavelet + 1 - w->cas); a += w->sn; size -= w->sn; count = w->dn; } } static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT v, OPJ_FLOAT32* OPJ_RESTRICT a, OPJ_INT32 x, OPJ_INT32 nb_elts_read) { opj_v4_t* OPJ_RESTRICT bi = v->wavelet + v->cas; OPJ_INT32 i; for (i = 0; i < v->sn; ++i) { memcpy(&bi[i * 2], &a[i * x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); } a += v->sn * x; bi = v->wavelet + 1 - v->cas; for (i = 0; i < v->dn; ++i) { memcpy(&bi[i * 2], &a[i * x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); } } #ifdef __SSE__ static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c) { __m128* OPJ_RESTRICT vw = (__m128*) w; OPJ_INT32 i; /* 4x unrolled loop */ for (i = 0; i < count >> 2; ++i) { *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; } count &= 3; for (i = 0; i < count; ++i) { *vw = _mm_mul_ps(*vw, c); vw += 2; } } void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c) { __m128* OPJ_RESTRICT vl = (__m128*) l; __m128* OPJ_RESTRICT vw = (__m128*) w; OPJ_INT32 i; __m128 tmp1, tmp2, tmp3; tmp1 = vl[0]; for (i = 0; i < m; ++i) { tmp2 = vw[-1]; tmp3 = vw[ 0]; vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); tmp1 = tmp3; vw += 2; } vl = vw - 2; if (m >= k) { return; } c = _mm_add_ps(c, c); c = _mm_mul_ps(c, vl[0]); for (; m < k; ++m) { __m128 tmp = vw[-1]; vw[-1] = _mm_add_ps(tmp, c); vw += 2; } } #else static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c) { OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for (i = 0; i < count; ++i) { OPJ_FLOAT32 tmp1 = fw[i * 8 ]; OPJ_FLOAT32 tmp2 = fw[i * 8 + 1]; OPJ_FLOAT32 tmp3 = fw[i * 8 + 2]; OPJ_FLOAT32 tmp4 = fw[i * 8 + 3]; fw[i * 8 ] = tmp1 * c; fw[i * 8 + 1] = tmp2 * c; fw[i * 8 + 2] = tmp3 * c; fw[i * 8 + 3] = tmp4 * c; } } static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c) { OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l; OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for (i = 0; i < m; ++i) { OPJ_FLOAT32 tmp1_1 = fl[0]; OPJ_FLOAT32 tmp1_2 = fl[1]; OPJ_FLOAT32 tmp1_3 = fl[2]; OPJ_FLOAT32 tmp1_4 = fl[3]; OPJ_FLOAT32 tmp2_1 = fw[-4]; OPJ_FLOAT32 tmp2_2 = fw[-3]; OPJ_FLOAT32 tmp2_3 = fw[-2]; OPJ_FLOAT32 tmp2_4 = fw[-1]; OPJ_FLOAT32 tmp3_1 = fw[0]; OPJ_FLOAT32 tmp3_2 = fw[1]; OPJ_FLOAT32 tmp3_3 = fw[2]; OPJ_FLOAT32 tmp3_4 = fw[3]; fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); fl = fw; fw += 8; } if (m < k) { OPJ_FLOAT32 c1; OPJ_FLOAT32 c2; OPJ_FLOAT32 c3; OPJ_FLOAT32 c4; c += c; c1 = fl[0] * c; c2 = fl[1] * c; c3 = fl[2] * c; c4 = fl[3] * c; for (; m < k; ++m) { OPJ_FLOAT32 tmp1 = fw[-4]; OPJ_FLOAT32 tmp2 = fw[-3]; OPJ_FLOAT32 tmp3 = fw[-2]; OPJ_FLOAT32 tmp4 = fw[-1]; fw[-4] = tmp1 + c1; fw[-3] = tmp2 + c2; fw[-2] = tmp3 + c3; fw[-1] = tmp4 + c4; fw += 8; } } } #endif /* */ /* Inverse 9-7 wavelet transform in 1-D. */ /* */ static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt) { OPJ_INT32 a, b; if (dwt->cas == 0) { if (!((dwt->dn > 0) || (dwt->sn > 1))) { return; } a = 0; b = 1; } else { if (!((dwt->sn > 0) || (dwt->dn > 1))) { return; } a = 1; b = 0; } #ifdef __SSE__ opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->sn, _mm_set1_ps(opj_K)); opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->dn, _mm_set1_ps(opj_c13318)); opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, dwt->sn, opj_int_min(dwt->sn, dwt->dn - a), _mm_set1_ps(opj_dwt_delta)); opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, dwt->dn, opj_int_min(dwt->dn, dwt->sn - b), _mm_set1_ps(opj_dwt_gamma)); opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, dwt->sn, opj_int_min(dwt->sn, dwt->dn - a), _mm_set1_ps(opj_dwt_beta)); opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, dwt->dn, opj_int_min(dwt->dn, dwt->sn - b), _mm_set1_ps(opj_dwt_alpha)); #else opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->sn, opj_K); opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->dn, opj_c13318); opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, dwt->sn, opj_int_min(dwt->sn, dwt->dn - a), opj_dwt_delta); opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, dwt->dn, opj_int_min(dwt->dn, dwt->sn - b), opj_dwt_gamma); opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, dwt->sn, opj_int_min(dwt->sn, dwt->dn - a), opj_dwt_beta); opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, dwt->dn, opj_int_min(dwt->dn, dwt->sn - b), opj_dwt_alpha); #endif } /* */ /* Inverse 9-7 wavelet transform in 2-D. */ /* */ OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, OPJ_UINT32 numres) { opj_v4dwt_t h; opj_v4dwt_t v; opj_tcd_resolution_t* res = tilec->resolutions; OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); size_t l_data_size; l_data_size = opj_dwt_max_resolution(res, numres); /* overflow check */ if (l_data_size > (SIZE_MAX - 5U)) { /* FIXME event manager error callback */ return OPJ_FALSE; } l_data_size += 5U; /* overflow check */ if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) { /* FIXME event manager error callback */ return OPJ_FALSE; } h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t)); if (!h.wavelet) { /* FIXME event manager error callback */ return OPJ_FALSE; } v.wavelet = h.wavelet; while (--numres) { OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data; OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0)); OPJ_INT32 j; h.sn = (OPJ_INT32)rw; v.sn = (OPJ_INT32)rh; ++res; rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); h.cas = res->x0 % 2; for (j = (OPJ_INT32)rh; j > 3; j -= 4) { OPJ_INT32 k; opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); opj_v4dwt_decode(&h); for (k = (OPJ_INT32)rw; --k >= 0;) { aj[k ] = h.wavelet[k].f[0]; aj[k + (OPJ_INT32)w ] = h.wavelet[k].f[1]; aj[k + (OPJ_INT32)w * 2] = h.wavelet[k].f[2]; aj[k + (OPJ_INT32)w * 3] = h.wavelet[k].f[3]; } aj += w * 4; bufsize -= w * 4; } if (rh & 0x03) { OPJ_INT32 k; j = rh & 0x03; opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); opj_v4dwt_decode(&h); for (k = (OPJ_INT32)rw; --k >= 0;) { switch (j) { case 3: aj[k + (OPJ_INT32)w * 2] = h.wavelet[k].f[2]; /* FALLTHRU */ case 2: aj[k + (OPJ_INT32)w ] = h.wavelet[k].f[1]; /* FALLTHRU */ case 1: aj[k ] = h.wavelet[k].f[0]; } } } v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); v.cas = res->y0 % 2; aj = (OPJ_FLOAT32*) tilec->data; for (j = (OPJ_INT32)rw; j > 3; j -= 4) { OPJ_UINT32 k; opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4); opj_v4dwt_decode(&v); for (k = 0; k < rh; ++k) { memcpy(&aj[k * w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); } aj += 4; } if (rw & 0x03) { OPJ_UINT32 k; j = rw & 0x03; opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j); opj_v4dwt_decode(&v); for (k = 0; k < rh; ++k) { memcpy(&aj[k * w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32)); } } } opj_aligned_free(h.wavelet); return OPJ_TRUE; }