/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2006-2007, Parvatha Elangovan * Copyright (c) 2015, Matthieu Darbois * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opj_apps_config.h" #include #include #include #include #ifndef OPJ_HAVE_LIBTIFF # error OPJ_HAVE_LIBTIFF_NOT_DEFINED #endif /* OPJ_HAVE_LIBTIFF */ #include #include "openjpeg.h" #include "convert.h" /* -->> -->> -->> -->> TIFF IMAGE FORMAT <<-- <<-- <<-- <<-- */ typedef void (* tif_32stoX)(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length); static void tif_32sto1u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)8U); i+=8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i+2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i+3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i+4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i+5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i+6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i+7]; *pDst++ = (OPJ_BYTE)((src0 << 7) | (src1 << 6) | (src2 << 5) | (src3 << 4) | (src4 << 3) | (src5 << 2) | (src6 << 1) | src7); } if (length & 7U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; OPJ_UINT32 src3 = 0U; OPJ_UINT32 src4 = 0U; OPJ_UINT32 src5 = 0U; OPJ_UINT32 src6 = 0U; length = length & 7U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i+1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i+2]; if (length > 3U) { src3 = (OPJ_UINT32)pSrc[i+3]; if (length > 4U) { src4 = (OPJ_UINT32)pSrc[i+4]; if (length > 5U) { src5 = (OPJ_UINT32)pSrc[i+5]; if (length > 6U) { src6 = (OPJ_UINT32)pSrc[i+6]; } } } } } } *pDst++ = (OPJ_BYTE)((src0 << 7) | (src1 << 6) | (src2 << 5) | (src3 << 4) | (src4 << 3) | (src5 << 2) | (src6 << 1)); } } static void tif_32sto2u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i+2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i+3]; *pDst++ = (OPJ_BYTE)((src0 << 6) | (src1 << 4) | (src2 << 2) | src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i+1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i+2]; } } *pDst++ = (OPJ_BYTE)((src0 << 6) | (src1 << 4) | (src2 << 2)); } } static void tif_32sto4u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)2U); i+=2U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; *pDst++ = (OPJ_BYTE)((src0 << 4) | src1); } if (length & 1U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; *pDst++ = (OPJ_BYTE)((src0 << 4)); } } static void tif_32sto6u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i+2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i+3]; *pDst++ = (OPJ_BYTE)((src0 << 2) | (src1 >> 4)); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 2)); *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6) | src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i+1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i+2]; } } *pDst++ = (OPJ_BYTE)((src0 << 2) | (src1 >> 4)); if (length > 1U) { *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 2)); if (length > 2U) { *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6)); } } } } static void tif_32sto8u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; ++i) { pDst[i] = (OPJ_BYTE)pSrc[i]; } } static void tif_32sto10u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i+2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i+3]; *pDst++ = (OPJ_BYTE)(src0 >> 2); *pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4)); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6)); *pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2) | (src3 >> 8)); *pDst++ = (OPJ_BYTE)(src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i+1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i+2]; } } *pDst++ = (OPJ_BYTE)(src0 >> 2); *pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4)); if (length > 1U) { *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6)); if (length > 2U) { *pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2)); } } } } static void tif_32sto12u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)2U); i+=2U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; *pDst++ = (OPJ_BYTE)(src0 >> 4); *pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4) | (src1 >> 8)); *pDst++ = (OPJ_BYTE)(src1); } if (length & 1U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; *pDst++ = (OPJ_BYTE)(src0 >> 4); *pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4)); } } static void tif_32sto14u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i+1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i+2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i+3]; *pDst++ = (OPJ_BYTE)(src0 >> 6); *pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12)); *pDst++ = (OPJ_BYTE)(src1 >> 4); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10)); *pDst++ = (OPJ_BYTE)(src2 >> 2); *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6) | (src3 >> 8)); *pDst++ = (OPJ_BYTE)(src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i+0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i+1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i+2]; } } *pDst++ = (OPJ_BYTE)(src0 >> 6); *pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12)); if (length > 1U) { *pDst++ = (OPJ_BYTE)(src1 >> 4); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10)); if (length > 2U) { *pDst++ = (OPJ_BYTE)(src2 >> 2); *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6)); } } } } static void tif_32sto16u(const OPJ_INT32* pSrc, OPJ_UINT16* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; ++i) { pDst[i] = (OPJ_UINT16)pSrc[i]; } } typedef void (* convert_32s_PXCX)(OPJ_INT32 const* const* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length, OPJ_INT32 adjust); static void convert_32s_P1C1(OPJ_INT32 const* const* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length, OPJ_INT32 adjust) { OPJ_SIZE_T i; const OPJ_INT32* pSrc0 = pSrc[0]; for (i = 0; i < length; i++) { pDst[i] = pSrc0[i] + adjust; } } static void convert_32s_P2C2(OPJ_INT32 const* const* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length, OPJ_INT32 adjust) { OPJ_SIZE_T i; const OPJ_INT32* pSrc0 = pSrc[0]; const OPJ_INT32* pSrc1 = pSrc[1]; for (i = 0; i < length; i++) { pDst[2*i+0] = pSrc0[i] + adjust; pDst[2*i+1] = pSrc1[i] + adjust; } } static void convert_32s_P3C3(OPJ_INT32 const* const* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length, OPJ_INT32 adjust) { OPJ_SIZE_T i; const OPJ_INT32* pSrc0 = pSrc[0]; const OPJ_INT32* pSrc1 = pSrc[1]; const OPJ_INT32* pSrc2 = pSrc[2]; for (i = 0; i < length; i++) { pDst[3*i+0] = pSrc0[i] + adjust; pDst[3*i+1] = pSrc1[i] + adjust; pDst[3*i+2] = pSrc2[i] + adjust; } } static void convert_32s_P4C4(OPJ_INT32 const* const* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length, OPJ_INT32 adjust) { OPJ_SIZE_T i; const OPJ_INT32* pSrc0 = pSrc[0]; const OPJ_INT32* pSrc1 = pSrc[1]; const OPJ_INT32* pSrc2 = pSrc[2]; const OPJ_INT32* pSrc3 = pSrc[3]; for (i = 0; i < length; i++) { pDst[4*i+0] = pSrc0[i] + adjust; pDst[4*i+1] = pSrc1[i] + adjust; pDst[4*i+2] = pSrc2[i] + adjust; pDst[4*i+3] = pSrc3[i] + adjust; } } int imagetotif(opj_image_t * image, const char *outfile) { int width, height; int bps,adjust, sgnd; int tiPhoto; TIFF *tif; tdata_t buf; tsize_t strip_size; OPJ_UINT32 i, numcomps; OPJ_SIZE_T rowStride; OPJ_INT32* buffer32s = NULL; OPJ_INT32 const* planes[4]; convert_32s_PXCX cvtPxToCx = NULL; tif_32stoX cvt32sToTif = NULL; bps = (int)image->comps[0].prec; planes[0] = image->comps[0].data; numcomps = image->numcomps; if (numcomps > 2U) { tiPhoto = PHOTOMETRIC_RGB; if (numcomps > 4U) { numcomps = 4U; } } else { tiPhoto = PHOTOMETRIC_MINISBLACK; } for (i = 1U; i < numcomps; ++i) { if (image->comps[0].dx != image->comps[i].dx) { break; } if (image->comps[0].dy != image->comps[i].dy) { break; } if (image->comps[0].prec != image->comps[i].prec) { break; } if (image->comps[0].sgnd != image->comps[i].sgnd) { break; } planes[i] = image->comps[i].data; } if (i != numcomps) { fprintf(stderr,"imagetotif: All components shall have the same subsampling, same bit depth.\n"); fprintf(stderr,"\tAborting\n"); return 1; } if((bps > 16) || ((bps != 1) && (bps & 1))) bps = 0; if(bps == 0) { fprintf(stderr,"imagetotif: Bits=%d, Only 1, 2, 4, 6, 8, 10, 12, 14 and 16 bits implemented\n",bps); fprintf(stderr,"\tAborting\n"); return 1; } tif = TIFFOpen(outfile, "wb"); if (!tif) { fprintf(stderr, "imagetotif:failed to open %s for writing\n", outfile); return 1; } for (i = 0U; i < numcomps; ++i) { clip_component(&(image->comps[i]), image->comps[0].prec); } switch (numcomps) { case 1: cvtPxToCx = convert_32s_P1C1; break; case 2: cvtPxToCx = convert_32s_P2C2; break; case 3: cvtPxToCx = convert_32s_P3C3; break; case 4: cvtPxToCx = convert_32s_P4C4; break; default: /* never here */ break; } switch (bps) { case 1: cvt32sToTif = tif_32sto1u; break; case 2: cvt32sToTif = tif_32sto2u; break; case 4: cvt32sToTif = tif_32sto4u; break; case 6: cvt32sToTif = tif_32sto6u; break; case 8: cvt32sToTif = tif_32sto8u; break; case 10: cvt32sToTif = tif_32sto10u; break; case 12: cvt32sToTif = tif_32sto12u; break; case 14: cvt32sToTif = tif_32sto14u; break; case 16: cvt32sToTif = (tif_32stoX)tif_32sto16u; break; default: /* never here */ break; } sgnd = (int)image->comps[0].sgnd; adjust = sgnd ? 1 << (image->comps[0].prec - 1) : 0; width = (int)image->comps[0].w; height = (int)image->comps[0].h; TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, width); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, height); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, numcomps); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, tiPhoto); TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, 1); strip_size = TIFFStripSize(tif); rowStride = ((OPJ_SIZE_T)width * numcomps * (OPJ_SIZE_T)bps + 7U) / 8U; if (rowStride != (OPJ_SIZE_T)strip_size) { fprintf(stderr, "Invalid TIFF strip size\n"); TIFFClose(tif); return 1; } buf = _TIFFmalloc(strip_size); if (buf == NULL) { TIFFClose(tif); return 1; } buffer32s = malloc((OPJ_SIZE_T)width * numcomps * sizeof(OPJ_INT32)); if (buffer32s == NULL) { _TIFFfree(buf); TIFFClose(tif); return 1; } for (i = 0; i < image->comps[0].h; ++i) { cvtPxToCx(planes, buffer32s, (OPJ_SIZE_T)width, adjust); cvt32sToTif(buffer32s, buf, (OPJ_SIZE_T)width * numcomps); (void)TIFFWriteEncodedStrip(tif, i, (void*)buf, strip_size); planes[0] += width; planes[1] += width; planes[2] += width; planes[3] += width; } _TIFFfree((void*)buf); TIFFClose(tif); free(buffer32s); return 0; }/* imagetotif() */ typedef void (* tif_Xto32s)(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length); static void tif_1uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)8U); i+=8U) { OPJ_UINT32 val = *pSrc++; pDst[i+0] = (OPJ_INT32)( val >> 7); pDst[i+1] = (OPJ_INT32)((val >> 6) & 0x1U); pDst[i+2] = (OPJ_INT32)((val >> 5) & 0x1U); pDst[i+3] = (OPJ_INT32)((val >> 4) & 0x1U); pDst[i+4] = (OPJ_INT32)((val >> 3) & 0x1U); pDst[i+5] = (OPJ_INT32)((val >> 2) & 0x1U); pDst[i+6] = (OPJ_INT32)((val >> 1) & 0x1U); pDst[i+7] = (OPJ_INT32)(val & 0x1U); } if (length & 7U) { OPJ_UINT32 val = *pSrc++; length = length & 7U; pDst[i+0] = (OPJ_INT32)(val >> 7); if (length > 1U) { pDst[i+1] = (OPJ_INT32)((val >> 6) & 0x1U); if (length > 2U) { pDst[i+2] = (OPJ_INT32)((val >> 5) & 0x1U); if (length > 3U) { pDst[i+3] = (OPJ_INT32)((val >> 4) & 0x1U); if (length > 4U) { pDst[i+4] = (OPJ_INT32)((val >> 3) & 0x1U); if (length > 5U) { pDst[i+5] = (OPJ_INT32)((val >> 2) & 0x1U); if (length > 6U) { pDst[i+6] = (OPJ_INT32)((val >> 1) & 0x1U); } } } } } } } } static void tif_2uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 val = *pSrc++; pDst[i+0] = (OPJ_INT32)( val >> 6); pDst[i+1] = (OPJ_INT32)((val >> 4) & 0x3U); pDst[i+2] = (OPJ_INT32)((val >> 2) & 0x3U); pDst[i+3] = (OPJ_INT32)(val & 0x3U); } if (length & 3U) { OPJ_UINT32 val = *pSrc++; length = length & 3U; pDst[i+0] = (OPJ_INT32)(val >> 6); if (length > 1U) { pDst[i+1] = (OPJ_INT32)((val >> 4) & 0x3U); if (length > 2U) { pDst[i+2] = (OPJ_INT32)((val >> 2) & 0x3U); } } } } static void tif_4uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)2U); i+=2U) { OPJ_UINT32 val = *pSrc++; pDst[i+0] = (OPJ_INT32)(val >> 4); pDst[i+1] = (OPJ_INT32)(val & 0xFU); } if (length & 1U) { OPJ_UINT8 val = *pSrc++; pDst[i+0] = (OPJ_INT32)(val >> 4); } } static void tif_6uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; pDst[i+0] = (OPJ_INT32)(val0 >> 2); pDst[i+1] = (OPJ_INT32)(((val0 & 0x3U) << 4) | (val1 >> 4)); pDst[i+2] = (OPJ_INT32)(((val1 & 0xFU) << 2) | (val2 >> 6)); pDst[i+3] = (OPJ_INT32)(val2 & 0x3FU); } if (length & 3U) { OPJ_UINT32 val0 = *pSrc++; length = length & 3U; pDst[i+0] = (OPJ_INT32)(val0 >> 2); if (length > 1U) { OPJ_UINT32 val1 = *pSrc++; pDst[i+1] = (OPJ_INT32)(((val0 & 0x3U) << 4) | (val1 >> 4)); if (length > 2U) { OPJ_UINT32 val2 = *pSrc++; pDst[i+2] = (OPJ_INT32)(((val1 & 0xFU) << 2) | (val2 >> 6)); } } } } static void tif_8uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; ++i) { pDst[i] = pSrc[i]; } } static void tif_10uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; pDst[i+0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6)); pDst[i+1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4)); pDst[i+2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2)); pDst[i+3] = (OPJ_INT32)(((val3 & 0x3U) << 8) | val4); } if (length & 3U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; length = length & 3U; pDst[i+0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6)); if (length > 1U) { OPJ_UINT32 val2 = *pSrc++; pDst[i+1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4)); if (length > 2U) { OPJ_UINT32 val3 = *pSrc++; pDst[i+2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2)); } } } } static void tif_12uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)2U); i+=2U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; pDst[i+0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4)); pDst[i+1] = (OPJ_INT32)(((val1 & 0xFU) << 8) | val2); } if (length & 1U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; pDst[i+0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4)); } } static void tif_14uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & -(OPJ_SIZE_T)4U); i+=4U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; pDst[i+0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2)); pDst[i+1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4)); pDst[i+2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6)); pDst[i+3] = (OPJ_INT32)(((val5 & 0x3FU) << 8) | val6); } if (length & 3U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; length = length & 3U; pDst[i+0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2)); if (length > 1U) { OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; pDst[i+1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4)); if (length > 2U) { OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; pDst[i+2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6)); } } } } #if 0 static void tif_16uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; i++) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; #ifdef OPJ_BIG_ENDIAN pDst[i] = (OPJ_INT32)((val0 << 8) | val1); #else pDst[i] = (OPJ_INT32)((val1 << 8) | val0); #endif } } #else /* seems that libtiff decodes this to machine endianness */ static void tif_16uto32s(const OPJ_UINT16* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; i++) { pDst[i] = pSrc[i]; } } #endif typedef void (* convert_32s_CXPX)(const OPJ_INT32* pSrc, OPJ_INT32* const* pDst, OPJ_SIZE_T length); static void convert_32s_C1P1(const OPJ_INT32* pSrc, OPJ_INT32* const* pDst, OPJ_SIZE_T length) { memcpy(pDst[0], pSrc, length * sizeof(OPJ_INT32)); } static void convert_32s_C2P2(const OPJ_INT32* pSrc, OPJ_INT32* const* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; OPJ_INT32* pDst0 = pDst[0]; OPJ_INT32* pDst1 = pDst[1]; for (i = 0; i < length; i++) { pDst0[i] = pSrc[2*i+0]; pDst1[i] = pSrc[2*i+1]; } } static void convert_32s_C3P3(const OPJ_INT32* pSrc, OPJ_INT32* const* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; OPJ_INT32* pDst0 = pDst[0]; OPJ_INT32* pDst1 = pDst[1]; OPJ_INT32* pDst2 = pDst[2]; for (i = 0; i < length; i++) { pDst0[i] = pSrc[3*i+0]; pDst1[i] = pSrc[3*i+1]; pDst2[i] = pSrc[3*i+2]; } } static void convert_32s_C4P4(const OPJ_INT32* pSrc, OPJ_INT32* const* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; OPJ_INT32* pDst0 = pDst[0]; OPJ_INT32* pDst1 = pDst[1]; OPJ_INT32* pDst2 = pDst[2]; OPJ_INT32* pDst3 = pDst[3]; for (i = 0; i < length; i++) { pDst0[i] = pSrc[4*i+0]; pDst1[i] = pSrc[4*i+1]; pDst2[i] = pSrc[4*i+2]; pDst3[i] = pSrc[4*i+3]; } } /* * libtiff/tif_getimage.c : 1,2,4,8,16 bitspersample accepted * CINEMA : 12 bit precision */ opj_image_t* tiftoimage(const char *filename, opj_cparameters_t *parameters) { int subsampling_dx = parameters->subsampling_dx; int subsampling_dy = parameters->subsampling_dy; TIFF *tif; tdata_t buf; tstrip_t strip; tsize_t strip_size; int j, currentPlane, numcomps = 0, w, h; OPJ_COLOR_SPACE color_space = OPJ_CLRSPC_UNKNOWN; opj_image_cmptparm_t cmptparm[4]; /* RGBA */ opj_image_t *image = NULL; int has_alpha = 0; unsigned short tiBps, tiPhoto, tiSf, tiSpp, tiPC; unsigned int tiWidth, tiHeight; OPJ_BOOL is_cinema = OPJ_IS_CINEMA(parameters->rsiz); tif_Xto32s cvtTifTo32s = NULL; convert_32s_CXPX cvtCxToPx = NULL; OPJ_INT32* buffer32s = NULL; OPJ_INT32* planes[4]; OPJ_SIZE_T rowStride; tif = TIFFOpen(filename, "r"); if(!tif) { fprintf(stderr, "tiftoimage:Failed to open %s for reading\n", filename); return 0; } tiBps = tiPhoto = tiSf = tiSpp = tiPC = 0; tiWidth = tiHeight = 0; TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &tiWidth); TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &tiHeight); TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &tiBps); TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &tiSf); TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &tiSpp); TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &tiPhoto); TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &tiPC); w= (int)tiWidth; h= (int)tiHeight; if((tiBps > 16U) || ((tiBps != 1U) && (tiBps & 1U))) tiBps = 0U; if(tiPhoto != PHOTOMETRIC_MINISBLACK && tiPhoto != PHOTOMETRIC_RGB) tiPhoto = 0; if( !tiBps || !tiPhoto) { if( !tiBps) fprintf(stderr,"tiftoimage: Bits=%d, Only 1, 2, 4, 6, 8, 10, 12, 14 and 16 bits implemented\n",tiBps); else if( !tiPhoto) fprintf(stderr,"tiftoimage: Bad color format %d.\n\tOnly RGB(A)" " and GRAY(A) has been implemented\n",(int) tiPhoto); fprintf(stderr,"\tAborting\n"); TIFFClose(tif); return NULL; } switch (tiBps) { case 1: cvtTifTo32s = tif_1uto32s; break; case 2: cvtTifTo32s = tif_2uto32s; break; case 4: cvtTifTo32s = tif_4uto32s; break; case 6: cvtTifTo32s = tif_6uto32s; break; case 8: cvtTifTo32s = tif_8uto32s; break; case 10: cvtTifTo32s = tif_10uto32s; break; case 12: cvtTifTo32s = tif_12uto32s; break; case 14: cvtTifTo32s = tif_14uto32s; break; case 16: cvtTifTo32s = (tif_Xto32s)tif_16uto32s; break; default: /* never here */ break; } {/* From: tiff-4.0.x/libtiff/tif_getimage.c : */ uint16* sampleinfo; uint16 extrasamples; TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo); if(extrasamples >= 1) { switch(sampleinfo[0]) { case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without correct info about alpha channel */ if(tiSpp > 3) has_alpha = 1; break; case EXTRASAMPLE_ASSOCALPHA: /* data pre-multiplied */ case EXTRASAMPLE_UNASSALPHA: /* data not pre-multiplied */ has_alpha = 1; break; } } else /* extrasamples == 0 */ if(tiSpp == 4 || tiSpp == 2) has_alpha = 1; } /* initialize image components */ memset(&cmptparm[0], 0, 4 * sizeof(opj_image_cmptparm_t)); if ((tiPhoto == PHOTOMETRIC_RGB) && (is_cinema) && (tiBps != 12U)) { fprintf(stdout,"WARNING:\n" "Input image bitdepth is %d bits\n" "TIF conversion has automatically rescaled to 12-bits\n" "to comply with cinema profiles.\n", tiBps); } else { is_cinema = 0U; } if(tiPhoto == PHOTOMETRIC_RGB) /* RGB(A) */ { numcomps = 3 + has_alpha; color_space = OPJ_CLRSPC_SRGB; } else if (tiPhoto == PHOTOMETRIC_MINISBLACK) /* GRAY(A) */ { numcomps = 1 + has_alpha; color_space = OPJ_CLRSPC_GRAY; } switch (numcomps) { case 1: cvtCxToPx = convert_32s_C1P1; break; case 2: cvtCxToPx = convert_32s_C2P2; break; case 3: cvtCxToPx = convert_32s_C3P3; break; case 4: cvtCxToPx = convert_32s_C4P4; break; default: /* never here */ break; } if (tiPC == PLANARCONFIG_SEPARATE) { cvtCxToPx = convert_32s_C1P1; /* override */ tiSpp = 1U; /* consider only one sample per plane */ } for(j = 0; j < numcomps; j++) { cmptparm[j].prec = tiBps; cmptparm[j].bpp = tiBps; cmptparm[j].dx = (OPJ_UINT32)subsampling_dx; cmptparm[j].dy = (OPJ_UINT32)subsampling_dy; cmptparm[j].w = (OPJ_UINT32)w; cmptparm[j].h = (OPJ_UINT32)h; } image = opj_image_create((OPJ_UINT32)numcomps, &cmptparm[0], color_space); if(!image) { TIFFClose(tif); return NULL; } /* set image offset and reference grid */ image->x0 = (OPJ_UINT32)parameters->image_offset_x0; image->y0 = (OPJ_UINT32)parameters->image_offset_y0; image->x1 = !image->x0 ? (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1 : image->x0 + (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1; image->y1 = !image->y0 ? (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1 : image->y0 + (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1; for(j = 0; j < numcomps; j++) { planes[j] = image->comps[j].data; } image->comps[numcomps - 1].alpha = (OPJ_UINT16)(1 - (numcomps & 1)); strip_size = TIFFStripSize(tif); buf = _TIFFmalloc(strip_size); if (buf == NULL) { TIFFClose(tif); opj_image_destroy(image); return NULL; } rowStride = ((OPJ_SIZE_T)w * tiSpp * tiBps + 7U) / 8U; buffer32s = malloc((OPJ_SIZE_T)w * tiSpp * sizeof(OPJ_INT32)); if (buffer32s == NULL) { _TIFFfree(buf); TIFFClose(tif); opj_image_destroy(image); return NULL; } strip = 0; currentPlane = 0; do { planes[0] = image->comps[currentPlane].data; /* to manage planar data */ h= (int)tiHeight; /* Read the Image components */ for(; (h > 0) && (strip < TIFFNumberOfStrips(tif)); strip++) { const OPJ_UINT8 *dat8; OPJ_SIZE_T ssize; ssize = (OPJ_SIZE_T)TIFFReadEncodedStrip(tif, strip, buf, strip_size); dat8 = (const OPJ_UINT8*)buf; while (ssize >= rowStride) { cvtTifTo32s(dat8, buffer32s, (OPJ_SIZE_T)w * tiSpp); cvtCxToPx(buffer32s, planes, (OPJ_SIZE_T)w); planes[0] += w; planes[1] += w; planes[2] += w; planes[3] += w; dat8 += rowStride; ssize -= rowStride; h--; } } currentPlane++; } while ((tiPC == PLANARCONFIG_SEPARATE) && (currentPlane < numcomps)); free(buffer32s); _TIFFfree(buf); TIFFClose(tif); if (is_cinema) { for (j=0; j < numcomps; ++j) { scale_component(&(image->comps[j]), 12); } } return image; }/* tiftoimage() */