/* * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2007, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2006-2007, Parvatha Elangovan * Copyright (c) 2008, Jerome Fimes, Communications & Systemes * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "pi.h" #include "int.h" #include "opj_malloc.h" #include "j2k.h" /** @defgroup PI PI - Implementation of a packet iterator */ /*@{*/ /** @name Local static functions */ /*@{*/ /** Get next packet in layer-resolution-component-precinct order. @param pi packet iterator to modify @return returns false if pi pointed to the last packet or else returns true */ static bool pi_next_lrcp(opj_pi_iterator_t * pi); /** Get next packet in resolution-layer-component-precinct order. @param pi packet iterator to modify @return returns false if pi pointed to the last packet or else returns true */ static bool pi_next_rlcp(opj_pi_iterator_t * pi); /** Get next packet in resolution-precinct-component-layer order. @param pi packet iterator to modify @return returns false if pi pointed to the last packet or else returns true */ static bool pi_next_rpcl(opj_pi_iterator_t * pi); /** Get next packet in precinct-component-resolution-layer order. @param pi packet iterator to modify @return returns false if pi pointed to the last packet or else returns true */ static bool pi_next_pcrl(opj_pi_iterator_t * pi); /** Get next packet in component-precinct-resolution-layer order. @param pi packet iterator to modify @return returns false if pi pointed to the last packet or else returns true */ static bool pi_next_cprl(opj_pi_iterator_t * pi); /** * Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used). * * @param p_cp the coding parameters to modify * @param p_tileno the tile index being concerned. * @param p_tx0 X0 parameter for the tile * @param p_tx1 X1 parameter for the tile * @param p_ty0 Y0 parameter for the tile * @param p_ty1 Y1 parameter for the tile * @param p_max_prec the maximum precision for all the bands of the tile * @param p_max_res the maximum number of resolutions for all the poc inside the tile. * @param dx_min the minimum dx of all the components of all the resolutions for the tile. * @param dy_min the minimum dy of all the components of all the resolutions for the tile. */ void pi_update_encode_poc_and_final ( opj_cp_t *p_cp, OPJ_UINT32 p_tileno, OPJ_INT32 p_tx0, OPJ_INT32 p_tx1, OPJ_INT32 p_ty0, OPJ_INT32 p_ty1, OPJ_UINT32 p_max_prec, OPJ_UINT32 p_max_res, OPJ_UINT32 p_dx_min, OPJ_UINT32 p_dy_min); /** * Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used). * * @param p_cp the coding parameters to modify * @param p_tileno the tile index being concerned. * @param p_tx0 X0 parameter for the tile * @param p_tx1 X1 parameter for the tile * @param p_ty0 Y0 parameter for the tile * @param p_ty1 Y1 parameter for the tile * @param p_max_prec the maximum precision for all the bands of the tile * @param p_max_res the maximum number of resolutions for all the poc inside the tile. * @param dx_min the minimum dx of all the components of all the resolutions for the tile. * @param dy_min the minimum dy of all the components of all the resolutions for the tile. */ void pi_update_encode_not_poc ( opj_cp_t *p_cp, OPJ_UINT32 p_num_comps, OPJ_UINT32 p_tileno, OPJ_INT32 p_tx0, OPJ_INT32 p_tx1, OPJ_INT32 p_ty0, OPJ_INT32 p_ty1, OPJ_UINT32 p_max_prec, OPJ_UINT32 p_max_res, OPJ_UINT32 p_dx_min, OPJ_UINT32 p_dy_min); /** * Gets the encoding parameters needed to update the coding parameters and all the pocs. * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param tileno the tile index of the tile being encoded. * @param p_tx0 pointer that will hold the X0 parameter for the tile * @param p_tx1 pointer that will hold the X1 parameter for the tile * @param p_ty0 pointer that will hold the Y0 parameter for the tile * @param p_ty1 pointer that will hold the Y1 parameter for the tile * @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile * @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile. * @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile. * @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile. */ void get_encoding_parameters( const opj_image_t *p_image, const opj_cp_t *p_cp, OPJ_UINT32 tileno, OPJ_INT32 * p_tx0, OPJ_INT32 * p_tx1, OPJ_INT32 * p_ty0, OPJ_INT32 * p_ty1, OPJ_UINT32 * p_dx_min, OPJ_UINT32 * p_dy_min, OPJ_UINT32 * p_max_prec, OPJ_UINT32 * p_max_res ); /** * Gets the encoding parameters needed to update the coding parameters and all the pocs. * The precinct widths, heights, dx and dy for each component at each resolution will be stored as well. * the last parameter of the function should be an array of pointers of size nb components, each pointer leading * to an area of size 4 * max_res. The data is stored inside this area with the following pattern : * dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ... * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param tileno the tile index of the tile being encoded. * @param p_tx0 pointer that will hold the X0 parameter for the tile * @param p_tx1 pointer that will hold the X1 parameter for the tile * @param p_ty0 pointer that will hold the Y0 parameter for the tile * @param p_ty1 pointer that will hold the Y1 parameter for the tile * @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile * @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile. * @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile. * @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile. * @param p_resolutions pointer to an area corresponding to the one described above. */ void get_all_encoding_parameters( const opj_image_t *p_image, const opj_cp_t *p_cp, OPJ_UINT32 tileno, OPJ_INT32 * p_tx0, OPJ_INT32 * p_tx1, OPJ_INT32 * p_ty0, OPJ_INT32 * p_ty1, OPJ_UINT32 * p_dx_min, OPJ_UINT32 * p_dy_min, OPJ_UINT32 * p_max_prec, OPJ_UINT32 * p_max_res, OPJ_UINT32 ** p_resolutions ); /** * Allocates memory for a packet iterator. Data and data sizes are set by this operation. * No other data is set. The include section of the packet iterator is not allocated. * * @param p_image the image used to initialize the packet iterator (in fact only the number of components is relevant. * @param p_cp the coding parameters. * @param p_tile_no the index of the tile from which creating the packet iterator. */ opj_pi_iterator_t * pi_create( const opj_image_t *image, const opj_cp_t *cp, OPJ_UINT32 tileno ); void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res); void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res); /*@}*/ /*@}*/ /* ========================================================== local functions ========================================================== */ static bool pi_next_lrcp(opj_pi_iterator_t * pi) { opj_pi_comp_t *comp = 00; opj_pi_resolution_t *res = 00; OPJ_UINT32 index = 0; if (!pi->first) { comp = &pi->comps[pi->compno]; res = &comp->resolutions[pi->resno]; goto LABEL_SKIP; } else { pi->first = 0; } for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) { for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) { for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) { comp = &pi->comps[pi->compno]; if (pi->resno >= comp->numresolutions) { continue; } res = &comp->resolutions[pi->resno]; if (!pi->tp_on){ pi->poc.precno1 = res->pw * res->ph; } for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) { index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p; if (!pi->include[index]) { pi->include[index] = 1; return true; } LABEL_SKIP:; } } } } return false; } static bool pi_next_rlcp(opj_pi_iterator_t * pi) { opj_pi_comp_t *comp = 00; opj_pi_resolution_t *res = 00; OPJ_UINT32 index = 0; if (!pi->first) { comp = &pi->comps[pi->compno]; res = &comp->resolutions[pi->resno]; goto LABEL_SKIP; } else { pi->first = 0; } for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) { for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) { for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) { comp = &pi->comps[pi->compno]; if (pi->resno >= comp->numresolutions) { continue; } res = &comp->resolutions[pi->resno]; if(!pi->tp_on){ pi->poc.precno1 = res->pw * res->ph; } for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) { index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p; if (!pi->include[index]) { pi->include[index] = 1; return true; } LABEL_SKIP:; } } } } return false; } static bool pi_next_rpcl(opj_pi_iterator_t * pi) { opj_pi_comp_t *comp = 00; opj_pi_resolution_t *res = 00; OPJ_UINT32 index = 0; if (!pi->first) { goto LABEL_SKIP; } else { OPJ_UINT32 compno, resno; pi->first = 0; pi->dx = 0; pi->dy = 0; for (compno = 0; compno < pi->numcomps; compno++) { comp = &pi->comps[compno]; for (resno = 0; resno < comp->numresolutions; resno++) { OPJ_UINT32 dx, dy; res = &comp->resolutions[resno]; dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno)); dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno)); pi->dx = !pi->dx ? dx : int_min(pi->dx, dx); pi->dy = !pi->dy ? dy : int_min(pi->dy, dy); } } } if (!pi->tp_on){ pi->poc.ty0 = pi->ty0; pi->poc.tx0 = pi->tx0; pi->poc.ty1 = pi->ty1; pi->poc.tx1 = pi->tx1; } for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) { for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) { for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) { for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) { OPJ_UINT32 levelno; OPJ_INT32 trx0, try0; OPJ_INT32 trx1, try1; OPJ_UINT32 rpx, rpy; OPJ_INT32 prci, prcj; comp = &pi->comps[pi->compno]; if (pi->resno >= comp->numresolutions) { continue; } res = &comp->resolutions[pi->resno]; levelno = comp->numresolutions - 1 - pi->resno; trx0 = int_ceildiv(pi->tx0, comp->dx << levelno); try0 = int_ceildiv(pi->ty0, comp->dy << levelno); trx1 = int_ceildiv(pi->tx1, comp->dx << levelno); try1 = int_ceildiv(pi->ty1, comp->dy << levelno); rpx = res->pdx + levelno; rpy = res->pdy + levelno; if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpx))))){ continue; } if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){ continue; } if ((res->pw==0)||(res->ph==0)) continue; if ((trx0==trx1)||(try0==try1)) continue; prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx) - int_floordivpow2(trx0, res->pdx); prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy) - int_floordivpow2(try0, res->pdy); pi->precno = prci + prcj * res->pw; for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) { index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p; if (!pi->include[index]) { pi->include[index] = 1; return true; } LABEL_SKIP:; } } } } } return false; } static bool pi_next_pcrl(opj_pi_iterator_t * pi) { opj_pi_comp_t *comp = 00; opj_pi_resolution_t *res = 00; OPJ_UINT32 index = 0; if (!pi->first) { comp = &pi->comps[pi->compno]; goto LABEL_SKIP; } else { OPJ_UINT32 compno, resno; pi->first = 0; pi->dx = 0; pi->dy = 0; for (compno = 0; compno < pi->numcomps; compno++) { comp = &pi->comps[compno]; for (resno = 0; resno < comp->numresolutions; resno++) { OPJ_UINT32 dx, dy; res = &comp->resolutions[resno]; dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno)); dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno)); pi->dx = !pi->dx ? dx : int_min(pi->dx, dx); pi->dy = !pi->dy ? dy : int_min(pi->dy, dy); } } } if (!pi->tp_on){ pi->poc.ty0 = pi->ty0; pi->poc.tx0 = pi->tx0; pi->poc.ty1 = pi->ty1; pi->poc.tx1 = pi->tx1; } for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) { for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) { for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) { comp = &pi->comps[pi->compno]; // TODO for (pi->resno = pi->poc.resno0; pi->resno < uint_min(pi->poc.resno1, comp->numresolutions); pi->resno++) { OPJ_UINT32 levelno; OPJ_INT32 trx0, try0; OPJ_INT32 trx1, try1; OPJ_UINT32 rpx, rpy; OPJ_INT32 prci, prcj; res = &comp->resolutions[pi->resno]; levelno = comp->numresolutions - 1 - pi->resno; trx0 = int_ceildiv(pi->tx0, comp->dx << levelno); try0 = int_ceildiv(pi->ty0, comp->dy << levelno); trx1 = int_ceildiv(pi->tx1, comp->dx << levelno); try1 = int_ceildiv(pi->ty1, comp->dy << levelno); rpx = res->pdx + levelno; rpy = res->pdy + levelno; if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpx))))){ continue; } if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){ continue; } if ((res->pw==0)||(res->ph==0)) continue; if ((trx0==trx1)||(try0==try1)) continue; prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx) - int_floordivpow2(trx0, res->pdx); prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy) - int_floordivpow2(try0, res->pdy); pi->precno = prci + prcj * res->pw; for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) { index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p; if (!pi->include[index]) { pi->include[index] = 1; return true; } LABEL_SKIP:; } } } } } return false; } static bool pi_next_cprl(opj_pi_iterator_t * pi) { opj_pi_comp_t *comp = 00; opj_pi_resolution_t *res = 00; OPJ_UINT32 index = 0; if (!pi->first) { comp = &pi->comps[pi->compno]; goto LABEL_SKIP; } else { pi->first = 0; } for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) { OPJ_UINT32 resno; comp = &pi->comps[pi->compno]; pi->dx = 0; pi->dy = 0; for (resno = 0; resno < comp->numresolutions; resno++) { OPJ_UINT32 dx, dy; res = &comp->resolutions[resno]; dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno)); dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno)); pi->dx = !pi->dx ? dx : int_min(pi->dx, dx); pi->dy = !pi->dy ? dy : int_min(pi->dy, dy); } if (!pi->tp_on){ pi->poc.ty0 = pi->ty0; pi->poc.tx0 = pi->tx0; pi->poc.ty1 = pi->ty1; pi->poc.tx1 = pi->tx1; } for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) { for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) { // TODO for (pi->resno = pi->poc.resno0; pi->resno < uint_min(pi->poc.resno1, comp->numresolutions); pi->resno++) { OPJ_UINT32 levelno; OPJ_INT32 trx0, try0; OPJ_INT32 trx1, try1; OPJ_UINT32 rpx, rpy; OPJ_INT32 prci, prcj; res = &comp->resolutions[pi->resno]; levelno = comp->numresolutions - 1 - pi->resno; trx0 = int_ceildiv(pi->tx0, comp->dx << levelno); try0 = int_ceildiv(pi->ty0, comp->dy << levelno); trx1 = int_ceildiv(pi->tx1, comp->dx << levelno); try1 = int_ceildiv(pi->ty1, comp->dy << levelno); rpx = res->pdx + levelno; rpy = res->pdy + levelno; if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpx))))){ continue; } if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){ continue; } if ((res->pw==0)||(res->pw==0)) continue; if ((trx0==trx1)||(try0==try1)) continue; prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx) - int_floordivpow2(trx0, res->pdx); prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy) - int_floordivpow2(try0, res->pdy); pi->precno = prci + prcj * res->pw; for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) { index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p; if (!pi->include[index]) { pi->include[index] = 1; return true; } LABEL_SKIP:; } } } } } return false; } /* ========================================================== Packet iterator interface ========================================================== */ opj_pi_iterator_t *pi_create_decode( opj_image_t *p_image, opj_cp_t *p_cp, OPJ_UINT32 p_tile_no ) { // loop OPJ_UINT32 pino; OPJ_UINT32 compno, resno; // to store w, h, dx and dy fro all components and resolutions OPJ_UINT32 * l_tmp_data; OPJ_UINT32 ** l_tmp_ptr; // encoding prameters to set OPJ_UINT32 l_max_res; OPJ_UINT32 l_max_prec; OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1; OPJ_UINT32 l_dx_min,l_dy_min; OPJ_UINT32 l_bound; OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ; OPJ_UINT32 l_data_stride; // pointers opj_pi_iterator_t *l_pi = 00; opj_tcp_t *l_tcp = 00; const opj_tccp_t *l_tccp = 00; opj_pi_comp_t *l_current_comp = 00; opj_image_comp_t * l_img_comp = 00; opj_pi_iterator_t * l_current_pi = 00; OPJ_UINT32 * l_encoding_value_ptr = 00; // preconditions in debug assert(p_cp != 00); assert(p_image != 00); assert(p_tile_no < p_cp->tw * p_cp->th); // initializations l_tcp = &p_cp->tcps[p_tile_no]; l_bound = l_tcp->numpocs+1; l_data_stride = 4 * J2K_MAXRLVLS; l_tmp_data = opj_malloc(l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32)); if (! l_tmp_data) { return 00; } l_tmp_ptr = opj_malloc(p_image->numcomps * sizeof(OPJ_UINT32 *)); if (! l_tmp_ptr) { opj_free(l_tmp_data); return 00; } // memory allocation for pi l_pi = pi_create(p_image,p_cp,p_tile_no); if (!l_pi) { opj_free(l_tmp_data); opj_free(l_tmp_ptr); return 00; } l_encoding_value_ptr = l_tmp_data; // update pointer array for (compno = 0; compno < p_image->numcomps; ++compno) { l_tmp_ptr[compno] = l_encoding_value_ptr; l_encoding_value_ptr += l_data_stride; } // get encoding parameters get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr); // step calculations l_step_p = 1; l_step_c = l_max_prec * l_step_p; l_step_r = p_image->numcomps * l_step_c; l_step_l = l_max_res * l_step_r; // set values for first packet iterator l_current_pi = l_pi; // memory allocation for include l_current_pi->include = (OPJ_INT16*) opj_calloc(l_tcp->numlayers * l_step_l, sizeof(OPJ_INT16)); if (!l_current_pi->include) { opj_free(l_tmp_data); opj_free(l_tmp_ptr); pi_destroy(l_pi, l_bound); return 00; } memset(l_current_pi->include,0,l_tcp->numlayers * l_step_l* sizeof(OPJ_INT16)); // special treatment for the first packet iterator l_current_comp = l_current_pi->comps; l_img_comp = p_image->comps; l_tccp = l_tcp->tccps; l_current_pi->tx0 = l_tx0; l_current_pi->ty0 = l_ty0; l_current_pi->tx1 = l_tx1; l_current_pi->ty1 = l_ty1; //l_current_pi->dx = l_img_comp->dx; //l_current_pi->dy = l_img_comp->dy; l_current_pi->step_p = l_step_p; l_current_pi->step_c = l_step_c; l_current_pi->step_r = l_step_r; l_current_pi->step_l = l_step_l; /* allocation for components and number of components has already been calculated by pi_create */ for (compno = 0; compno < l_current_pi->numcomps; ++compno) { opj_pi_resolution_t *l_res = l_current_comp->resolutions; l_encoding_value_ptr = l_tmp_ptr[compno]; l_current_comp->dx = l_img_comp->dx; l_current_comp->dy = l_img_comp->dy; /* resolutions have already been initialized */ for (resno = 0; resno < l_current_comp->numresolutions; resno++) { l_res->pdx = *(l_encoding_value_ptr++); l_res->pdy = *(l_encoding_value_ptr++); l_res->pw = *(l_encoding_value_ptr++); l_res->ph = *(l_encoding_value_ptr++); ++l_res; } ++l_current_comp; ++l_img_comp; ++l_tccp; } ++l_current_pi; for (pino = 1 ; pinocomps; opj_image_comp_t * l_img_comp = p_image->comps; l_tccp = l_tcp->tccps; l_current_pi->tx0 = l_tx0; l_current_pi->ty0 = l_ty0; l_current_pi->tx1 = l_tx1; l_current_pi->ty1 = l_ty1; //l_current_pi->dx = l_dx_min; //l_current_pi->dy = l_dy_min; l_current_pi->step_p = l_step_p; l_current_pi->step_c = l_step_c; l_current_pi->step_r = l_step_r; l_current_pi->step_l = l_step_l; /* allocation for components and number of components has already been calculated by pi_create */ for (compno = 0; compno < l_current_pi->numcomps; ++compno) { opj_pi_resolution_t *l_res = l_current_comp->resolutions; l_encoding_value_ptr = l_tmp_ptr[compno]; l_current_comp->dx = l_img_comp->dx; l_current_comp->dy = l_img_comp->dy; /* resolutions have already been initialized */ for (resno = 0; resno < l_current_comp->numresolutions; resno++) { l_res->pdx = *(l_encoding_value_ptr++); l_res->pdy = *(l_encoding_value_ptr++); l_res->pw = *(l_encoding_value_ptr++); l_res->ph = *(l_encoding_value_ptr++); ++l_res; } ++l_current_comp; ++l_img_comp; ++l_tccp; } // special treatment l_current_pi->include = (l_current_pi-1)->include; ++l_current_pi; } opj_free(l_tmp_data); l_tmp_data = 00; opj_free(l_tmp_ptr); l_tmp_ptr = 00; if (l_tcp->POC) { pi_update_decode_poc (l_pi,l_tcp,l_max_prec,l_max_res); } else { pi_update_decode_not_poc(l_pi,l_tcp,l_max_prec,l_max_res); } return l_pi; } void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res) { // loop OPJ_UINT32 pino; // encoding prameters to set OPJ_UINT32 l_bound; opj_pi_iterator_t * l_current_pi = 00; opj_poc_t* l_current_poc = 0; // preconditions in debug assert(p_pi != 00); assert(p_tcp != 00); // initializations l_bound = p_tcp->numpocs+1; l_current_pi = p_pi; l_current_poc = p_tcp->pocs; for (pino = 0;pinopoc.prg = l_current_poc->prg; l_current_pi->first = 1; l_current_pi->poc.resno0 = l_current_poc->resno0; l_current_pi->poc.compno0 = l_current_poc->compno0; l_current_pi->poc.layno0 = 0; l_current_pi->poc.precno0 = 0; l_current_pi->poc.resno1 = l_current_poc->resno1; l_current_pi->poc.compno1 = l_current_poc->compno1; l_current_pi->poc.layno1 = l_current_poc->layno1; l_current_pi->poc.precno1 = p_max_precision; ++l_current_pi; ++l_current_poc; } } void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res) { // loop OPJ_UINT32 pino; // encoding prameters to set OPJ_UINT32 l_bound; opj_pi_iterator_t * l_current_pi = 00; // preconditions in debug assert(p_tcp != 00); assert(p_pi != 00); // initializations l_bound = p_tcp->numpocs+1; l_current_pi = p_pi; for (pino = 0;pinopoc.prg = p_tcp->prg; l_current_pi->first = 1; l_current_pi->poc.resno0 = 0; l_current_pi->poc.compno0 = 0; l_current_pi->poc.layno0 = 0; l_current_pi->poc.precno0 = 0; l_current_pi->poc.resno1 = p_max_res; l_current_pi->poc.compno1 = l_current_pi->numcomps; l_current_pi->poc.layno1 = p_tcp->numlayers; l_current_pi->poc.precno1 = p_max_precision; ++l_current_pi; } } /** * Creates a packet iterator for encoding. * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param p_tile_no index of the tile being encoded. * @param p_t2_mode the type of pass for generating the packet iterator * @return a list of packet iterator that points to the first packet of the tile (not true). */ opj_pi_iterator_t *pi_initialise_encode( const opj_image_t *p_image, opj_cp_t *p_cp, OPJ_UINT32 p_tile_no, J2K_T2_MODE p_t2_mode ) { // loop OPJ_UINT32 pino; OPJ_UINT32 compno, resno; // to store w, h, dx and dy fro all components and resolutions OPJ_UINT32 * l_tmp_data; OPJ_UINT32 ** l_tmp_ptr; // encoding prameters to set OPJ_UINT32 l_max_res; OPJ_UINT32 l_max_prec; OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1; OPJ_UINT32 l_dx_min,l_dy_min; OPJ_UINT32 l_bound; OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ; OPJ_UINT32 l_data_stride; // pointers opj_pi_iterator_t *l_pi = 00; opj_tcp_t *l_tcp = 00; const opj_tccp_t *l_tccp = 00; opj_pi_comp_t *l_current_comp = 00; opj_image_comp_t * l_img_comp = 00; opj_pi_iterator_t * l_current_pi = 00; OPJ_UINT32 * l_encoding_value_ptr = 00; // preconditions in debug assert(p_cp != 00); assert(p_image != 00); assert(p_tile_no < p_cp->tw * p_cp->th); // initializations l_tcp = &p_cp->tcps[p_tile_no]; l_bound = l_tcp->numpocs+1; l_data_stride = 4 * J2K_MAXRLVLS; l_tmp_data = opj_malloc(l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32)); if (! l_tmp_data) { return 00; } l_tmp_ptr = opj_malloc(p_image->numcomps * sizeof(OPJ_UINT32 *)); if (! l_tmp_ptr) { opj_free(l_tmp_data); return 00; } // memory allocation for pi l_pi = pi_create(p_image,p_cp,p_tile_no); if (!l_pi) { opj_free(l_tmp_data); opj_free(l_tmp_ptr); return 00; } l_encoding_value_ptr = l_tmp_data; // update pointer array for (compno = 0; compno < p_image->numcomps; ++compno) { l_tmp_ptr[compno] = l_encoding_value_ptr; l_encoding_value_ptr += l_data_stride; } // get encoding parameters get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr); // step calculations l_step_p = 1; l_step_c = l_max_prec * l_step_p; l_step_r = p_image->numcomps * l_step_c; l_step_l = l_max_res * l_step_r; // set values for first packet iterator l_pi->tp_on = p_cp->m_specific_param.m_enc.m_tp_on; l_current_pi = l_pi; // memory allocation for include l_current_pi->include = (OPJ_INT16*) opj_calloc(l_tcp->numlayers * l_step_l, sizeof(OPJ_INT16)); if (!l_current_pi->include) { opj_free(l_tmp_data); opj_free(l_tmp_ptr); pi_destroy(l_pi, l_bound); return 00; } memset(l_current_pi->include,0,l_tcp->numlayers * l_step_l* sizeof(OPJ_INT16)); // special treatment for the first packet iterator l_current_comp = l_current_pi->comps; l_img_comp = p_image->comps; l_tccp = l_tcp->tccps; l_current_pi->tx0 = l_tx0; l_current_pi->ty0 = l_ty0; l_current_pi->tx1 = l_tx1; l_current_pi->ty1 = l_ty1; l_current_pi->dx = l_dx_min; l_current_pi->dy = l_dy_min; l_current_pi->step_p = l_step_p; l_current_pi->step_c = l_step_c; l_current_pi->step_r = l_step_r; l_current_pi->step_l = l_step_l; /* allocation for components and number of components has already been calculated by pi_create */ for (compno = 0; compno < l_current_pi->numcomps; ++compno) { opj_pi_resolution_t *l_res = l_current_comp->resolutions; l_encoding_value_ptr = l_tmp_ptr[compno]; l_current_comp->dx = l_img_comp->dx; l_current_comp->dy = l_img_comp->dy; /* resolutions have already been initialized */ for (resno = 0; resno < l_current_comp->numresolutions; resno++) { l_res->pdx = *(l_encoding_value_ptr++); l_res->pdy = *(l_encoding_value_ptr++); l_res->pw = *(l_encoding_value_ptr++); l_res->ph = *(l_encoding_value_ptr++); ++l_res; } ++l_current_comp; ++l_img_comp; ++l_tccp; } ++l_current_pi; for (pino = 1 ; pinocomps; opj_image_comp_t * l_img_comp = p_image->comps; l_tccp = l_tcp->tccps; l_current_pi->tx0 = l_tx0; l_current_pi->ty0 = l_ty0; l_current_pi->tx1 = l_tx1; l_current_pi->ty1 = l_ty1; l_current_pi->dx = l_dx_min; l_current_pi->dy = l_dy_min; l_current_pi->step_p = l_step_p; l_current_pi->step_c = l_step_c; l_current_pi->step_r = l_step_r; l_current_pi->step_l = l_step_l; /* allocation for components and number of components has already been calculated by pi_create */ for (compno = 0; compno < l_current_pi->numcomps; ++compno) { opj_pi_resolution_t *l_res = l_current_comp->resolutions; l_encoding_value_ptr = l_tmp_ptr[compno]; l_current_comp->dx = l_img_comp->dx; l_current_comp->dy = l_img_comp->dy; /* resolutions have already been initialized */ for (resno = 0; resno < l_current_comp->numresolutions; resno++) { l_res->pdx = *(l_encoding_value_ptr++); l_res->pdy = *(l_encoding_value_ptr++); l_res->pw = *(l_encoding_value_ptr++); l_res->ph = *(l_encoding_value_ptr++); ++l_res; } ++l_current_comp; ++l_img_comp; ++l_tccp; } // special treatment l_current_pi->include = (l_current_pi-1)->include; ++l_current_pi; } opj_free(l_tmp_data); l_tmp_data = 00; opj_free(l_tmp_ptr); l_tmp_ptr = 00; if (l_tcp->POC && ( p_cp->m_specific_param.m_enc.m_cinema || p_t2_mode == FINAL_PASS)) { pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min); } else { pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min); } return l_pi; } /** * Updates the encoding parameters of the codec. * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param p_tile_no index of the tile being encoded. */ void pi_update_encoding_parameters( const opj_image_t *p_image, opj_cp_t *p_cp, OPJ_UINT32 p_tile_no ) { // encoding prameters to set OPJ_UINT32 l_max_res; OPJ_UINT32 l_max_prec; OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1; OPJ_UINT32 l_dx_min,l_dy_min; // pointers opj_tcp_t *l_tcp = 00; // preconditions in debug assert(p_cp != 00); assert(p_image != 00); assert(p_tile_no < p_cp->tw * p_cp->th); l_tcp = &(p_cp->tcps[p_tile_no]); // get encoding parameters get_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res); if (l_tcp->POC) { pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min); } else { pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min); } } /** * Gets the encoding parameters needed to update the coding parameters and all the pocs. * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param p_tileno the tile index of the tile being encoded. * @param p_tx0 pointer that will hold the X0 parameter for the tile * @param p_tx1 pointer that will hold the X1 parameter for the tile * @param p_ty0 pointer that will hold the Y0 parameter for the tile * @param p_ty1 pointer that will hold the Y1 parameter for the tile * @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile * @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile. * @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile. * @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile. */ void get_encoding_parameters( const opj_image_t *p_image, const opj_cp_t *p_cp, OPJ_UINT32 p_tileno, OPJ_INT32 * p_tx0, OPJ_INT32 * p_tx1, OPJ_INT32 * p_ty0, OPJ_INT32 * p_ty1, OPJ_UINT32 * p_dx_min, OPJ_UINT32 * p_dy_min, OPJ_UINT32 * p_max_prec, OPJ_UINT32 * p_max_res ) { // loop OPJ_UINT32 compno, resno; // pointers const opj_tcp_t *l_tcp = 00; const opj_tccp_t * l_tccp = 00; const opj_image_comp_t * l_img_comp = 00; // position in x and y of tile OPJ_UINT32 p, q; // preconditions in debug assert(p_cp != 00); assert(p_image != 00); assert(p_tileno < p_cp->tw * p_cp->th); // initializations l_tcp = &p_cp->tcps [p_tileno]; l_img_comp = p_image->comps; l_tccp = l_tcp->tccps; /* here calculation of tx0, tx1, ty0, ty1, maxprec, dx and dy */ p = p_tileno % p_cp->tw; q = p_tileno / p_cp->tw; // find extent of tile *p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0); *p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1); *p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0); *p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1); // max precision is 0 (can only grow) *p_max_prec = 0; *p_max_res = 0; // take the largest value for dx_min and dy_min *p_dx_min = 0x7fffffff; *p_dy_min = 0x7fffffff; for (compno = 0; compno < p_image->numcomps; ++compno) { // aritmetic variables to calculate OPJ_UINT32 l_level_no; OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1; OPJ_INT32 l_px0, l_py0, l_px1, py1; OPJ_UINT32 l_pdx, l_pdy; OPJ_UINT32 l_pw, l_ph; OPJ_UINT32 l_product; OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1; l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx); l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy); l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx); l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy); if (l_tccp->numresolutions > *p_max_res) { *p_max_res = l_tccp->numresolutions; } // use custom size for precincts for (resno = 0; resno < l_tccp->numresolutions; ++resno) { OPJ_UINT32 l_dx, l_dy; // precinct width and height l_pdx = l_tccp->prcw[resno]; l_pdy = l_tccp->prch[resno]; l_dx = l_img_comp->dx * (1 << (l_pdx + l_tccp->numresolutions - 1 - resno)); l_dy = l_img_comp->dy * (1 << (l_pdy + l_tccp->numresolutions - 1 - resno)); // take the minimum size for dx for each comp and resolution *p_dx_min = uint_min(*p_dx_min, l_dx); *p_dy_min = uint_min(*p_dy_min, l_dy); // various calculations of extents l_level_no = l_tccp->numresolutions - 1 - resno; l_rx0 = int_ceildivpow2(l_tcx0, l_level_no); l_ry0 = int_ceildivpow2(l_tcy0, l_level_no); l_rx1 = int_ceildivpow2(l_tcx1, l_level_no); l_ry1 = int_ceildivpow2(l_tcy1, l_level_no); l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx; l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy; l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx; py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy; l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx); l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy); l_product = l_pw * l_ph; // update precision if (l_product > *p_max_prec) { *p_max_prec = l_product; } } ++l_img_comp; ++l_tccp; } } /** * Gets the encoding parameters needed to update the coding parameters and all the pocs. * The precinct widths, heights, dx and dy for each component at each resolution will be stored as well. * the last parameter of the function should be an array of pointers of size nb components, each pointer leading * to an area of size 4 * max_res. The data is stored inside this area with the following pattern : * dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ... * * @param p_image the image being encoded. * @param p_cp the coding parameters. * @param tileno the tile index of the tile being encoded. * @param p_tx0 pointer that will hold the X0 parameter for the tile * @param p_tx1 pointer that will hold the X1 parameter for the tile * @param p_ty0 pointer that will hold the Y0 parameter for the tile * @param p_ty1 pointer that will hold the Y1 parameter for the tile * @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile * @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile. * @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile. * @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile. * @param p_resolutions pointer to an area corresponding to the one described above. */ void get_all_encoding_parameters( const opj_image_t *p_image, const opj_cp_t *p_cp, OPJ_UINT32 tileno, OPJ_INT32 * p_tx0, OPJ_INT32 * p_tx1, OPJ_INT32 * p_ty0, OPJ_INT32 * p_ty1, OPJ_UINT32 * p_dx_min, OPJ_UINT32 * p_dy_min, OPJ_UINT32 * p_max_prec, OPJ_UINT32 * p_max_res, OPJ_UINT32 ** p_resolutions ) { // loop OPJ_UINT32 compno, resno; // pointers const opj_tcp_t *tcp = 00; const opj_tccp_t * l_tccp = 00; const opj_image_comp_t * l_img_comp = 00; // to store l_dx, l_dy, w and h for each resolution and component. OPJ_UINT32 * lResolutionPtr; // position in x and y of tile OPJ_UINT32 p, q; // preconditions in debug assert(p_cp != 00); assert(p_image != 00); assert(tileno < p_cp->tw * p_cp->th); // initializations tcp = &p_cp->tcps [tileno]; l_tccp = tcp->tccps; l_img_comp = p_image->comps; // position in x and y of tile p = tileno % p_cp->tw; q = tileno / p_cp->tw; /* here calculation of tx0, tx1, ty0, ty1, maxprec, l_dx and l_dy */ *p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0); *p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1); *p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0); *p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1); // max precision and resolution is 0 (can only grow) *p_max_prec = 0; *p_max_res = 0; // take the largest value for dx_min and dy_min *p_dx_min = 0x7fffffff; *p_dy_min = 0x7fffffff; for (compno = 0; compno < p_image->numcomps; ++compno) { // aritmetic variables to calculate OPJ_UINT32 l_level_no; OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1; OPJ_INT32 l_px0, l_py0, l_px1, py1; OPJ_UINT32 l_product; OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1; OPJ_UINT32 l_pdx, l_pdy , l_pw , l_ph; lResolutionPtr = p_resolutions[compno]; l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx); l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy); l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx); l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy); if (l_tccp->numresolutions > *p_max_res) { *p_max_res = l_tccp->numresolutions; } // use custom size for precincts l_level_no = l_tccp->numresolutions - 1; for (resno = 0; resno < l_tccp->numresolutions; ++resno) { OPJ_UINT32 l_dx, l_dy; // precinct width and height l_pdx = l_tccp->prcw[resno]; l_pdy = l_tccp->prch[resno]; *lResolutionPtr++ = l_pdx; *lResolutionPtr++ = l_pdy; l_dx = l_img_comp->dx * (1 << (l_pdx + l_level_no)); l_dy = l_img_comp->dy * (1 << (l_pdy + l_level_no)); // take the minimum size for l_dx for each comp and resolution *p_dx_min = int_min(*p_dx_min, l_dx); *p_dy_min = int_min(*p_dy_min, l_dy); // various calculations of extents l_rx0 = int_ceildivpow2(l_tcx0, l_level_no); l_ry0 = int_ceildivpow2(l_tcy0, l_level_no); l_rx1 = int_ceildivpow2(l_tcx1, l_level_no); l_ry1 = int_ceildivpow2(l_tcy1, l_level_no); l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx; l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy; l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx; py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy; l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx); l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy); *lResolutionPtr++ = l_pw; *lResolutionPtr++ = l_ph; l_product = l_pw * l_ph; // update precision if (l_product > *p_max_prec) { *p_max_prec = l_product; } --l_level_no; } ++l_tccp; ++l_img_comp; } } /** * Allocates memory for a packet iterator. Data and data sizes are set by this operation. * No other data is set. The include section of the packet iterator is not allocated. * * @param p_image the image used to initialize the packet iterator (in fact only the number of components is relevant. * @param p_cp the coding parameters. * @param p_tile_no the index of the tile from which creating the packet iterator. */ opj_pi_iterator_t * pi_create( const opj_image_t *image, const opj_cp_t *cp, OPJ_UINT32 tileno ) { // loop OPJ_UINT32 pino, compno; // number of poc in the p_pi OPJ_UINT32 l_poc_bound; // pointers to tile coding parameters and components. opj_pi_iterator_t *l_pi = 00; opj_tcp_t *tcp = 00; const opj_tccp_t *tccp = 00; // current packet iterator being allocated opj_pi_iterator_t *l_current_pi = 00; // preconditions in debug assert(cp != 00); assert(image != 00); assert(tileno < cp->tw * cp->th); // initializations tcp = &cp->tcps[tileno]; l_poc_bound = tcp->numpocs+1; // memory allocations l_pi = (opj_pi_iterator_t*) opj_calloc((l_poc_bound), sizeof(opj_pi_iterator_t)); if (!l_pi) { return 00; } memset(l_pi,0,l_poc_bound * sizeof(opj_pi_iterator_t)); l_current_pi = l_pi; for (pino = 0; pino < l_poc_bound ; ++pino) { l_current_pi->comps = (opj_pi_comp_t*) opj_calloc(image->numcomps, sizeof(opj_pi_comp_t)); if (! l_current_pi->comps) { pi_destroy(l_pi, l_poc_bound); return 00; } l_current_pi->numcomps = image->numcomps; memset(l_current_pi->comps,0,image->numcomps * sizeof(opj_pi_comp_t)); for (compno = 0; compno < image->numcomps; ++compno) { opj_pi_comp_t *comp = &l_current_pi->comps[compno]; tccp = &tcp->tccps[compno]; comp->resolutions = (opj_pi_resolution_t*) opj_malloc(tccp->numresolutions * sizeof(opj_pi_resolution_t)); if (!comp->resolutions) { pi_destroy(l_pi, l_poc_bound); return 00; } comp->numresolutions = tccp->numresolutions; memset(comp->resolutions,0,tccp->numresolutions * sizeof(opj_pi_resolution_t)); } ++l_current_pi; } return l_pi; } /** * Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used). * * @param p_cp the coding parameters to modify * @param p_tileno the tile index being concerned. * @param p_tx0 X0 parameter for the tile * @param p_tx1 X1 parameter for the tile * @param p_ty0 Y0 parameter for the tile * @param p_ty1 Y1 parameter for the tile * @param p_max_prec the maximum precision for all the bands of the tile * @param p_max_res the maximum number of resolutions for all the poc inside the tile. * @param dx_min the minimum dx of all the components of all the resolutions for the tile. * @param dy_min the minimum dy of all the components of all the resolutions for the tile. */ void pi_update_encode_poc_and_final ( opj_cp_t *p_cp, OPJ_UINT32 p_tileno, OPJ_INT32 p_tx0, OPJ_INT32 p_tx1, OPJ_INT32 p_ty0, OPJ_INT32 p_ty1, OPJ_UINT32 p_max_prec, OPJ_UINT32 p_max_res, OPJ_UINT32 p_dx_min, OPJ_UINT32 p_dy_min) { // loop OPJ_UINT32 pino; // tile coding parameter opj_tcp_t *l_tcp = 00; // current poc being updated opj_poc_t * l_current_poc = 00; // number of pocs OPJ_UINT32 l_poc_bound; // preconditions in debug assert(p_cp != 00); assert(p_tileno < p_cp->tw * p_cp->th); // initializations l_tcp = &p_cp->tcps [p_tileno]; /* number of iterations in the loop */ l_poc_bound = l_tcp->numpocs+1; // start at first element, and to make sure the compiler will not make a calculation each time in the loop // store a pointer to the current element to modify rather than l_tcp->pocs[i] l_current_poc = l_tcp->pocs; l_current_poc->compS = l_current_poc->compno0; l_current_poc->compE = l_current_poc->compno1; l_current_poc->resS = l_current_poc->resno0; l_current_poc->resE = l_current_poc->resno1; l_current_poc->layE = l_current_poc->layno1; // special treatment for the first element l_current_poc->layS = 0; l_current_poc->prg = l_current_poc->prg1; l_current_poc->prcS = 0; l_current_poc->prcE = p_max_prec; l_current_poc->txS = p_tx0; l_current_poc->txE = p_tx1; l_current_poc->tyS = p_ty0; l_current_poc->tyE = p_ty1; l_current_poc->dx = p_dx_min; l_current_poc->dy = p_dy_min; ++ l_current_poc; for (pino = 1;pino < l_poc_bound ; ++pino) { l_current_poc->compS = l_current_poc->compno0; l_current_poc->compE= l_current_poc->compno1; l_current_poc->resS = l_current_poc->resno0; l_current_poc->resE = l_current_poc->resno1; l_current_poc->layE = l_current_poc->layno1; l_current_poc->prg = l_current_poc->prg1; l_current_poc->prcS = 0; // special treatment here different from the first element l_current_poc->layS = (l_current_poc->layE > (l_current_poc-1)->layE) ? l_current_poc->layE : 0; l_current_poc->prcE = p_max_prec; l_current_poc->txS = p_tx0; l_current_poc->txE = p_tx1; l_current_poc->tyS = p_ty0; l_current_poc->tyE = p_ty1; l_current_poc->dx = p_dx_min; l_current_poc->dy = p_dy_min; ++ l_current_poc; } } /** * Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used). * * @param p_cp the coding parameters to modify * @param p_tileno the tile index being concerned. * @param p_tx0 X0 parameter for the tile * @param p_tx1 X1 parameter for the tile * @param p_ty0 Y0 parameter for the tile * @param p_ty1 Y1 parameter for the tile * @param p_max_prec the maximum precision for all the bands of the tile * @param p_max_res the maximum number of resolutions for all the poc inside the tile. * @param dx_min the minimum dx of all the components of all the resolutions for the tile. * @param dy_min the minimum dy of all the components of all the resolutions for the tile. */ void pi_update_encode_not_poc ( opj_cp_t *p_cp, OPJ_UINT32 p_num_comps, OPJ_UINT32 p_tileno, OPJ_INT32 p_tx0, OPJ_INT32 p_tx1, OPJ_INT32 p_ty0, OPJ_INT32 p_ty1, OPJ_UINT32 p_max_prec, OPJ_UINT32 p_max_res, OPJ_UINT32 p_dx_min, OPJ_UINT32 p_dy_min) { // loop OPJ_UINT32 pino; // tile coding parameter opj_tcp_t *l_tcp = 00; // current poc being updated opj_poc_t * l_current_poc = 00; // number of pocs OPJ_UINT32 l_poc_bound; // preconditions in debug assert(p_cp != 00); assert(p_tileno < p_cp->tw * p_cp->th); // initializations l_tcp = &p_cp->tcps [p_tileno]; /* number of iterations in the loop */ l_poc_bound = l_tcp->numpocs+1; // start at first element, and to make sure the compiler will not make a calculation each time in the loop // store a pointer to the current element to modify rather than l_tcp->pocs[i] l_current_poc = l_tcp->pocs; for (pino = 0; pino < l_poc_bound ; ++pino) { l_current_poc->compS = 0; l_current_poc->compE = p_num_comps;/*p_image->numcomps;*/ l_current_poc->resS = 0; l_current_poc->resE = p_max_res; l_current_poc->layS = 0; l_current_poc->layE = l_tcp->numlayers; l_current_poc->prg = l_tcp->prg; l_current_poc->prcS = 0; l_current_poc->prcE = p_max_prec; l_current_poc->txS = p_tx0; l_current_poc->txE = p_tx1; l_current_poc->tyS = p_ty0; l_current_poc->tyE = p_ty1; l_current_poc->dx = p_dx_min; l_current_poc->dy = p_dy_min; ++ l_current_poc; } } /** * Destroys a packet iterator array. * * @param p_pi the packet iterator array to destroy. * @param p_nb_elements the number of elements in the array. */ void pi_destroy( opj_pi_iterator_t *p_pi, OPJ_UINT32 p_nb_elements) { OPJ_UINT32 compno, pino; opj_pi_iterator_t *l_current_pi = p_pi; if (p_pi) { if (p_pi->include) { opj_free(p_pi->include); p_pi->include = 00; } // TODO for (pino = 0; pino < p_nb_elements; ++pino) { if (l_current_pi->comps) { opj_pi_comp_t *l_current_component = l_current_pi->comps; for (compno = 0; compno < l_current_pi->numcomps; compno++) { if (l_current_component->resolutions) { opj_free(l_current_component->resolutions); l_current_component->resolutions = 00; } ++l_current_component; } opj_free(l_current_pi->comps); l_current_pi->comps = 0; } ++l_current_pi; } opj_free(p_pi); } } bool pi_next(opj_pi_iterator_t * pi) { switch (pi->poc.prg) { case LRCP: return pi_next_lrcp(pi); case RLCP: return pi_next_rlcp(pi); case RPCL: return pi_next_rpcl(pi); case PCRL: return pi_next_pcrl(pi); case CPRL: return pi_next_cprl(pi); case PROG_UNKNOWN: return false; } return false; } OPJ_INT32 pi_check_next_level(OPJ_INT32 pos,opj_cp_t *cp,OPJ_UINT32 tileno, OPJ_UINT32 pino, const OPJ_CHAR *prog) { OPJ_INT32 i,l; opj_tcp_t *tcps =&cp->tcps[tileno]; opj_poc_t *tcp = &tcps->pocs[pino]; if(pos>=0){ for(i=pos;pos>=0;i--){ switch(prog[i]){ case 'R': if(tcp->res_t==tcp->resE){ l=pi_check_next_level(pos-1,cp,tileno,pino,prog); if(l==1){ return 1; }else{ return 0; } }else{ return 1; } break; case 'C': if(tcp->comp_t==tcp->compE){ l=pi_check_next_level(pos-1,cp,tileno,pino,prog); if(l==1){ return 1; }else{ return 0; } }else{ return 1; } break; case 'L': if(tcp->lay_t==tcp->layE){ l=pi_check_next_level(pos-1,cp,tileno,pino,prog); if(l==1){ return 1; }else{ return 0; } }else{ return 1; } break; case 'P': switch(tcp->prg){ case LRCP||RLCP: if(tcp->prc_t == tcp->prcE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ return 1; }else{ return 0; } }else{ return 1; } break; default: if(tcp->tx0_t == tcp->txE){ //TY if(tcp->ty0_t == tcp->tyE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ return 1; }else{ return 0; } }else{ return 1; }//TY }else{ return 1; } break; }//end case P }//end switch }//end for }//end if return 0; } void pi_create_encode( opj_pi_iterator_t *pi, opj_cp_t *cp,OPJ_UINT32 tileno, OPJ_UINT32 pino,OPJ_UINT32 tpnum, OPJ_INT32 tppos, J2K_T2_MODE t2_mode) { const OPJ_CHAR *prog; OPJ_INT32 i,l; OPJ_UINT32 incr_top=1,resetX=0; opj_tcp_t *tcps =&cp->tcps[tileno]; opj_poc_t *tcp= &tcps->pocs[pino]; prog = j2k_convert_progression_order(tcp->prg); pi[pino].first = 1; pi[pino].poc.prg = tcp->prg; if(!(cp->m_specific_param.m_enc.m_tp_on&& ((!cp->m_specific_param.m_enc.m_cinema && (t2_mode == FINAL_PASS)) || cp->m_specific_param.m_enc.m_cinema))){ pi[pino].poc.resno0 = tcp->resS; pi[pino].poc.resno1 = tcp->resE; pi[pino].poc.compno0 = tcp->compS; pi[pino].poc.compno1 = tcp->compE; pi[pino].poc.layno0 = tcp->layS; pi[pino].poc.layno1 = tcp->layE; pi[pino].poc.precno0 = tcp->prcS; pi[pino].poc.precno1 = tcp->prcE; pi[pino].poc.tx0 = tcp->txS; pi[pino].poc.ty0 = tcp->tyS; pi[pino].poc.tx1 = tcp->txE; pi[pino].poc.ty1 = tcp->tyE; }else { for(i=tppos+1;i<4;i++){ switch(prog[i]){ case 'R': pi[pino].poc.resno0 = tcp->resS; pi[pino].poc.resno1 = tcp->resE; break; case 'C': pi[pino].poc.compno0 = tcp->compS; pi[pino].poc.compno1 = tcp->compE; break; case 'L': pi[pino].poc.layno0 = tcp->layS; pi[pino].poc.layno1 = tcp->layE; break; case 'P': switch(tcp->prg){ case LRCP: case RLCP: pi[pino].poc.precno0 = tcp->prcS; pi[pino].poc.precno1 = tcp->prcE; break; default: pi[pino].poc.tx0 = tcp->txS; pi[pino].poc.ty0 = tcp->tyS; pi[pino].poc.tx1 = tcp->txE; pi[pino].poc.ty1 = tcp->tyE; break; } break; } } if(tpnum==0){ for(i=tppos;i>=0;i--){ switch(prog[i]){ case 'C': tcp->comp_t = tcp->compS; pi[pino].poc.compno0 = tcp->comp_t; pi[pino].poc.compno1 = tcp->comp_t+1; tcp->comp_t+=1; break; case 'R': tcp->res_t = tcp->resS; pi[pino].poc.resno0 = tcp->res_t; pi[pino].poc.resno1 = tcp->res_t+1; tcp->res_t+=1; break; case 'L': tcp->lay_t = tcp->layS; pi[pino].poc.layno0 = tcp->lay_t; pi[pino].poc.layno1 = tcp->lay_t+1; tcp->lay_t+=1; break; case 'P': switch(tcp->prg){ case LRCP: case RLCP: tcp->prc_t = tcp->prcS; pi[pino].poc.precno0 = tcp->prc_t; pi[pino].poc.precno1 = tcp->prc_t+1; tcp->prc_t+=1; break; default: tcp->tx0_t = tcp->txS; tcp->ty0_t = tcp->tyS; pi[pino].poc.tx0 = tcp->tx0_t; pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx - (tcp->tx0_t % tcp->dx); pi[pino].poc.ty0 = tcp->ty0_t; pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy); tcp->tx0_t = pi[pino].poc.tx1; tcp->ty0_t = pi[pino].poc.ty1; break; } break; } } incr_top=1; }else{ for(i=tppos;i>=0;i--){ switch(prog[i]){ case 'C': pi[pino].poc.compno0 = tcp->comp_t-1; pi[pino].poc.compno1 = tcp->comp_t; break; case 'R': pi[pino].poc.resno0 = tcp->res_t-1; pi[pino].poc.resno1 = tcp->res_t; break; case 'L': pi[pino].poc.layno0 = tcp->lay_t-1; pi[pino].poc.layno1 = tcp->lay_t; break; case 'P': switch(tcp->prg){ case LRCP: case RLCP: pi[pino].poc.precno0 = tcp->prc_t-1; pi[pino].poc.precno1 = tcp->prc_t; break; default: pi[pino].poc.tx0 = tcp->tx0_t - tcp->dx - (tcp->tx0_t % tcp->dx); pi[pino].poc.tx1 = tcp->tx0_t ; pi[pino].poc.ty0 = tcp->ty0_t - tcp->dy - (tcp->ty0_t % tcp->dy); pi[pino].poc.ty1 = tcp->ty0_t ; break; } break; } if(incr_top==1){ switch(prog[i]){ case 'R': if(tcp->res_t==tcp->resE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ tcp->res_t = tcp->resS; pi[pino].poc.resno0 = tcp->res_t; pi[pino].poc.resno1 = tcp->res_t+1; tcp->res_t+=1; incr_top=1; }else{ incr_top=0; } }else{ pi[pino].poc.resno0 = tcp->res_t; pi[pino].poc.resno1 = tcp->res_t+1; tcp->res_t+=1; incr_top=0; } break; case 'C': if(tcp->comp_t ==tcp->compE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ tcp->comp_t = tcp->compS; pi[pino].poc.compno0 = tcp->comp_t; pi[pino].poc.compno1 = tcp->comp_t+1; tcp->comp_t+=1; incr_top=1; }else{ incr_top=0; } }else{ pi[pino].poc.compno0 = tcp->comp_t; pi[pino].poc.compno1 = tcp->comp_t+1; tcp->comp_t+=1; incr_top=0; } break; case 'L': if(tcp->lay_t == tcp->layE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ tcp->lay_t = tcp->layS; pi[pino].poc.layno0 = tcp->lay_t; pi[pino].poc.layno1 = tcp->lay_t+1; tcp->lay_t+=1; incr_top=1; }else{ incr_top=0; } }else{ pi[pino].poc.layno0 = tcp->lay_t; pi[pino].poc.layno1 = tcp->lay_t+1; tcp->lay_t+=1; incr_top=0; } break; case 'P': switch(tcp->prg){ case LRCP: case RLCP: if(tcp->prc_t == tcp->prcE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ tcp->prc_t = tcp->prcS; pi[pino].poc.precno0 = tcp->prc_t; pi[pino].poc.precno1 = tcp->prc_t+1; tcp->prc_t+=1; incr_top=1; }else{ incr_top=0; } }else{ pi[pino].poc.precno0 = tcp->prc_t; pi[pino].poc.precno1 = tcp->prc_t+1; tcp->prc_t+=1; incr_top=0; } break; default: if(tcp->tx0_t >= tcp->txE){ if(tcp->ty0_t >= tcp->tyE){ l=pi_check_next_level(i-1,cp,tileno,pino,prog); if(l==1){ tcp->ty0_t = tcp->tyS; pi[pino].poc.ty0 = tcp->ty0_t; pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy); tcp->ty0_t = pi[pino].poc.ty1; incr_top=1;resetX=1; }else{ incr_top=0;resetX=0; } }else{ pi[pino].poc.ty0 = tcp->ty0_t; pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy); tcp->ty0_t = pi[pino].poc.ty1; incr_top=0;resetX=1; } if(resetX==1){ tcp->tx0_t = tcp->txS; pi[pino].poc.tx0 = tcp->tx0_t; pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx); tcp->tx0_t = pi[pino].poc.tx1; } }else{ pi[pino].poc.tx0 = tcp->tx0_t; pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx); tcp->tx0_t = pi[pino].poc.tx1; incr_top=0; } break; } break; } } } } } }