/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2006-2007, Parvatha Elangovan * Copyright (c) 2015, Matthieu Darbois * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opj_apps_config.h" #include #include #include #include #include #ifndef OPJ_HAVE_LIBTIFF # error OPJ_HAVE_LIBTIFF_NOT_DEFINED #endif /* OPJ_HAVE_LIBTIFF */ #include #include "openjpeg.h" #include "convert.h" #include "opj_inttypes.h" /* -->> -->> -->> -->> TIFF IMAGE FORMAT <<-- <<-- <<-- <<-- */ #define PUTBITS2(s, nb) \ trailing <<= remaining; \ trailing |= (unsigned int)((s) >> (nb - remaining)); \ *pDst++ = (OPJ_BYTE)trailing; \ trailing = (unsigned int)((s) & ((1U << (nb - remaining)) - 1U)); \ if (nb >= (remaining + 8)) { \ *pDst++ = (OPJ_BYTE)(trailing >> (nb - (remaining + 8))); \ trailing &= (unsigned int)((1U << (nb - (remaining + 8))) - 1U); \ remaining += 16 - nb; \ } else { \ remaining += 8 - nb; \ } #define PUTBITS(s, nb) \ if (nb >= remaining) { \ PUTBITS2(s, nb) \ } else { \ trailing <<= nb; \ trailing |= (unsigned int)(s); \ remaining -= nb; \ } #define FLUSHBITS() \ if (remaining != 8) { \ trailing <<= remaining; \ *pDst++ = (OPJ_BYTE)trailing; \ } static void tif_32sto3u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 << 5) | (src1 << 2) | (src2 >> 1)); *pDst++ = (OPJ_BYTE)((src2 << 7) | (src3 << 4) | (src4 << 1) | (src5 >> 2)); *pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 << 3) | (src7)); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS((OPJ_UINT32)pSrc[i + 0], 3) if (length > 1U) { PUTBITS((OPJ_UINT32)pSrc[i + 1], 3) if (length > 2U) { PUTBITS((OPJ_UINT32)pSrc[i + 2], 3) if (length > 3U) { PUTBITS((OPJ_UINT32)pSrc[i + 3], 3) if (length > 4U) { PUTBITS((OPJ_UINT32)pSrc[i + 4], 3) if (length > 5U) { PUTBITS((OPJ_UINT32)pSrc[i + 5], 3) if (length > 6U) { PUTBITS((OPJ_UINT32)pSrc[i + 6], 3) } } } } } } FLUSHBITS() } } static void tif_32sto5u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 << 3) | (src1 >> 2)); *pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 << 1) | (src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 1)); *pDst++ = (OPJ_BYTE)((src4 << 7) | (src5 << 2) | (src6 >> 3)); *pDst++ = (OPJ_BYTE)((src6 << 5) | (src7)); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS((OPJ_UINT32)pSrc[i + 0], 5) if (length > 1U) { PUTBITS((OPJ_UINT32)pSrc[i + 1], 5) if (length > 2U) { PUTBITS((OPJ_UINT32)pSrc[i + 2], 5) if (length > 3U) { PUTBITS((OPJ_UINT32)pSrc[i + 3], 5) if (length > 4U) { PUTBITS((OPJ_UINT32)pSrc[i + 4], 5) if (length > 5U) { PUTBITS((OPJ_UINT32)pSrc[i + 5], 5) if (length > 6U) { PUTBITS((OPJ_UINT32)pSrc[i + 6], 5) } } } } } } FLUSHBITS() } } static void tif_32sto7u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 << 1) | (src1 >> 6)); *pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 5)); *pDst++ = (OPJ_BYTE)((src2 << 3) | (src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 3)); *pDst++ = (OPJ_BYTE)((src4 << 5) | (src5 >> 2)); *pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 1)); *pDst++ = (OPJ_BYTE)((src6 << 7) | (src7)); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS((OPJ_UINT32)pSrc[i + 0], 7) if (length > 1U) { PUTBITS((OPJ_UINT32)pSrc[i + 1], 7) if (length > 2U) { PUTBITS((OPJ_UINT32)pSrc[i + 2], 7) if (length > 3U) { PUTBITS((OPJ_UINT32)pSrc[i + 3], 7) if (length > 4U) { PUTBITS((OPJ_UINT32)pSrc[i + 4], 7) if (length > 5U) { PUTBITS((OPJ_UINT32)pSrc[i + 5], 7) if (length > 6U) { PUTBITS((OPJ_UINT32)pSrc[i + 6], 7) } } } } } } FLUSHBITS() } } static void tif_32sto9u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 >> 1)); *pDst++ = (OPJ_BYTE)((src0 << 7) | (src1 >> 2)); *pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 >> 3)); *pDst++ = (OPJ_BYTE)((src2 << 5) | (src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 5)); *pDst++ = (OPJ_BYTE)((src4 << 3) | (src5 >> 6)); *pDst++ = (OPJ_BYTE)((src5 << 2) | (src6 >> 7)); *pDst++ = (OPJ_BYTE)((src6 << 1) | (src7 >> 8)); *pDst++ = (OPJ_BYTE)(src7); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS2((OPJ_UINT32)pSrc[i + 0], 9) if (length > 1U) { PUTBITS2((OPJ_UINT32)pSrc[i + 1], 9) if (length > 2U) { PUTBITS2((OPJ_UINT32)pSrc[i + 2], 9) if (length > 3U) { PUTBITS2((OPJ_UINT32)pSrc[i + 3], 9) if (length > 4U) { PUTBITS2((OPJ_UINT32)pSrc[i + 4], 9) if (length > 5U) { PUTBITS2((OPJ_UINT32)pSrc[i + 5], 9) if (length > 6U) { PUTBITS2((OPJ_UINT32)pSrc[i + 6], 9) } } } } } } FLUSHBITS() } } static void tif_32sto10u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; *pDst++ = (OPJ_BYTE)(src0 >> 2); *pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4)); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6)); *pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2) | (src3 >> 8)); *pDst++ = (OPJ_BYTE)(src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i + 1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i + 2]; } } *pDst++ = (OPJ_BYTE)(src0 >> 2); *pDst++ = (OPJ_BYTE)(((src0 & 0x3U) << 6) | (src1 >> 4)); if (length > 1U) { *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 6)); if (length > 2U) { *pDst++ = (OPJ_BYTE)(((src2 & 0x3FU) << 2)); } } } } static void tif_32sto11u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 >> 3)); *pDst++ = (OPJ_BYTE)((src0 << 5) | (src1 >> 6)); *pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 9)); *pDst++ = (OPJ_BYTE)((src2 >> 1)); *pDst++ = (OPJ_BYTE)((src2 << 7) | (src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 7)); *pDst++ = (OPJ_BYTE)((src4 << 1) | (src5 >> 10)); *pDst++ = (OPJ_BYTE)((src5 >> 2)); *pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 5)); *pDst++ = (OPJ_BYTE)((src6 << 3) | (src7 >> 8)); *pDst++ = (OPJ_BYTE)(src7); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS2((OPJ_UINT32)pSrc[i + 0], 11) if (length > 1U) { PUTBITS2((OPJ_UINT32)pSrc[i + 1], 11) if (length > 2U) { PUTBITS2((OPJ_UINT32)pSrc[i + 2], 11) if (length > 3U) { PUTBITS2((OPJ_UINT32)pSrc[i + 3], 11) if (length > 4U) { PUTBITS2((OPJ_UINT32)pSrc[i + 4], 11) if (length > 5U) { PUTBITS2((OPJ_UINT32)pSrc[i + 5], 11) if (length > 6U) { PUTBITS2((OPJ_UINT32)pSrc[i + 6], 11) } } } } } } FLUSHBITS() } } static void tif_32sto12u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)1U); i += 2U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; *pDst++ = (OPJ_BYTE)(src0 >> 4); *pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4) | (src1 >> 8)); *pDst++ = (OPJ_BYTE)(src1); } if (length & 1U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; *pDst++ = (OPJ_BYTE)(src0 >> 4); *pDst++ = (OPJ_BYTE)(((src0 & 0xFU) << 4)); } } static void tif_32sto13u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 >> 5)); *pDst++ = (OPJ_BYTE)((src0 << 3) | (src1 >> 10)); *pDst++ = (OPJ_BYTE)((src1 >> 2)); *pDst++ = (OPJ_BYTE)((src1 << 6) | (src2 >> 7)); *pDst++ = (OPJ_BYTE)((src2 << 1) | (src3 >> 12)); *pDst++ = (OPJ_BYTE)((src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 9)); *pDst++ = (OPJ_BYTE)((src4 >> 1)); *pDst++ = (OPJ_BYTE)((src4 << 7) | (src5 >> 6)); *pDst++ = (OPJ_BYTE)((src5 << 2) | (src6 >> 11)); *pDst++ = (OPJ_BYTE)((src6 >> 3)); *pDst++ = (OPJ_BYTE)((src6 << 5) | (src7 >> 8)); *pDst++ = (OPJ_BYTE)(src7); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS2((OPJ_UINT32)pSrc[i + 0], 13) if (length > 1U) { PUTBITS2((OPJ_UINT32)pSrc[i + 1], 13) if (length > 2U) { PUTBITS2((OPJ_UINT32)pSrc[i + 2], 13) if (length > 3U) { PUTBITS2((OPJ_UINT32)pSrc[i + 3], 13) if (length > 4U) { PUTBITS2((OPJ_UINT32)pSrc[i + 4], 13) if (length > 5U) { PUTBITS2((OPJ_UINT32)pSrc[i + 5], 13) if (length > 6U) { PUTBITS2((OPJ_UINT32)pSrc[i + 6], 13) } } } } } } FLUSHBITS() } } static void tif_32sto14u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; *pDst++ = (OPJ_BYTE)(src0 >> 6); *pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12)); *pDst++ = (OPJ_BYTE)(src1 >> 4); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10)); *pDst++ = (OPJ_BYTE)(src2 >> 2); *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6) | (src3 >> 8)); *pDst++ = (OPJ_BYTE)(src3); } if (length & 3U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = 0U; OPJ_UINT32 src2 = 0U; length = length & 3U; if (length > 1U) { src1 = (OPJ_UINT32)pSrc[i + 1]; if (length > 2U) { src2 = (OPJ_UINT32)pSrc[i + 2]; } } *pDst++ = (OPJ_BYTE)(src0 >> 6); *pDst++ = (OPJ_BYTE)(((src0 & 0x3FU) << 2) | (src1 >> 12)); if (length > 1U) { *pDst++ = (OPJ_BYTE)(src1 >> 4); *pDst++ = (OPJ_BYTE)(((src1 & 0xFU) << 4) | (src2 >> 10)); if (length > 2U) { *pDst++ = (OPJ_BYTE)(src2 >> 2); *pDst++ = (OPJ_BYTE)(((src2 & 0x3U) << 6)); } } } } static void tif_32sto15u(const OPJ_INT32* pSrc, OPJ_BYTE* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 src0 = (OPJ_UINT32)pSrc[i + 0]; OPJ_UINT32 src1 = (OPJ_UINT32)pSrc[i + 1]; OPJ_UINT32 src2 = (OPJ_UINT32)pSrc[i + 2]; OPJ_UINT32 src3 = (OPJ_UINT32)pSrc[i + 3]; OPJ_UINT32 src4 = (OPJ_UINT32)pSrc[i + 4]; OPJ_UINT32 src5 = (OPJ_UINT32)pSrc[i + 5]; OPJ_UINT32 src6 = (OPJ_UINT32)pSrc[i + 6]; OPJ_UINT32 src7 = (OPJ_UINT32)pSrc[i + 7]; *pDst++ = (OPJ_BYTE)((src0 >> 7)); *pDst++ = (OPJ_BYTE)((src0 << 1) | (src1 >> 14)); *pDst++ = (OPJ_BYTE)((src1 >> 6)); *pDst++ = (OPJ_BYTE)((src1 << 2) | (src2 >> 13)); *pDst++ = (OPJ_BYTE)((src2 >> 5)); *pDst++ = (OPJ_BYTE)((src2 << 3) | (src3 >> 12)); *pDst++ = (OPJ_BYTE)((src3 >> 4)); *pDst++ = (OPJ_BYTE)((src3 << 4) | (src4 >> 11)); *pDst++ = (OPJ_BYTE)((src4 >> 3)); *pDst++ = (OPJ_BYTE)((src4 << 5) | (src5 >> 10)); *pDst++ = (OPJ_BYTE)((src5 >> 2)); *pDst++ = (OPJ_BYTE)((src5 << 6) | (src6 >> 9)); *pDst++ = (OPJ_BYTE)((src6 >> 1)); *pDst++ = (OPJ_BYTE)((src6 << 7) | (src7 >> 8)); *pDst++ = (OPJ_BYTE)(src7); } if (length & 7U) { unsigned int trailing = 0U; int remaining = 8U; length &= 7U; PUTBITS2((OPJ_UINT32)pSrc[i + 0], 15) if (length > 1U) { PUTBITS2((OPJ_UINT32)pSrc[i + 1], 15) if (length > 2U) { PUTBITS2((OPJ_UINT32)pSrc[i + 2], 15) if (length > 3U) { PUTBITS2((OPJ_UINT32)pSrc[i + 3], 15) if (length > 4U) { PUTBITS2((OPJ_UINT32)pSrc[i + 4], 15) if (length > 5U) { PUTBITS2((OPJ_UINT32)pSrc[i + 5], 15) if (length > 6U) { PUTBITS2((OPJ_UINT32)pSrc[i + 6], 15) } } } } } } FLUSHBITS() } } static void tif_32sto16u(const OPJ_INT32* pSrc, OPJ_UINT16* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; ++i) { pDst[i] = (OPJ_UINT16)pSrc[i]; } } int imagetotif(opj_image_t * image, const char *outfile) { TIFF *tif; tdata_t buf; uint32_t width, height; uint16_t bps, tiPhoto; int adjust, sgnd; int64_t strip_size, rowStride, TIFF_MAX; OPJ_UINT32 i, numcomps; OPJ_INT32* buffer32s = NULL; OPJ_INT32 const* planes[4]; convert_32s_PXCX cvtPxToCx = NULL; convert_32sXXx_C1R cvt32sToTif = NULL; bps = (uint16_t)image->comps[0].prec; planes[0] = image->comps[0].data; numcomps = image->numcomps; if (image->color_space == OPJ_CLRSPC_CMYK) { if (numcomps < 4U) { fprintf(stderr, "imagetotif: CMYK images shall be composed of at least 4 planes.\n"); fprintf(stderr, "\tAborting\n"); return 1; } tiPhoto = PHOTOMETRIC_SEPARATED; if (numcomps > 4U) { numcomps = 4U; /* Alpha not supported */ } } else if (numcomps > 2U) { tiPhoto = PHOTOMETRIC_RGB; if (numcomps > 4U) { numcomps = 4U; } } else { tiPhoto = PHOTOMETRIC_MINISBLACK; } for (i = 1U; i < numcomps; ++i) { if (image->comps[0].dx != image->comps[i].dx) { break; } if (image->comps[0].dy != image->comps[i].dy) { break; } if (image->comps[0].prec != image->comps[i].prec) { break; } if (image->comps[0].sgnd != image->comps[i].sgnd) { break; } planes[i] = image->comps[i].data; if (planes[i] == NULL) { fprintf(stderr, "imagetotif: planes[%d] == NULL.\n", i); fprintf(stderr, "\tAborting\n"); return 1; } } if (i != numcomps) { fprintf(stderr, "imagetotif: All components shall have the same subsampling, same bit depth.\n"); fprintf(stderr, "\tAborting\n"); return 1; } if (bps > 16) { bps = 0; } if (bps == 0) { fprintf(stderr, "imagetotif: Bits=%d, Only 1 to 16 bits implemented\n", bps); fprintf(stderr, "\tAborting\n"); return 1; } tif = TIFFOpen(outfile, "wb"); if (!tif) { fprintf(stderr, "imagetotif:failed to open %s for writing\n", outfile); return 1; } for (i = 0U; i < numcomps; ++i) { clip_component(&(image->comps[i]), image->comps[0].prec); } cvtPxToCx = convert_32s_PXCX_LUT[numcomps]; switch (bps) { case 1: case 2: case 4: case 6: case 8: cvt32sToTif = convert_32sXXu_C1R_LUT[bps]; break; case 3: cvt32sToTif = tif_32sto3u; break; case 5: cvt32sToTif = tif_32sto5u; break; case 7: cvt32sToTif = tif_32sto7u; break; case 9: cvt32sToTif = tif_32sto9u; break; case 10: cvt32sToTif = tif_32sto10u; break; case 11: cvt32sToTif = tif_32sto11u; break; case 12: cvt32sToTif = tif_32sto12u; break; case 13: cvt32sToTif = tif_32sto13u; break; case 14: cvt32sToTif = tif_32sto14u; break; case 15: cvt32sToTif = tif_32sto15u; break; case 16: cvt32sToTif = (convert_32sXXx_C1R)tif_32sto16u; break; default: /* never here */ break; } sgnd = (int)image->comps[0].sgnd; adjust = sgnd ? (int)(1 << (image->comps[0].prec - 1)) : 0; width = (uint32_t)image->comps[0].w; height = (uint32_t)image->comps[0].h; TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, width); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, height); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, (uint16_t)numcomps); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, tiPhoto); TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, 1); if (sizeof(tsize_t) == 4) { TIFF_MAX = INT_MAX; } else { TIFF_MAX = UINT_MAX; } strip_size = (int64_t)TIFFStripSize(tif); if ((int64_t)width > (int64_t)(TIFF_MAX / numcomps) || (int64_t)(width * numcomps) > (int64_t)(TIFF_MAX / bps) || (int64_t)(width * numcomps) > (int64_t)(TIFF_MAX / (int64_t)sizeof( OPJ_INT32))) { fprintf(stderr, "Buffer overflow\n"); TIFFClose(tif); return 1; } rowStride = (int64_t)((width * numcomps * bps + 7U) / 8U); if (rowStride != strip_size) { fprintf(stderr, "Invalid TIFF strip size\n"); TIFFClose(tif); return 1; } buf = malloc((OPJ_SIZE_T)strip_size); if (buf == NULL) { TIFFClose(tif); return 1; } buffer32s = (OPJ_INT32 *)malloc(sizeof(OPJ_INT32) * width * numcomps); if (buffer32s == NULL) { _TIFFfree(buf); TIFFClose(tif); return 1; } for (i = 0; i < image->comps[0].h; ++i) { cvtPxToCx(planes, buffer32s, (OPJ_SIZE_T)width, adjust); cvt32sToTif(buffer32s, (OPJ_BYTE *)buf, (OPJ_SIZE_T)width * numcomps); (void)TIFFWriteEncodedStrip(tif, i, (void*)buf, (tsize_t)strip_size); planes[0] += width; planes[1] += width; planes[2] += width; planes[3] += width; } _TIFFfree((void*)buf); TIFFClose(tif); free(buffer32s); return 0; }/* imagetotif() */ #define GETBITS(dest, nb) { \ int needed = (nb); \ unsigned int dst = 0U; \ if (available == 0) { \ val = *pSrc++; \ available = 8; \ } \ while (needed > available) { \ dst |= val & ((1U << available) - 1U); \ needed -= available; \ dst <<= needed; \ val = *pSrc++; \ available = 8; \ } \ dst |= (val >> (available - needed)) & ((1U << needed) - 1U); \ available -= needed; \ dest = (OPJ_INT32)dst; \ } static void tif_3uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 >> 5)); pDst[i + 1] = (OPJ_INT32)(((val0 & 0x1FU) >> 2)); pDst[i + 2] = (OPJ_INT32)(((val0 & 0x3U) << 1) | (val1 >> 7)); pDst[i + 3] = (OPJ_INT32)(((val1 & 0x7FU) >> 4)); pDst[i + 4] = (OPJ_INT32)(((val1 & 0xFU) >> 1)); pDst[i + 5] = (OPJ_INT32)(((val1 & 0x1U) << 2) | (val2 >> 6)); pDst[i + 6] = (OPJ_INT32)(((val2 & 0x3FU) >> 3)); pDst[i + 7] = (OPJ_INT32)(((val2 & 0x7U))); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 3) if (length > 1U) { GETBITS(pDst[i + 1], 3) if (length > 2U) { GETBITS(pDst[i + 2], 3) if (length > 3U) { GETBITS(pDst[i + 3], 3) if (length > 4U) { GETBITS(pDst[i + 4], 3) if (length > 5U) { GETBITS(pDst[i + 5], 3) if (length > 6U) { GETBITS(pDst[i + 6], 3) } } } } } } } } static void tif_5uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 >> 3)); pDst[i + 1] = (OPJ_INT32)(((val0 & 0x7U) << 2) | (val1 >> 6)); pDst[i + 2] = (OPJ_INT32)(((val1 & 0x3FU) >> 1)); pDst[i + 3] = (OPJ_INT32)(((val1 & 0x1U) << 4) | (val2 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val2 & 0xFU) << 1) | (val3 >> 7)); pDst[i + 5] = (OPJ_INT32)(((val3 & 0x7FU) >> 2)); pDst[i + 6] = (OPJ_INT32)(((val3 & 0x3U) << 3) | (val4 >> 5)); pDst[i + 7] = (OPJ_INT32)(((val4 & 0x1FU))); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 5) if (length > 1U) { GETBITS(pDst[i + 1], 5) if (length > 2U) { GETBITS(pDst[i + 2], 5) if (length > 3U) { GETBITS(pDst[i + 3], 5) if (length > 4U) { GETBITS(pDst[i + 4], 5) if (length > 5U) { GETBITS(pDst[i + 5], 5) if (length > 6U) { GETBITS(pDst[i + 6], 5) } } } } } } } } static void tif_7uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 >> 1)); pDst[i + 1] = (OPJ_INT32)(((val0 & 0x1U) << 6) | (val1 >> 2)); pDst[i + 2] = (OPJ_INT32)(((val1 & 0x3U) << 5) | (val2 >> 3)); pDst[i + 3] = (OPJ_INT32)(((val2 & 0x7U) << 4) | (val3 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val3 & 0xFU) << 3) | (val4 >> 5)); pDst[i + 5] = (OPJ_INT32)(((val4 & 0x1FU) << 2) | (val5 >> 6)); pDst[i + 6] = (OPJ_INT32)(((val5 & 0x3FU) << 1) | (val6 >> 7)); pDst[i + 7] = (OPJ_INT32)(((val6 & 0x7FU))); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 7) if (length > 1U) { GETBITS(pDst[i + 1], 7) if (length > 2U) { GETBITS(pDst[i + 2], 7) if (length > 3U) { GETBITS(pDst[i + 3], 7) if (length > 4U) { GETBITS(pDst[i + 4], 7) if (length > 5U) { GETBITS(pDst[i + 5], 7) if (length > 6U) { GETBITS(pDst[i + 6], 7) } } } } } } } } static void tif_9uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; OPJ_UINT32 val7 = *pSrc++; OPJ_UINT32 val8 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 1) | (val1 >> 7)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x7FU) << 2) | (val2 >> 6)); pDst[i + 2] = (OPJ_INT32)(((val2 & 0x3FU) << 3) | (val3 >> 5)); pDst[i + 3] = (OPJ_INT32)(((val3 & 0x1FU) << 4) | (val4 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val4 & 0xFU) << 5) | (val5 >> 3)); pDst[i + 5] = (OPJ_INT32)(((val5 & 0x7U) << 6) | (val6 >> 2)); pDst[i + 6] = (OPJ_INT32)(((val6 & 0x3U) << 7) | (val7 >> 1)); pDst[i + 7] = (OPJ_INT32)(((val7 & 0x1U) << 8) | (val8)); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 9) if (length > 1U) { GETBITS(pDst[i + 1], 9) if (length > 2U) { GETBITS(pDst[i + 2], 9) if (length > 3U) { GETBITS(pDst[i + 3], 9) if (length > 4U) { GETBITS(pDst[i + 4], 9) if (length > 5U) { GETBITS(pDst[i + 5], 9) if (length > 6U) { GETBITS(pDst[i + 6], 9) } } } } } } } } static void tif_10uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4)); pDst[i + 2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2)); pDst[i + 3] = (OPJ_INT32)(((val3 & 0x3U) << 8) | val4); } if (length & 3U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; length = length & 3U; pDst[i + 0] = (OPJ_INT32)((val0 << 2) | (val1 >> 6)); if (length > 1U) { OPJ_UINT32 val2 = *pSrc++; pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3FU) << 4) | (val2 >> 4)); if (length > 2U) { OPJ_UINT32 val3 = *pSrc++; pDst[i + 2] = (OPJ_INT32)(((val2 & 0xFU) << 6) | (val3 >> 2)); } } } } static void tif_11uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; OPJ_UINT32 val7 = *pSrc++; OPJ_UINT32 val8 = *pSrc++; OPJ_UINT32 val9 = *pSrc++; OPJ_UINT32 val10 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 3) | (val1 >> 5)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x1FU) << 6) | (val2 >> 2)); pDst[i + 2] = (OPJ_INT32)(((val2 & 0x3U) << 9) | (val3 << 1) | (val4 >> 7)); pDst[i + 3] = (OPJ_INT32)(((val4 & 0x7FU) << 4) | (val5 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val5 & 0xFU) << 7) | (val6 >> 1)); pDst[i + 5] = (OPJ_INT32)(((val6 & 0x1U) << 10) | (val7 << 2) | (val8 >> 6)); pDst[i + 6] = (OPJ_INT32)(((val8 & 0x3FU) << 5) | (val9 >> 3)); pDst[i + 7] = (OPJ_INT32)(((val9 & 0x7U) << 8) | (val10)); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 11) if (length > 1U) { GETBITS(pDst[i + 1], 11) if (length > 2U) { GETBITS(pDst[i + 2], 11) if (length > 3U) { GETBITS(pDst[i + 3], 11) if (length > 4U) { GETBITS(pDst[i + 4], 11) if (length > 5U) { GETBITS(pDst[i + 5], 11) if (length > 6U) { GETBITS(pDst[i + 6], 11) } } } } } } } } static void tif_12uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)1U); i += 2U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0xFU) << 8) | val2); } if (length & 1U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 4) | (val1 >> 4)); } } static void tif_13uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; OPJ_UINT32 val7 = *pSrc++; OPJ_UINT32 val8 = *pSrc++; OPJ_UINT32 val9 = *pSrc++; OPJ_UINT32 val10 = *pSrc++; OPJ_UINT32 val11 = *pSrc++; OPJ_UINT32 val12 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 5) | (val1 >> 3)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x7U) << 10) | (val2 << 2) | (val3 >> 6)); pDst[i + 2] = (OPJ_INT32)(((val3 & 0x3FU) << 7) | (val4 >> 1)); pDst[i + 3] = (OPJ_INT32)(((val4 & 0x1U) << 12) | (val5 << 4) | (val6 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val6 & 0xFU) << 9) | (val7 << 1) | (val8 >> 7)); pDst[i + 5] = (OPJ_INT32)(((val8 & 0x7FU) << 6) | (val9 >> 2)); pDst[i + 6] = (OPJ_INT32)(((val9 & 0x3U) << 11) | (val10 << 3) | (val11 >> 5)); pDst[i + 7] = (OPJ_INT32)(((val11 & 0x1FU) << 8) | (val12)); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 13) if (length > 1U) { GETBITS(pDst[i + 1], 13) if (length > 2U) { GETBITS(pDst[i + 2], 13) if (length > 3U) { GETBITS(pDst[i + 3], 13) if (length > 4U) { GETBITS(pDst[i + 4], 13) if (length > 5U) { GETBITS(pDst[i + 5], 13) if (length > 6U) { GETBITS(pDst[i + 6], 13) } } } } } } } } static void tif_14uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)3U); i += 4U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4)); pDst[i + 2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6)); pDst[i + 3] = (OPJ_INT32)(((val5 & 0x3FU) << 8) | val6); } if (length & 3U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; length = length & 3U; pDst[i + 0] = (OPJ_INT32)((val0 << 6) | (val1 >> 2)); if (length > 1U) { OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; pDst[i + 1] = (OPJ_INT32)(((val1 & 0x3U) << 12) | (val2 << 4) | (val3 >> 4)); if (length > 2U) { OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; pDst[i + 2] = (OPJ_INT32)(((val3 & 0xFU) << 10) | (val4 << 2) | (val5 >> 6)); } } } } static void tif_15uto32s(const OPJ_BYTE* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < (length & ~(OPJ_SIZE_T)7U); i += 8U) { OPJ_UINT32 val0 = *pSrc++; OPJ_UINT32 val1 = *pSrc++; OPJ_UINT32 val2 = *pSrc++; OPJ_UINT32 val3 = *pSrc++; OPJ_UINT32 val4 = *pSrc++; OPJ_UINT32 val5 = *pSrc++; OPJ_UINT32 val6 = *pSrc++; OPJ_UINT32 val7 = *pSrc++; OPJ_UINT32 val8 = *pSrc++; OPJ_UINT32 val9 = *pSrc++; OPJ_UINT32 val10 = *pSrc++; OPJ_UINT32 val11 = *pSrc++; OPJ_UINT32 val12 = *pSrc++; OPJ_UINT32 val13 = *pSrc++; OPJ_UINT32 val14 = *pSrc++; pDst[i + 0] = (OPJ_INT32)((val0 << 7) | (val1 >> 1)); pDst[i + 1] = (OPJ_INT32)(((val1 & 0x1U) << 14) | (val2 << 6) | (val3 >> 2)); pDst[i + 2] = (OPJ_INT32)(((val3 & 0x3U) << 13) | (val4 << 5) | (val5 >> 3)); pDst[i + 3] = (OPJ_INT32)(((val5 & 0x7U) << 12) | (val6 << 4) | (val7 >> 4)); pDst[i + 4] = (OPJ_INT32)(((val7 & 0xFU) << 11) | (val8 << 3) | (val9 >> 5)); pDst[i + 5] = (OPJ_INT32)(((val9 & 0x1FU) << 10) | (val10 << 2) | (val11 >> 6)); pDst[i + 6] = (OPJ_INT32)(((val11 & 0x3FU) << 9) | (val12 << 1) | (val13 >> 7)); pDst[i + 7] = (OPJ_INT32)(((val13 & 0x7FU) << 8) | (val14)); } if (length & 7U) { unsigned int val; int available = 0; length = length & 7U; GETBITS(pDst[i + 0], 15) if (length > 1U) { GETBITS(pDst[i + 1], 15) if (length > 2U) { GETBITS(pDst[i + 2], 15) if (length > 3U) { GETBITS(pDst[i + 3], 15) if (length > 4U) { GETBITS(pDst[i + 4], 15) if (length > 5U) { GETBITS(pDst[i + 5], 15) if (length > 6U) { GETBITS(pDst[i + 6], 15) } } } } } } } } /* seems that libtiff decodes this to machine endianness */ static void tif_16uto32s(const OPJ_UINT16* pSrc, OPJ_INT32* pDst, OPJ_SIZE_T length) { OPJ_SIZE_T i; for (i = 0; i < length; i++) { pDst[i] = pSrc[i]; } } /* * libtiff/tif_getimage.c : 1,2,4,8,16 bitspersample accepted * CINEMA : 12 bit precision */ opj_image_t* tiftoimage(const char *filename, opj_cparameters_t *parameters, const unsigned int target_bitdepth) { int subsampling_dx = parameters->subsampling_dx; int subsampling_dy = parameters->subsampling_dy; TIFF *tif; tdata_t buf; tstrip_t strip; int64_t strip_size, rowStride, TIFF_MAX; int j, currentPlane, numcomps = 0, w, h; OPJ_COLOR_SPACE color_space = OPJ_CLRSPC_UNKNOWN; opj_image_cmptparm_t cmptparm[4]; /* RGBA */ opj_image_t *image = NULL; uint16_t tiBps, tiPhoto, tiSf, tiSpp, tiPC; uint32_t tiWidth, tiHeight; OPJ_BOOL is_cinema = OPJ_IS_CINEMA(parameters->rsiz); convert_XXx32s_C1R cvtTifTo32s = NULL; convert_32s_CXPX cvtCxToPx = NULL; OPJ_INT32* buffer32s = NULL; OPJ_INT32* planes[4]; tif = TIFFOpen(filename, "r"); if (!tif) { fprintf(stderr, "tiftoimage:Failed to open %s for reading\n", filename); return 0; } tiBps = tiPhoto = tiSf = tiSpp = tiPC = 0; tiWidth = tiHeight = 0; TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &tiWidth); TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &tiHeight); TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &tiBps); TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &tiSf); TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &tiSpp); TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &tiPhoto); TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &tiPC); w = (int)tiWidth; h = (int)tiHeight; if (tiSpp == 0 || tiSpp > 4) { /* should be 1 ... 4 */ fprintf(stderr, "tiftoimage: Bad value for samples per pixel == %d.\n" "\tAborting.\n", tiSpp); TIFFClose(tif); return NULL; } if (tiBps > 16U || tiBps == 0) { fprintf(stderr, "tiftoimage: Bad values for Bits == %d.\n" "\tMax. 16 Bits are allowed here.\n\tAborting.\n", tiBps); TIFFClose(tif); return NULL; } if (tiPhoto != PHOTOMETRIC_MINISBLACK && tiPhoto != PHOTOMETRIC_RGB) { fprintf(stderr, "tiftoimage: Bad color format %d.\n\tOnly RGB(A) and GRAY(A) has been implemented\n\tAborting.\n", (int) tiPhoto); TIFFClose(tif); return NULL; } if (tiWidth == 0 || tiHeight == 0) { fprintf(stderr, "tiftoimage: Bad values for width(%u) " "and/or height(%u)\n\tAborting.\n", tiWidth, tiHeight); TIFFClose(tif); return NULL; } w = (int)tiWidth; h = (int)tiHeight; switch (tiBps) { case 1: case 2: case 4: case 6: case 8: cvtTifTo32s = convert_XXu32s_C1R_LUT[tiBps]; break; /* others are specific to TIFF */ case 3: cvtTifTo32s = tif_3uto32s; break; case 5: cvtTifTo32s = tif_5uto32s; break; case 7: cvtTifTo32s = tif_7uto32s; break; case 9: cvtTifTo32s = tif_9uto32s; break; case 10: cvtTifTo32s = tif_10uto32s; break; case 11: cvtTifTo32s = tif_11uto32s; break; case 12: cvtTifTo32s = tif_12uto32s; break; case 13: cvtTifTo32s = tif_13uto32s; break; case 14: cvtTifTo32s = tif_14uto32s; break; case 15: cvtTifTo32s = tif_15uto32s; break; case 16: cvtTifTo32s = (convert_XXx32s_C1R)tif_16uto32s; break; default: /* never here */ break; } /* initialize image components */ memset(&cmptparm[0], 0, 4 * sizeof(opj_image_cmptparm_t)); if ((tiPhoto == PHOTOMETRIC_RGB) && (is_cinema) && (tiBps != 12U)) { fprintf(stdout, "WARNING:\n" "Input image bitdepth is %d bits\n" "TIF conversion has automatically rescaled to 12-bits\n" "to comply with cinema profiles.\n", tiBps); } else { is_cinema = 0U; } numcomps = tiSpp; if (tiPhoto == PHOTOMETRIC_RGB) { /* RGB(A) */ color_space = OPJ_CLRSPC_SRGB; } else if (tiPhoto == PHOTOMETRIC_MINISBLACK) { /* GRAY(A) */ color_space = OPJ_CLRSPC_GRAY; } cvtCxToPx = convert_32s_CXPX_LUT[numcomps]; if (tiPC == PLANARCONFIG_SEPARATE) { cvtCxToPx = convert_32s_CXPX_LUT[1]; /* override */ tiSpp = 1U; /* consider only one sample per plane */ } for (j = 0; j < numcomps; j++) { cmptparm[j].prec = tiBps; cmptparm[j].dx = (OPJ_UINT32)subsampling_dx; cmptparm[j].dy = (OPJ_UINT32)subsampling_dy; cmptparm[j].w = (OPJ_UINT32)w; cmptparm[j].h = (OPJ_UINT32)h; } image = opj_image_create((OPJ_UINT32)numcomps, &cmptparm[0], color_space); if (!image) { TIFFClose(tif); return NULL; } /* set image offset and reference grid */ image->x0 = (OPJ_UINT32)parameters->image_offset_x0; image->y0 = (OPJ_UINT32)parameters->image_offset_y0; image->x1 = !image->x0 ? (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1 : image->x0 + (OPJ_UINT32)(w - 1) * (OPJ_UINT32)subsampling_dx + 1; if (image->x1 <= image->x0) { fprintf(stderr, "tiftoimage: Bad value for image->x1(%d) vs. " "image->x0(%d)\n\tAborting.\n", image->x1, image->x0); TIFFClose(tif); opj_image_destroy(image); return NULL; } image->y1 = !image->y0 ? (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1 : image->y0 + (OPJ_UINT32)(h - 1) * (OPJ_UINT32)subsampling_dy + 1; if (image->y1 <= image->y0) { fprintf(stderr, "tiftoimage: Bad value for image->y1(%d) vs. " "image->y0(%d)\n\tAborting.\n", image->y1, image->y0); TIFFClose(tif); opj_image_destroy(image); return NULL; } for (j = 0; j < numcomps; j++) { planes[j] = image->comps[j].data; } image->comps[numcomps - 1].alpha = (OPJ_UINT16)(1 - (numcomps & 1)); strip_size = (int64_t)TIFFStripSize(tif); buf = malloc((OPJ_SIZE_T)strip_size); if (buf == NULL) { TIFFClose(tif); opj_image_destroy(image); return NULL; } if (sizeof(tsize_t) == 4) { TIFF_MAX = INT_MAX; } else { TIFF_MAX = UINT_MAX; } if ((int64_t)tiWidth > (int64_t)(TIFF_MAX / tiSpp) || (int64_t)(tiWidth * tiSpp) > (int64_t)(TIFF_MAX / tiBps) || (int64_t)(tiWidth * tiSpp) > (int64_t)(TIFF_MAX / (int64_t)sizeof(OPJ_INT32))) { fprintf(stderr, "Buffer overflow\n"); _TIFFfree(buf); TIFFClose(tif); opj_image_destroy(image); return NULL; } rowStride = (int64_t)((tiWidth * tiSpp * tiBps + 7U) / 8U); buffer32s = (OPJ_INT32 *)malloc(sizeof(OPJ_INT32) * tiWidth * tiSpp); if (buffer32s == NULL) { _TIFFfree(buf); TIFFClose(tif); opj_image_destroy(image); return NULL; } strip = 0; currentPlane = 0; do { planes[0] = image->comps[currentPlane].data; /* to manage planar data */ h = (int)tiHeight; /* Read the Image components */ for (; (h > 0) && (strip < TIFFNumberOfStrips(tif)); strip++) { const OPJ_UINT8 *dat8; int64_t ssize; ssize = (int64_t)TIFFReadEncodedStrip(tif, strip, buf, (tsize_t)strip_size); if (ssize < 1 || ssize > strip_size) { fprintf(stderr, "tiftoimage: Bad value for ssize(%" PRId64 ") " "vs. strip_size(%" PRId64 ").\n\tAborting.\n", ssize, strip_size); _TIFFfree(buf); _TIFFfree(buffer32s); TIFFClose(tif); opj_image_destroy(image); return NULL; } dat8 = (const OPJ_UINT8*)buf; while (ssize >= rowStride) { cvtTifTo32s(dat8, buffer32s, (OPJ_SIZE_T)w * tiSpp); cvtCxToPx(buffer32s, planes, (OPJ_SIZE_T)w); planes[0] += w; planes[1] += w; planes[2] += w; planes[3] += w; dat8 += rowStride; ssize -= rowStride; h--; } } currentPlane++; } while ((tiPC == PLANARCONFIG_SEPARATE) && (currentPlane < numcomps)); free(buffer32s); _TIFFfree(buf); TIFFClose(tif); if (is_cinema) { for (j = 0; j < numcomps; ++j) { scale_component(&(image->comps[j]), 12); } } else if ((target_bitdepth > 0) && (target_bitdepth != tiBps)) { for (j = 0; j < numcomps; ++j) { scale_component(&(image->comps[j]), target_bitdepth); } } return image; }/* tiftoimage() */