/* * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2005, Francois Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2002-2005, Communications and remote sensing Laboratory, Universite catholique de Louvain, Belgium * Copyrigth (c) 2006, Mónica Díez, LPI-UVA, Spain * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * NOTE: * This is a modified version of the openjpeg dwt.c file. * Average speed improvement compared to the original file (measured on * my own machine, a P4 running at 3.0 GHz): * 5x3 wavelets about 2 times faster * 9x7 wavelets about 3 times faster * for both, encoding and decoding. * * The better performance is caused by doing the 1-dimensional DWT * within a temporary buffer where the data can be accessed sequential * for both directions, horizontal and vertical. The 2d vertical DWT was * the major bottleneck in the former version. * * I have also removed the "Add Patrick" part because it is not longer * needed. * * 6/6/2005 * -Ive (aka Reiner Wahler) * mail: ive@lilysoft.com */ #include "opj_includes.h" /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ /** @name Local static functions */ /*@{*/ unsigned int ops; /** Forward lazy transform (horizontal) */ static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas); /** Forward lazy transform (vertical) */ static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas); /** Forward lazy transform (axial) */ static void dwt_deinterleave_z(int *a, int *b, int dn, int sn, int xy, int cas); /** Inverse lazy transform (horizontal) */ static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas); /** Inverse lazy transform (vertical) */ static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas); /** Inverse lazy transform (axial) */ static void dwt_interleave_z(int *a, int *b, int dn, int sn, int xy, int cas); /** Forward 5-3 wavelet tranform in 1-D */ static void dwt_encode_53(int *a, int dn, int sn, int cas); static void dwt_encode_97(int *a, int dn, int sn, int cas); /** Inverse 5-3 wavelet tranform in 1-D */ static void dwt_decode_53(int *a, int dn, int sn, int cas); static void dwt_decode_97(int *a, int dn, int sn, int cas); /** Computing of wavelet transform L2 norms for arbitrary transforms */ static double dwt_calc_wtnorms(int orient, int level[3], int dwtid[3], opj_wtfilt_t *wtfiltx, opj_wtfilt_t *wtfilty, opj_wtfilt_t *wtfiltz); /** Encoding of quantification stepsize */ static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize); /*@}*/ /*@}*/ #define S(i) a[(i)*2] #define D(i) a[(1+(i)*2)] #define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i))) #define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i))) /* new */ #define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i))) #define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i))) /* */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* */ static double dwt_norm[10][10][10][8]; static int flagnorm[10][10][10][8]; /*static const double dwt_norms[5][8][10] = { {//ResZ=1 {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} },{//ResZ=2 {1.000, 1.8371, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.2717, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.2717, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.8803, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}, {1.2717}, {.8803}, {.8803}, {.6093}, },{ //ResZ=3 {1.000, 1.8371, 4.5604, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.2717, 2.6403, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.2717, 2.6403, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.8803, 1.5286, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}, {1.2717, 2.6403}, {.8803, 1.5286}, {.8803, 1.5286}, {.6093, 0.8850}, },{ //ResZ=4 {1.000, 1.8371, 4.5604, 12.4614, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.2717, 2.6403, 6.7691 , 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.2717, 2.6403, 6.7691 , 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.8803, 1.5286, 3.6770 , 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}, {1.2717, 2.6403, 6.7691 }, {.8803, 1.5286, 3.6770 }, {.8803, 1.5286, 3.6770 }, {.6093, 0.8850, 1.9974 }, },{ //ResZ=5 {1.000, 1.8371, 4.5604, 12.4614, 34.9025, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.2717, 2.6403, 6.7691 , 18.6304 , 11.33, 22.64, 45.25, 90.48, 180.9}, {1.2717, 2.6403, 6.7691 , 18.6304, 11.33, 22.64, 45.25, 90.48, 180.9}, {.8803, 1.5286, 3.6770 , 9.9446, 6.019, 12.01, 24.00, 47.97, 95.93}, {1.2717, 2.6403, 6.7691, 18.6304}, {.8803, 1.5286, 3.6770, 9.9446 }, {.8803, 1.5286, 3.6770, 9.9446 }, {.6093, 0.8850, 1.9974, 5.3083 }, } };*/ /* */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* */ /*static const double dwt_norms_real[5][8][10] = { {//ResZ==1 {1.000, 1.9659, 4.1224, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894}, {1.0113, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {1.0113, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {0.5202, 0.9672, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722} }, { //ResZ==2 {1.000, 2.7564, 4.1224, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894}, {1.4179, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {1.4179, 1.9968, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {0.7294, 0.9672, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722}, {1.4179}, {0.7294}, {0.7294}, {0.3752} //HHH },{ //ResZ==3 {1.000, 2.7564, 8.3700, 8.4167, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894}, {1.4179, 4.0543, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {1.4179, 4.0543, 4.1834, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {0.7294, 1.9638, 2.0793, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722}, {1.4179, 4.0543}, {0.7294, 1.9638}, {0.7294, 1.9638}, {0.3752, 0.9512} //HHH },{ //ResZ==4 {1.000, 2.7564, 8.3700, 24.4183, 16.9356, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894}, {1.4179, 4.0543, 12.1366, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {1.4179, 4.0543, 12.1366, 8.5341, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {0.7294, 1.9638, 6.0323, 4.3005, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722}, {1.4179, 4.0543, 12.1366}, {0.7294, 1.9638, 6.0323}, {0.7294, 1.9638, 6.0323}, {0.3752, 0.9512, 2.9982} //HHH },{ //ResZ==5 {1.000, 2.7564, 8.3700, 24.4183, 69.6947, 33.9249, 67.8772, 135.7680, 271.5430, 543.0894}, {1.4179, 4.0543, 12.1366, 35.1203, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {1.4179, 4.0543, 12.1366, 35.1203, 17.1667, 34.3852, 68.7967, 137.6065, 275.2196}, {0.7294, 1.9638, 6.0323, 17.6977, 8.6867, 17.4188, 34.8608, 69.7332, 139.4722}, {1.4179, 4.0543, 12.1366, 35.1203}, {0.7294, 1.9638, 6.0323, 17.6977}, {0.7294, 1.9638, 6.0323, 17.6977}, {0.3752, 0.9512, 2.9982, 8.9182} //HHH } };*/ static opj_atk_t atk_info_wt[] = { {0, 1, J3D_ATK_WS, J3D_ATK_IRR, 0, J3D_ATK_WS, 1.230174104, 4, {0}, {0}, {0}, {1,1,1,1}, {-1.586134342059924, -0.052980118572961, 0.882911075530934, 0.443506852043971}},/* WT 9-7 IRR*/ {1, 0, J3D_ATK_WS, J3D_ATK_REV, 0, J3D_ATK_WS, 0, 2, {0}, {1,2}, {1,2}, {1,1}, {-1,1}},/* WT 5-3 REV*/ {2, 0, J3D_ATK_ARB, J3D_ATK_REV, 0, J3D_ATK_CON, 0, 2, {0,0}, {0,1}, {0,1}, {1,1}, {{-1},{1}}}, /* WT 2-2 REV*/ {3, 0, J3D_ATK_ARB, J3D_ATK_REV, 1, J3D_ATK_CON, 0, 3, {0,0,-1}, {0,1,2}, {0,1,2}, {1,1,3}, {{-1},{1},{1,0,-1}}}, /* WT 2-6 REV*/ {4, 0, J3D_ATK_ARB, J3D_ATK_REV, 1, J3D_ATK_CON, 0, 3, {0,0,-2}, {0,1,6}, {0,1,32}, {1,1,5}, {{-1},{1},{-3,22,0,-22,3}}}, /* WT 2-10 REV*/ {5, 1, J3D_ATK_ARB, J3D_ATK_IRR, 1, J3D_ATK_WS, 1, 7, {0}, {0}, {0}, {1,1,2,1,2,1,3},{{-1},{1.58613434206},{-0.460348209828, 0.460348209828},{0.25},{0.374213867768,-0.374213867768},{-1.33613434206},{0.29306717103,0,-0.29306717103}}}, /* WT 6-10 IRR*/ {6, 1, J3D_ATK_ARB, J3D_ATK_IRR, 0, J3D_ATK_WS, 1, 11, {0}, {0}, {0}, {1,1,2,1,2,1,2,1,2,1,5},{{-1},{0,99715069105},{-1.00573127827, 1.00573127827},{-0.27040357631},{2.20509972343, -2.20509972343},{0.08059995736}, {-1.62682532350, 1.62682532350},{0.52040357631},{0.60404664250, -0.60404664250},{-0.82775064841},{-0.06615812964, 0.29402137720, 0, -0.29402137720, 0.06615812964}}}, /* WT 10-18 IRR*/ {7, 1, J3D_ATK_WS, J3D_ATK_IRR, 0, J3D_ATK_WS, 1, 2, {0}, {0}, {0}, {1,1}, {-0.5, 0.25}}, /* WT 5-3 IRR*/ {8, 0, J3D_ATK_WS, J3D_ATK_REV, 0, J3D_ATK_WS, 0, 2, {0}, {4,4}, {8,8}, {2,2}, {{-9,1},{5,-1}}} /* WT 13-7 REV*/ }; /* ========================================================== local functions ========================================================== */ /* */ /* Forward lazy transform (horizontal). */ /* */ static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas) { int i; for (i=0; i */ /* Forward lazy transform (vertical). */ /* */ static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas) { int i; for (i=0; i */ /* Forward lazy transform (axial). */ /* */ static void dwt_deinterleave_z(int *a, int *b, int dn, int sn, int xy, int cas) { int i; for (i=0; i */ /* Inverse lazy transform (horizontal). */ /* */ static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas) { int i; int *ai = NULL; int *bi = NULL; ai = a; bi = b + cas; for (i = 0; i < sn; i++) { *bi = *ai; bi += 2; ai++; } ai = a + sn; bi = b + 1 - cas; for (i = 0; i < dn; i++) { *bi = *ai; bi += 2; ai++; } } /* */ /* Inverse lazy transform (vertical). */ /* */ static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas) { int i; int *ai = NULL; int *bi = NULL; ai = a; bi = b + cas; for (i = 0; i < sn; i++) { *bi = *ai; bi += 2; ai += x; } ai = a + (sn * x); bi = b + 1 - cas; for (i = 0; i < dn; i++) { *bi = *ai; bi += 2; ai += x; } } /* */ /* Inverse lazy transform (axial). */ /* */ static void dwt_interleave_z(int *a, int *b, int dn, int sn, int xy, int cas) { int i; int *ai = NULL; int *bi = NULL; ai = a; bi = b + cas; for (i = 0; i < sn; i++) { *bi = *ai; bi += 2; ai += xy; } ai = a + (sn * xy); bi = b + 1 - cas; for (i = 0; i < dn; i++) { *bi = *ai; bi += 2; ai += xy; } } /* */ /* Forward 5-3 or 9-7 wavelet tranform in 1-D. */ /* */ static void dwt_encode_53(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ //for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1; //for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2; for (i = 0; i < dn; i++){ D(i) -= (S_(i) + S_(i + 1)) >> 1; //ops += 2; } for (i = 0; i < sn; i++){ S(i) += (D_(i - 1) + D_(i) + 2) >> 2; //ops += 3; } } } else { /*if (!sn && dn == 1) S(0) *= 2; else { for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1; for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2; }*/ if (!sn && dn == 1){ S(0) *= 2; //ops++; } else { for (i = 0; i < dn; i++){ S(i) -= (DD_(i) + DD_(i - 1)) >> 1; // ops += 2; } for (i = 0; i < sn; i++){ D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2; // ops += 3; } } } } static void dwt_encode_97(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) D(i) -= fix_mul(S_(i) + S_(i + 1), 12993); for (i = 0; i < sn; i++) S(i) -= fix_mul(D_(i - 1) + D_(i), 434); for (i = 0; i < dn; i++) D(i) += fix_mul(S_(i) + S_(i + 1), 7233); for (i = 0; i < sn; i++) S(i) += fix_mul(D_(i - 1) + D_(i), 3633); for (i = 0; i < dn; i++) D(i) = fix_mul(D(i), 5038); /*5038 */ for (i = 0; i < sn; i++) S(i) = fix_mul(S(i), 6659); /*6660 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993); for (i = 0; i < sn; i++) D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434); for (i = 0; i < dn; i++) S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233); for (i = 0; i < sn; i++) D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633); for (i = 0; i < dn; i++) S(i) = fix_mul(S(i), 5038); /*5038 */ for (i = 0; i < sn; i++) D(i) = fix_mul(D(i), 6659); /*6660 */ } } } /* */ /* Inverse 5-3 or 9-7 wavelet tranform in 1-D. */ /* */ static void dwt_decode_53(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) S(i) -= (D_(i - 1) + D_(i) + 2) >> 2; for (i = 0; i < dn; i++) D(i) += (S_(i) + S_(i + 1)) >> 1; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ S(0) /= 2; else { for (i = 0; i < sn; i++) D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2; for (i = 0; i < dn; i++) S(i) += (DD_(i) + DD_(i - 1)) >> 1; } } } static void dwt_decode_97(int *a, int dn, int sn, int cas) { int i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) S(i) = fix_mul(S(i), 10078); /* 10076 */ for (i = 0; i < dn; i++) D(i) = fix_mul(D(i), 13318); /* 13320 */ for (i = 0; i < sn; i++) S(i) -= fix_mul(D_(i - 1) + D_(i), 3633); for (i = 0; i < dn; i++) D(i) -= fix_mul(S_(i) + S_(i + 1), 7233); for (i = 0; i < sn; i++) S(i) += fix_mul(D_(i - 1) + D_(i), 434); for (i = 0; i < dn; i++) D(i) += fix_mul(S_(i) + S_(i + 1), 12994); /* 12993 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) D(i) = fix_mul(D(i), 10078); /* 10076 */ for (i = 0; i < dn; i++) S(i) = fix_mul(S(i), 13318); /* 13320 */ for (i = 0; i < sn; i++) D(i) -= fix_mul(SS_(i) + SS_(i + 1), 3633); for (i = 0; i < dn; i++) S(i) -= fix_mul(DD_(i) + DD_(i - 1), 7233); for (i = 0; i < sn; i++) D(i) += fix_mul(SS_(i) + SS_(i + 1), 434); for (i = 0; i < dn; i++) S(i) += fix_mul(DD_(i) + DD_(i - 1), 12994); /* 12993 */ } } } /* */ /* Get norm of arbitrary wavelet transform. */ /* */ static int upandconv(double *nXPS, double *LPS, int lenXPS, int lenLPS) { /* Perform the convolution of the vectors. */ int i,j; double *tmp = (double *)opj_malloc(2*lenXPS * sizeof(double)); //Upsample memset(tmp, 0, 2*lenXPS*sizeof(double)); for (i = 0; i < lenXPS; i++) { *(tmp + 2*i) = *(nXPS + i); *(nXPS + i) = 0; } //Convolution for (i = 0; i < 2*lenXPS; i++) { for (j = 0; j < lenLPS; j++) { *(nXPS+i+j) = *(nXPS+i+j) + *(tmp + i) * *(LPS + j); //fprintf(stdout,"*(tmp + %d) * *(LPS + %d) = %f * %f \n",i,j,*(tmp + i),*(LPS + j)); } } free(tmp); return 2*lenXPS+lenLPS-1; } static double dwt_calc_wtnorms(int orient, int level[3], int dwtid[3], opj_wtfilt_t *wtfiltX, opj_wtfilt_t *wtfiltY, opj_wtfilt_t *wtfiltZ) { int i, lenLPS, lenHPS; double Lx = 0, Ly= 0, Hx= 0, Hy= 0, Lz= 0, Hz= 0; double *nLPSx, *nHPSx,*nLPSy, *nHPSy,*nLPSz, *nHPSz; int levelx, levely, levelz; levelx = (orient == 0) ? level[0]-1 : level[0]; levely = (orient == 0) ? level[1]-1 : level[1]; levelz = (orient == 0) ? level[2]-1 : level[2]; //X axis lenLPS = wtfiltX->lenLPS; lenHPS = wtfiltX->lenHPS; for (i = 0; i < levelx; i++) { lenLPS *= 2; lenHPS *= 2; lenLPS += wtfiltX->lenLPS - 1; lenHPS += wtfiltX->lenLPS - 1; } nLPSx = (double *)opj_malloc(lenLPS * sizeof(double)); nHPSx = (double *)opj_malloc(lenHPS * sizeof(double)); memcpy(nLPSx, wtfiltX->LPS, wtfiltX->lenLPS * sizeof(double)); memcpy(nHPSx, wtfiltX->HPS, wtfiltX->lenHPS * sizeof(double)); lenLPS = wtfiltX->lenLPS; lenHPS = wtfiltX->lenHPS; for (i = 0; i < levelx; i++) { lenLPS = upandconv(nLPSx, wtfiltX->LPS, lenLPS, wtfiltX->lenLPS); lenHPS = upandconv(nHPSx, wtfiltX->LPS, lenHPS, wtfiltX->lenLPS); } for (i = 0; i < lenLPS; i++) Lx += nLPSx[i] * nLPSx[i]; for (i = 0; i < lenHPS; i++) Hx += nHPSx[i] * nHPSx[i]; Lx = sqrt(Lx); Hx = sqrt(Hx); free(nLPSx); free(nHPSx); //Y axis if (dwtid[0] != dwtid[1] || level[0] != level[1]){ lenLPS = wtfiltY->lenLPS; lenHPS = wtfiltY->lenHPS; for (i = 0; i < levely; i++) { lenLPS *= 2; lenHPS *= 2; lenLPS += wtfiltY->lenLPS - 1; lenHPS += wtfiltY->lenLPS - 1; } nLPSy = (double *)opj_malloc(lenLPS * sizeof(double)); nHPSy = (double *)opj_malloc(lenHPS * sizeof(double)); memcpy(nLPSy, wtfiltY->LPS, wtfiltY->lenLPS * sizeof(double)); memcpy(nHPSy, wtfiltY->HPS, wtfiltY->lenHPS * sizeof(double)); lenLPS = wtfiltY->lenLPS; lenHPS = wtfiltY->lenHPS; for (i = 0; i < levely; i++) { lenLPS = upandconv(nLPSy, wtfiltY->LPS, lenLPS, wtfiltY->lenLPS); lenHPS = upandconv(nHPSy, wtfiltY->LPS, lenHPS, wtfiltY->lenLPS); } for (i = 0; i < lenLPS; i++) Ly += nLPSy[i] * nLPSy[i]; for (i = 0; i < lenHPS; i++) Hy += nHPSy[i] * nHPSy[i]; Ly = sqrt(Ly); Hy = sqrt(Hy); free(nLPSy); free(nHPSy); } else { Ly = Lx; Hy = Hx; } //Z axis if (levelz >= 0) { lenLPS = wtfiltZ->lenLPS; lenHPS = wtfiltZ->lenHPS; for (i = 0; i < levelz; i++) { lenLPS *= 2; lenHPS *= 2; lenLPS += wtfiltZ->lenLPS - 1; lenHPS += wtfiltZ->lenLPS - 1; } nLPSz = (double *)opj_malloc(lenLPS * sizeof(double)); nHPSz = (double *)opj_malloc(lenHPS * sizeof(double)); memcpy(nLPSz, wtfiltZ->LPS, wtfiltZ->lenLPS * sizeof(double)); memcpy(nHPSz, wtfiltZ->HPS, wtfiltZ->lenHPS * sizeof(double)); lenLPS = wtfiltZ->lenLPS; lenHPS = wtfiltZ->lenHPS; for (i = 0; i < levelz; i++) { lenLPS = upandconv(nLPSz, wtfiltZ->LPS, lenLPS, wtfiltZ->lenLPS); lenHPS = upandconv(nHPSz, wtfiltZ->LPS, lenHPS, wtfiltZ->lenLPS); } for (i = 0; i < lenLPS; i++) Lz += nLPSz[i] * nLPSz[i]; for (i = 0; i < lenHPS; i++) Hz += nHPSz[i] * nHPSz[i]; Lz = sqrt(Lz); Hz = sqrt(Hz); free(nLPSz); free(nHPSz); } else { Lz = 1.0; Hz = 1.0; } switch (orient) { case 0: return Lx * Ly * Lz; case 1: return Lx * Hy * Lz; case 2: return Hx * Ly * Lz; case 3: return Hx * Hy * Lz; case 4: return Lx * Ly * Hz; case 5: return Lx * Hy * Hz; case 6: return Hx * Ly * Hz; case 7: return Hx * Hy * Hz; default: return -1; } } static void dwt_getwtfilters(opj_wtfilt_t *wtfilt, int dwtid) { if (dwtid == 0) { //DWT 9-7 wtfilt->lenLPS = 7; wtfilt->lenHPS = 9; wtfilt->LPS = (double *)opj_malloc(wtfilt->lenLPS * sizeof(double)); wtfilt->HPS = (double *)opj_malloc(wtfilt->lenHPS * sizeof(double)); wtfilt->LPS[0] = -0.091271763114; wtfilt->HPS[0] = 0.026748757411; wtfilt->LPS[1] = -0.057543526228; wtfilt->HPS[1] = 0.016864118443; wtfilt->LPS[2] = 0.591271763114; wtfilt->HPS[2] = -0.078223266529; wtfilt->LPS[3] = 1.115087052457; wtfilt->HPS[3] = -0.266864118443; wtfilt->LPS[4] = 0.591271763114; wtfilt->HPS[4] = 0.602949018236; wtfilt->LPS[5] = -0.057543526228; wtfilt->HPS[5] = -0.266864118443; wtfilt->LPS[6] = -0.091271763114; wtfilt->HPS[6] = -0.078223266529; wtfilt->HPS[7] = 0.016864118443; wtfilt->HPS[8] = 0.026748757411; } else if (dwtid == 1) { //DWT 5-3 wtfilt->lenLPS = 3; wtfilt->lenHPS = 5; wtfilt->LPS = (double *)opj_malloc(wtfilt->lenLPS * sizeof(double)); wtfilt->HPS = (double *)opj_malloc(wtfilt->lenHPS * sizeof(double)); wtfilt->LPS[0] = 0.5; wtfilt->HPS[0] = -0.125; wtfilt->LPS[1] = 1; wtfilt->HPS[1] = -0.25; wtfilt->LPS[2] = 0.5; wtfilt->HPS[2] = 0.75; wtfilt->HPS[3] = -0.25; wtfilt->HPS[4] = -0.125; } else { fprintf(stdout,"[ERROR] Sorry, this wavelet hasn't been implemented so far ... Try another one :-)\n"); exit(1); } } /* */ /* Encoding of quantization stepsize for each subband. */ /* */ static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize) { int p, n; p = int_floorlog2(stepsize) - 13; n = 11 - int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; //if J3D_CCP_QNTSTY_NOQNT --> stepsize = 8192.0 --> p = 0, n = -2 --> mant = 0; expn = (prec+gain) //else --> bandno_stepsize = (1<<(numbps - expn)) + (1<<(numbps - expn - 11)) * Ub } /* ========================================================== DWT interface ========================================================== */ /* */ /* Forward 5-3 wavelet tranform in 3-D. */ /* */ void dwt_encode(opj_tcd_tilecomp_t * tilec, int dwtid[3]) { int i, j, k; int x, y, z; int w, h, wh, d; int level,levelx,levely,levelz,diff; int *a = NULL; int *aj = NULL; int *bj = NULL; int *cj = NULL; ops = 0; memset(flagnorm,0,8000*sizeof(int)); w = tilec->x1-tilec->x0; h = tilec->y1-tilec->y0; d = tilec->z1-tilec->z0; wh = w * h; levelx = tilec->numresolution[0]-1; levely = tilec->numresolution[1]-1; levelz = tilec->numresolution[2]-1; level = int_max(levelx,int_max(levely,levelz)); diff = tilec->numresolution[0] - tilec->numresolution[2]; a = tilec->data; for (x = 0, y = 0, z = 0; (x < levelx) && (y < levely); x++, y++, z++) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rd; /* depth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int rd1; /* depth of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int cas_axl; /* 0 = non inversion on axial filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[level - x].x1 - tilec->resolutions[level - x].x0; rh = tilec->resolutions[level - y].y1 - tilec->resolutions[level - y].y0; rd = tilec->resolutions[level - z].z1 - tilec->resolutions[level - z].z0; rw1= tilec->resolutions[level - x - 1].x1 - tilec->resolutions[level - x - 1].x0; rh1= tilec->resolutions[level - y - 1].y1 - tilec->resolutions[level - y - 1].y0; rd1= tilec->resolutions[level - z - 1].z1 - tilec->resolutions[level - z - 1].z0; cas_col = tilec->resolutions[level - x].x0 % 2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ cas_row = tilec->resolutions[level - y].y0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ cas_axl = tilec->resolutions[level - z].z0 % 2; /*fprintf(stdout," x %d y %d z %d \n",x,y,z); fprintf(stdout," levelx %d levely %d levelz %d \n",levelx,levely,levelz); fprintf(stdout," z1 %d z0 %d\n",tilec->resolutions[level - z].z1,tilec->resolutions[level - z].z0); fprintf(stdout," rw %d rh %d rd %d \n rw1 %d rh1 %d rd1 %d \n",rw,rh,rd,rw1,rh1,rd1);*/ for (i = 0; i < rd; i++) { cj = a + (i * wh); //Horizontal sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); if (dwtid[0] == 0) { for (j = 0; j < rh; j++) { aj = cj + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_97(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } } else if (dwtid[0] == 1) { for (j = 0; j < rh; j++) { aj = cj + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_53(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } } opj_free(bj); //Vertical sn = rh1; dn = rh - rh1; bj = (int*)opj_malloc(rh * sizeof(int)); if (dwtid[1] == 0) { /*DWT 9-7*/ for (j = 0; j < rw; j++) { aj = cj + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_97(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } } else if (dwtid[1] == 1) { /*DWT 5-3*/ for (j = 0; j < rw; j++) { aj = cj + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_53(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } } opj_free(bj); } if (z < levelz){ //Axial fprintf(stdout,"Axial DWT Transform %d %d %d\n",z,rd,rd1); sn = rd1; dn = rd - rd1; bj = (int*)opj_malloc(rd * sizeof(int)); if (dwtid[2] == 0) { for (j = 0; j < (rw*rh); j++) { aj = a + j; for (k = 0; k < rd; k++) bj[k] = aj[k*wh]; dwt_encode_97(bj, dn, sn, cas_axl); dwt_deinterleave_z(bj, aj, dn, sn, wh, cas_axl); } } else if (dwtid[2] == 1) { for (j = 0; j < (rw*rh); j++) { aj = a + j; for (k = 0; k < rd; k++) bj[k] = aj[k*wh]; dwt_encode_53(bj, dn, sn, cas_axl); dwt_deinterleave_z(bj, aj, dn, sn, wh, cas_axl); } } opj_free(bj); } } //fprintf(stdout,"[INFO] Ops: %d \n",ops); } /* */ /* Inverse 5-3 wavelet tranform in 3-D. */ /* */ void dwt_decode(opj_tcd_tilecomp_t * tilec, int stops[3], int dwtid[3]) { int i, j, k; int x, y, z; int w, h, wh, d; int level, levelx, levely, levelz, diff; int *a = NULL; int *aj = NULL; int *bj = NULL; int *cj = NULL; a = tilec->data; w = tilec->x1-tilec->x0; h = tilec->y1-tilec->y0; d = tilec->z1-tilec->z0; wh = w * h; levelx = tilec->numresolution[0]-1; levely = tilec->numresolution[1]-1; levelz = tilec->numresolution[2]-1; level = int_max(levelx,int_max(levely,levelz)); diff = tilec->numresolution[0] - tilec->numresolution[2]; /* General lifting framework -- DCCS-LIWT */ for (x = level - 1, y = level - 1, z = level - 1; (x >= stops[0]) && (y >= stops[1]); x--, y--, z--) { int rw; /* width of the resolution level computed */ int rh; /* heigth of the resolution level computed */ int rd; /* depth of the resolution level computed */ int rw1; /* width of the resolution level once lower than computed one */ int rh1; /* height of the resolution level once lower than computed one */ int rd1; /* depth of the resolution level once lower than computed one */ int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int cas_axl; /* 0 = non inversion on axial filtering 1 = inversion between low-pass and high-pass filtering */ int dn, sn; rw = tilec->resolutions[level - x].x1 - tilec->resolutions[level - x].x0; rh = tilec->resolutions[level - y].y1 - tilec->resolutions[level - y].y0; rd = tilec->resolutions[level - z].z1 - tilec->resolutions[level - z].z0; rw1= tilec->resolutions[level - x - 1].x1 - tilec->resolutions[level - x - 1].x0; rh1= tilec->resolutions[level - y - 1].y1 - tilec->resolutions[level - y - 1].y0; rd1= tilec->resolutions[level - z - 1].z1 - tilec->resolutions[level - z - 1].z0; cas_col = tilec->resolutions[level - x].x0 % 2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ cas_row = tilec->resolutions[level - y].y0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ cas_axl = tilec->resolutions[level - z].z0 % 2; /*fprintf(stdout," x %d y %d z %d \n",x,y,z); fprintf(stdout," levelx %d levely %d levelz %d \n",levelx,levely,levelz); fprintf(stdout," dwtid[0] %d [1] %d [2] %d \n",dwtid[0],dwtid[1],dwtid[2]); fprintf(stdout," rw %d rh %d rd %d \n rw1 %d rh1 %d rd1 %d \n",rw,rh,rd,rw1,rh1,rd1); fprintf(stdout,"IDWT Transform %d %d %d %d\n",level, z, rd,rd1);*/ if (z >= stops[2] && rd != rd1) { //fprintf(stdout,"Axial Transform %d %d %d %d\n",levelz, z, rd,rd1); sn = rd1; dn = rd - rd1; bj = (int*)opj_malloc(rd * sizeof(int)); if (dwtid[2] == 0) { for (j = 0; j < (rw*rh); j++) { aj = a + j; dwt_interleave_z(aj, bj, dn, sn, wh, cas_axl); dwt_decode_97(bj, dn, sn, cas_axl); for (k = 0; k < rd; k++) aj[k * wh] = bj[k]; } } else if (dwtid[2] == 1) { for (j = 0; j < (rw*rh); j++) { aj = a + j; dwt_interleave_z(aj, bj, dn, sn, wh, cas_axl); dwt_decode_53(bj, dn, sn, cas_axl); for (k = 0; k < rd; k++) aj[k * wh] = bj[k]; } } opj_free(bj); } for (i = 0; i < rd; i++) { //Fetch corresponding slice for doing DWT-2D cj = tilec->data + (i * wh); //Vertical sn = rh1; dn = rh - rh1; bj = (int*)opj_malloc(rh * sizeof(int)); if (dwtid[1] == 0) { for (j = 0; j < rw; j++) { aj = cj + j; dwt_interleave_v(aj, bj, dn, sn, w, cas_col); dwt_decode_97(bj, dn, sn, cas_col); for (k = 0; k < rh; k++) aj[k * w] = bj[k]; } } else if (dwtid[1] == 1) { for (j = 0; j < rw; j++) { aj = cj + j; dwt_interleave_v(aj, bj, dn, sn, w, cas_col); dwt_decode_53(bj, dn, sn, cas_col); for (k = 0; k < rh; k++) aj[k * w] = bj[k]; } } opj_free(bj); //Horizontal sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); if (dwtid[0]==0) { for (j = 0; j < rh; j++) { aj = cj + j*w; dwt_interleave_h(aj, bj, dn, sn, cas_row); dwt_decode_97(bj, dn, sn, cas_row); for (k = 0; k < rw; k++) aj[k] = bj[k]; } } else if (dwtid[0]==1) { for (j = 0; j < rh; j++) { aj = cj + j*w; dwt_interleave_h(aj, bj, dn, sn, cas_row); dwt_decode_53(bj, dn, sn, cas_row); for (k = 0; k < rw; k++) aj[k] = bj[k]; } } opj_free(bj); } } } /* */ /* Get gain of wavelet transform. */ /* */ int dwt_getgain(int orient, int reversible) { if (reversible == 1) { if (orient == 0) return 0; else if (orient == 1 || orient == 2 || orient == 4 ) return 1; else if (orient == 3 || orient == 5 || orient == 6 ) return 2; else return 3; } //else if (reversible == 0){ return 0; } /* */ /* Get norm of wavelet transform. */ /* */ double dwt_getnorm(int orient, int level[3], int dwtid[3]) { int levelx = level[0]; int levely = level[1]; int levelz = (level[2] < 0) ? 0 : level[2]; double norm; if (flagnorm[levelx][levely][levelz][orient] == 1) { norm = dwt_norm[levelx][levely][levelz][orient]; //fprintf(stdout,"[INFO] Level: %d %d %d Orient %d Dwt_norm: %f \n",level[0],level[1],level[2],orient,norm); } else { opj_wtfilt_t *wtfiltx =(opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t)); opj_wtfilt_t *wtfilty =(opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t)); opj_wtfilt_t *wtfiltz =(opj_wtfilt_t *) opj_malloc(sizeof(opj_wtfilt_t)); //Fetch equivalent filters for each dimension dwt_getwtfilters(wtfiltx, dwtid[0]); dwt_getwtfilters(wtfilty, dwtid[1]); dwt_getwtfilters(wtfiltz, dwtid[2]); //Calculate the corresponding norm norm = dwt_calc_wtnorms(orient, level, dwtid, wtfiltx, wtfilty, wtfiltz); //Save norm in array (no recalculation) dwt_norm[levelx][levely][levelz][orient] = norm; flagnorm[levelx][levely][levelz][orient] = 1; //Free reserved space opj_free(wtfiltx->LPS); opj_free(wtfilty->LPS); opj_free(wtfiltz->LPS); opj_free(wtfiltx->HPS); opj_free(wtfilty->HPS); opj_free(wtfiltz->HPS); opj_free(wtfiltx); opj_free(wtfilty); opj_free(wtfiltz); //fprintf(stdout,"[INFO] Dwtid: %d %d %d Level: %d %d %d Orient %d Norm: %f \n",dwtid[0],dwtid[1],dwtid[2],level[0],level[1],level[2],orient,norm); } return norm; } /* */ /* Calculate explicit stepsizes for DWT. */ /* */ void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec) { int totnumbands, bandno, diff; assert(tccp->numresolution[0] >= tccp->numresolution[2]); diff = tccp->numresolution[0] - tccp->numresolution[2]; /*if RESx=RESy != RESz */ totnumbands = (7 * tccp->numresolution[0] - 6) - 4 * diff; /* 3-D */ for (bandno = 0; bandno < totnumbands; bandno++) { double stepsize; int resno, level[3], orient, gain; /* Bandno: 0 - LLL 1 - LHL 2 - HLL 3 - HHL 4 - LLH 5 - LHH 6 - HLH 7 - HHH */ resno = (bandno == 0) ? 0 : ( (bandno <= 3 * diff) ? ((bandno - 1) / 3 + 1) : ((bandno + 4*diff - 1) / 7 + 1)); orient = (bandno == 0) ? 0 : ( (bandno <= 3 * diff) ? ((bandno - 1) % 3 + 1) : ((bandno + 4*diff - 1) % 7 + 1)); level[0] = tccp->numresolution[0] - 1 - resno; level[1] = tccp->numresolution[1] - 1 - resno; level[2] = tccp->numresolution[2] - 1 - resno; /* Gain: 0 - LLL 1 - LHL 1 - HLL 2 - HHL 1 - LLH 2 - LHH 2 - HLH 3 - HHH */ gain = (tccp->reversible == 0) ? 0 : ( (orient == 0) ? 0 : ( ((orient == 1) || (orient == 2) || (orient == 4)) ? 1 : (((orient == 3) || (orient == 5) || (orient == 6)) ? 2 : 3)) ); if (tccp->qntsty == J3D_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { double norm = dwt_getnorm(orient,level,tccp->dwtid); //Fetch norms if irreversible transform (by the moment only I9.7) stepsize = (1 << (gain + 1)) / norm; } //fprintf(stdout,"[INFO] Bandno: %d Orient: %d Level: %d %d %d Stepsize: %f\n",bandno,orient,level[0],level[1],level[2],stepsize); dwt_encode_stepsize((int) floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]); } }