/* * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2007, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * NOTE: * This is a modified version of the openjpeg dwt.c file. * Average speed improvement compared to the original file (measured on * my own machine, a P4 running at 3.0 GHz): * 5x3 wavelets about 2 times faster * 9x7 wavelets about 3 times faster * for both, encoding and decoding. * * The better performance is caused by doing the 1-dimensional DWT * within a temporary buffer where the data can be accessed sequential * for both directions, horizontal and vertical. The 2d vertical DWT was * the major bottleneck in the former version. * * I have also removed the "Add Patrick" part because it is not longer * needed. * * 6/6/2005 * -Ive (aka Reiner Wahler) * mail: ive@lilysoft.com */ #include "opj_includes.h" /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ /** @name Local static functions */ /*@{*/ /** Forward lazy transform (horizontal) */ static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas); /** Forward lazy transform (vertical) */ static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas); /** Inverse lazy transform (horizontal) */ static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas); /** Inverse lazy transform (vertical) */ static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas); /** Forward 5-3 wavelet tranform in 1-D */ static void dwt_encode_1(int *a, int dn, int sn, int cas); /** Inverse 5-3 wavelet tranform in 1-D */ static void dwt_decode_1(int *a, int dn, int sn, int cas); /** Forward 9-7 wavelet transform in 1-D */ static void dwt_encode_1_real(int *a, int dn, int sn, int cas); /** Inverse 9-7 wavelet transform in 1-D */ static void dwt_decode_1_real(int *a, int dn, int sn, int cas); /** FIXME : comment ??? */ static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize); /*@}*/ /*@}*/ #define S(i) a[(i)*2] #define D(i) a[(1+(i)*2)] #define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i))) #define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i))) /* new */ #define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i))) #define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i))) /* */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* */ static const double dwt_norms[4][10] = { {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} }; /* */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* */ static const double dwt_norms_real[4][10] = { {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} }; /* ========================================================== local functions ========================================================== */ /* */ /* Forward lazy transform (horizontal). */ /* */ static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas) { int i; for (i=0; i */ /* Forward lazy transform (vertical). */ /* */ static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas) { int i; for (i=0; i */ /* Inverse lazy transform (horizontal). */ /* */ static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas) { int i; int *ai = NULL; int *bi = NULL; ai = a; bi = b + cas; for (i = 0; i < sn; i++) { *bi = *ai; bi += 2; ai++; } ai = a + sn; bi = b + 1 - cas; for (i = 0; i < dn; i++) { *bi = *ai; bi += 2; ai++; } } /* */ /* Inverse lazy transform (vertical). */ /* */ static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas) { int i; int *ai = NULL; int *bi = NULL; ai = a; bi = b + cas; for (i = 0; i < sn; i++) { *bi = *ai; bi += 2; ai += x; } ai = a + (sn * x); bi = b + 1 - cas; for (i = 0; i < dn; i++) { *bi = *ai; bi += 2; ai += x; } } /* */ /* Forward 5-3 wavelet tranform in 1-D. */ /* */ static void dwt_encode_1(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1; for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ S(0) *= 2; else { for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1; for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2; } } } /* */ /* Inverse 5-3 wavelet tranform in 1-D. */ /* */ static void dwt_decode_1(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) S(i) -= (D_(i - 1) + D_(i) + 2) >> 2; for (i = 0; i < dn; i++) D(i) += (S_(i) + S_(i + 1)) >> 1; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ S(0) /= 2; else { for (i = 0; i < sn; i++) D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2; for (i = 0; i < dn; i++) S(i) += (DD_(i) + DD_(i - 1)) >> 1; } } } /* */ /* Forward 9-7 wavelet transform in 1-D. */ /* */ static void dwt_encode_1_real(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) D(i) -= fix_mul(S_(i) + S_(i + 1), 12993); for (i = 0; i < sn; i++) S(i) -= fix_mul(D_(i - 1) + D_(i), 434); for (i = 0; i < dn; i++) D(i) += fix_mul(S_(i) + S_(i + 1), 7233); for (i = 0; i < sn; i++) S(i) += fix_mul(D_(i - 1) + D_(i), 3633); for (i = 0; i < dn; i++) D(i) = fix_mul(D(i), 5038); /*5038 */ for (i = 0; i < sn; i++) S(i) = fix_mul(S(i), 6659); /*6660 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993); for (i = 0; i < sn; i++) D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434); for (i = 0; i < dn; i++) S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233); for (i = 0; i < sn; i++) D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633); for (i = 0; i < dn; i++) S(i) = fix_mul(S(i), 5038); /*5038 */ for (i = 0; i < sn; i++) D(i) = fix_mul(D(i), 6659); /*6660 */ } } } /* */ /* Inverse 9-7 wavelet transform in 1-D. */ /* */ static void dwt_decode_1_real(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) S(i) = fix_mul(S(i), 10078); /* 10076 */ for (i = 0; i < dn; i++) D(i) = fix_mul(D(i), 13318); /* 13320 */ for (i = 0; i < sn; i++) S(i) -= fix_mul(D_(i - 1) + D_(i), 3633); for (i = 0; i < dn; i++) D(i) -= fix_mul(S_(i) + S_(i + 1), 7233); for (i = 0; i < sn; i++) S(i) += fix_mul(D_(i - 1) + D_(i), 434); for (i = 0; i < dn; i++) D(i) += fix_mul(S_(i) + S_(i + 1), 12994); /* 12993 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) D(i) = fix_mul(D(i), 10078); /* 10076 */ for (i = 0; i < dn; i++) S(i) = fix_mul(S(i), 13318); /* 13320 */ for (i = 0; i < sn; i++) D(i) -= fix_mul(SS_(i) + SS_(i + 1), 3633); for (i = 0; i < dn; i++) S(i) -= fix_mul(DD_(i) + DD_(i - 1), 7233); for (i = 0; i < sn; i++) D(i) += fix_mul(SS_(i) + SS_(i + 1), 434); for (i = 0; i < dn; i++) S(i) += fix_mul(DD_(i) + DD_(i - 1), 12994); /* 12993 */ } } } static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize) { int p, n; p = int_floorlog2(stepsize) - 13; n = 11 - int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; } /* ========================================================== DWT interface ========================================================== */ /* */ /* Forward 5-3 wavelet tranform in 2-D. */ /* */ void dwt_encode(opj_tcd_tilecomp_t * tilec) { int i, j, k; int *a = NULL; int *aj = NULL; int *bj = NULL; int w, l; w = tilec->x1-tilec->x0; l = tilec->numresolutions-1; a = tilec->data; for (i = 0; i < l; i++) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; cas_row = tilec->resolutions[l - i].x0 % 2; cas_col = tilec->resolutions[l - i].y0 % 2; sn = rh1; dn = rh - rh1; bj = (int*)opj_malloc(rh * sizeof(int)); for (j = 0; j < rw; j++) { aj = a + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_1(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } opj_free(bj); sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); for (j = 0; j < rh; j++) { aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_1(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } opj_free(bj); } } /* */ /* Inverse 5-3 wavelet tranform in 2-D. */ /* */ void dwt_decode(opj_tcd_tilecomp_t * tilec, int stop) { int i, j, k; int *a = NULL; int *aj = NULL; int *bj = NULL; int w, l; w = tilec->x1-tilec->x0; l = tilec->numresolutions-1; a = tilec->data; for (i = l - 1; i >= stop; i--) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; cas_row = tilec->resolutions[l - i].x0 % 2; cas_col = tilec->resolutions[l - i].y0 % 2; sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); for (j = 0; j < rh; j++) { aj = a + j*w; dwt_interleave_h(aj, bj, dn, sn, cas_row); dwt_decode_1(bj, dn, sn, cas_row); for (k = 0; k < rw; k++) aj[k] = bj[k]; } opj_free(bj); sn = rh1; dn = rh - rh1; bj = (int*)opj_malloc(rh * sizeof(int)); for (j = 0; j < rw; j++) { aj = a + j; dwt_interleave_v(aj, bj, dn, sn, w, cas_col); dwt_decode_1(bj, dn, sn, cas_col); for (k = 0; k < rh; k++) aj[k * w] = bj[k]; } opj_free(bj); } } /* */ /* Get gain of 5-3 wavelet transform. */ /* */ int dwt_getgain(int orient) { if (orient == 0) return 0; if (orient == 1 || orient == 2) return 1; return 2; } /* */ /* Get norm of 5-3 wavelet. */ /* */ double dwt_getnorm(int level, int orient) { return dwt_norms[orient][level]; } /* */ /* Forward 9-7 wavelet transform in 2-D. */ /* */ void dwt_encode_real(opj_tcd_tilecomp_t * tilec) { int i, j, k; int *a = NULL; int *aj = NULL; int *bj = NULL; int w, l; w = tilec->x1-tilec->x0; l = tilec->numresolutions-1; a = tilec->data; for (i = 0; i < l; i++) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; cas_row = tilec->resolutions[l - i].x0 % 2; cas_col = tilec->resolutions[l - i].y0 % 2; sn = rh1; dn = rh - rh1; bj = (int*)opj_malloc(rh * sizeof(int)); for (j = 0; j < rw; j++) { aj = a + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_1_real(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } opj_free(bj); sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); for (j = 0; j < rh; j++) { aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_1_real(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } opj_free(bj); } } /* */ /* Inverse 9-7 wavelet transform in 2-D. */ /* */ void dwt_decode_real(opj_tcd_tilecomp_t * tilec, int stop) { int i, j, k; int *a = NULL; int *aj = NULL; int *bj = NULL; int w, l; w = tilec->x1-tilec->x0; l = tilec->numresolutions-1; a = tilec->data; for (i = l-1; i >= stop; i--) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; cas_col = tilec->resolutions[l - i].x0 % 2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ cas_row = tilec->resolutions[l - i].y0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ sn = rw1; dn = rw-rw1; bj = (int*)opj_malloc(rw * sizeof(int)); for (j = 0; j < rh; j++) { aj = a + j * w; dwt_interleave_h(aj, bj, dn, sn, cas_col); dwt_decode_1_real(bj, dn, sn, cas_col); for (k = 0; k < rw; k++) aj[k] = bj[k]; } opj_free(bj); sn = rh1; dn = rh-rh1; bj = (int*)opj_malloc(rh * sizeof(int)); for (j = 0; j < rw; j++) { aj = a + j; dwt_interleave_v(aj, bj, dn, sn, w, cas_row); dwt_decode_1_real(bj, dn, sn, cas_row); for (k = 0; k < rh; k++) aj[k * w] = bj[k]; } opj_free(bj); } } /* */ /* Get gain of 9-7 wavelet transform. */ /* */ int dwt_getgain_real(int orient) { (void)orient; return 0; } /* */ /* Get norm of 9-7 wavelet. */ /* */ double dwt_getnorm_real(int level, int orient) { return dwt_norms_real[orient][level]; } void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec) { int numbands, bandno; numbands = 3 * tccp->numresolutions - 2; for (bandno = 0; bandno < numbands; bandno++) { double stepsize; int resno, level, orient, gain; resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); level = tccp->numresolutions - 1 - resno; gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2)); if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { double norm = dwt_norms_real[orient][level]; stepsize = (1 << (gain)) / norm; } dwt_encode_stepsize((int) floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]); } }