/* * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2007, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2007, Jonathan Ballard * Copyright (c) 2007, Callum Lerwick * Copyright (c) 2008, Jerome Fimes, Communications & Systemes * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef __SSE__ #include #endif #include "dwt.h" #include "j2k.h" #include "tcd.h" #include "fix.h" #include "opj_malloc.h" #include "int.h" /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ #define WS(i) v->mem[(i)*2] #define WD(i) v->mem[(1+(i)*2)] /** @name Local data structures */ /*@{*/ typedef struct dwt_local { OPJ_INT32* mem; OPJ_INT32 dn; OPJ_INT32 sn; OPJ_INT32 cas; } dwt_t; typedef union { OPJ_FLOAT32 f[4]; } v4; typedef struct v4dwt_local { v4* wavelet ; OPJ_INT32 dn ; OPJ_INT32 sn ; OPJ_INT32 cas ; } v4dwt_t ; static const OPJ_FLOAT32 dwt_alpha = 1.586134342f; // 12994 static const OPJ_FLOAT32 dwt_beta = 0.052980118f; // 434 static const OPJ_FLOAT32 dwt_gamma = -0.882911075f; // -7233 static const OPJ_FLOAT32 delta = -0.443506852f; // -3633 static const OPJ_FLOAT32 K = 1.230174105f; // 10078 /* FIXME: What is this constant? */ static const OPJ_FLOAT32 c13318 = 1.625732422f; /*@}*/ /** Virtual function type for wavelet transform in 1-D */ typedef void (*DWT1DFN)(dwt_t* v); /** @name Local static functions */ /*@{*/ /** Forward lazy transform (horizontal) */ static void dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Forward lazy transform (vertical) */ static void dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); /** Inverse lazy transform (horizontal) */ static void dwt_interleave_h(dwt_t* h, OPJ_INT32 *a); /** Inverse lazy transform (vertical) */ static void dwt_interleave_v(dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x); /** Forward 5-3 wavelet transform in 1-D */ static void dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Inverse 5-3 wavelet transform in 1-D */ static void dwt_decode_1(dwt_t *v); /** Forward 9-7 wavelet transform in 1-D */ static void dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Explicit calculation of the Quantization Stepsizes */ static void dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize); /** Inverse wavelet transform in 2-D. */ static bool dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn); static OPJ_UINT32 dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i); static bool dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) ); /*@}*/ /*@}*/ #define S(i) a[(i)*2] #define D(i) a[(1+(i)*2)] #define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i))) #define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i))) /* new */ #define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i))) #define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i))) /* */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* */ static const OPJ_FLOAT64 dwt_norms[4][10] = { {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} }; /* */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* */ static const OPJ_FLOAT64 dwt_norms_real[4][10] = { {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} }; /* ========================================================== local functions ========================================================== */ /* */ /* Forward lazy transform (horizontal). */ /* */ static void dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a+cas; for (i=0; i */ /* Forward lazy transform (vertical). */ /* */ static void dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) { OPJ_INT32 i = sn; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a+cas; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; /* b[i*x]=a[2*i+cas]; */ } l_dest = b + sn * x; l_src = a + 1 - cas; i = dn; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ } } /* */ /* Inverse lazy transform (horizontal). */ /* */ static void dwt_interleave_h(dwt_t* h, OPJ_INT32 *a) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = h->mem + h->cas; OPJ_INT32 i = h->sn; while ( i-- ) { *bi = *(ai++); bi += 2; } ai = a + h->sn; bi = h->mem + 1 - h->cas; i = h->dn ; while ( i-- ) { *bi = *(ai++); bi += 2; } } /* */ /* Inverse lazy transform (vertical). */ /* */ static void dwt_interleave_v(dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = v->mem + v->cas; OPJ_INT32 i = v->sn; while( i-- ) { *bi = *ai; bi += 2; ai += x; } ai = a + (v->sn * x); bi = v->mem + 1 - v->cas; i = v->dn ; while( i-- ) { *bi = *ai; bi += 2; ai += x; } } /* */ /* Forward 5-3 wavelet transform in 1-D. */ /* */ static void dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1; for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ S(0) *= 2; else { for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1; for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2; } } } /* */ /* Inverse 5-3 wavelet transform in 1-D. */ /* */ static void dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) S(i) -= (D_(i - 1) + D_(i) + 2) >> 2; for (i = 0; i < dn; i++) D(i) += (S_(i) + S_(i + 1)) >> 1; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ S(0) /= 2; else { for (i = 0; i < sn; i++) D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2; for (i = 0; i < dn; i++) S(i) += (DD_(i) + DD_(i - 1)) >> 1; } } } /* */ /* Inverse 5-3 wavelet transform in 1-D. */ /* */ static void dwt_decode_1(dwt_t *v) { dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); } /* */ /* Forward 9-7 wavelet transform in 1-D. */ /* */ static void dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) D(i) -= fix_mul(S_(i) + S_(i + 1), 12993); for (i = 0; i < sn; i++) S(i) -= fix_mul(D_(i - 1) + D_(i), 434); for (i = 0; i < dn; i++) D(i) += fix_mul(S_(i) + S_(i + 1), 7233); for (i = 0; i < sn; i++) S(i) += fix_mul(D_(i - 1) + D_(i), 3633); for (i = 0; i < dn; i++) D(i) = fix_mul(D(i), 5038); /*5038 */ for (i = 0; i < sn; i++) S(i) = fix_mul(S(i), 6659); /*6660 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993); for (i = 0; i < sn; i++) D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434); for (i = 0; i < dn; i++) S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233); for (i = 0; i < sn; i++) D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633); for (i = 0; i < dn; i++) S(i) = fix_mul(S(i), 5038); /*5038 */ for (i = 0; i < sn; i++) D(i) = fix_mul(D(i), 6659); /*6660 */ } } } static void dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) { OPJ_INT32 p, n; p = int_floorlog2(stepsize) - 13; n = 11 - int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; } /* ========================================================== DWT interface ========================================================== */ /* */ /* Forward 5-3 wavelet transform in 2-D. */ /* */ INLINE bool dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) ) { OPJ_INT32 i, j, k; OPJ_INT32 *a = 00; OPJ_INT32 *aj = 00; OPJ_INT32 *bj = 00; OPJ_INT32 w, l; OPJ_INT32 rw; /* width of the resolution level computed */ OPJ_INT32 rh; /* height of the resolution level computed */ OPJ_INT32 l_data_size; opj_tcd_resolution_t * l_cur_res = 0; opj_tcd_resolution_t * l_last_res = 0; w = tilec->x1-tilec->x0; l = tilec->numresolutions-1; a = tilec->data; l_cur_res = tilec->resolutions + l; l_last_res = l_cur_res - 1; rw = l_cur_res->x1 - l_cur_res->x0; rh = l_cur_res->y1 - l_cur_res->y0; l_data_size = dwt_max_resolution( tilec->resolutions,tilec->numresolutions) * sizeof(OPJ_INT32); bj = opj_malloc(l_data_size); if (! bj) { return false; } i = l; while (i--) { OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */ OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */ OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 dn, sn; rw = l_cur_res->x1 - l_cur_res->x0; rh = l_cur_res->y1 - l_cur_res->y0; rw1 = l_last_res->x1 - l_last_res->x0; rh1 = l_last_res->y1 - l_last_res->y0; cas_row = l_cur_res->x0 & 1; cas_col = l_cur_res->y0 & 1; sn = rh1; dn = rh - rh1; for (j = 0; j < rw; ++j) { aj = a + j; for (k = 0; k < rh; ++k) { bj[k] = aj[k*w]; } (*p_function) (bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } sn = rw1; dn = rw - rw1; for (j = 0; j < rh; j++) { aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; (*p_function) (bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } l_cur_res = l_last_res; --l_last_res; } opj_free(bj); return true; } /* Forward 5-3 wavelet transform in 2-D. */ /* */ bool dwt_encode(opj_tcd_tilecomp_t * tilec) { return dwt_encode_procedure(tilec,dwt_encode_1); } /* */ /* Inverse 5-3 wavelet transform in 2-D. */ /* */ bool dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) { return dwt_decode_tile(tilec, numres, &dwt_decode_1); } /* */ /* Get gain of 5-3 wavelet transform. */ /* */ OPJ_UINT32 dwt_getgain(OPJ_UINT32 orient) { if (orient == 0) return 0; if (orient == 1 || orient == 2) return 1; return 2; } /* */ /* Get norm of 5-3 wavelet. */ /* */ OPJ_FLOAT64 dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) { return dwt_norms[orient][level]; } /* */ /* Forward 9-7 wavelet transform in 2-D. */ /* */ bool dwt_encode_real(opj_tcd_tilecomp_t * tilec) { return dwt_encode_procedure(tilec,dwt_encode_1_real); } /* */ /* Get gain of 9-7 wavelet transform. */ /* */ OPJ_UINT32 dwt_getgain_real(OPJ_UINT32 orient) { (void)orient; return 0; } /* */ /* Get norm of 9-7 wavelet. */ /* */ OPJ_FLOAT64 dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) { return dwt_norms_real[orient][level]; } void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) { OPJ_UINT32 numbands, bandno; numbands = 3 * tccp->numresolutions - 2; for (bandno = 0; bandno < numbands; bandno++) { OPJ_FLOAT64 stepsize; OPJ_UINT32 resno, level, orient, gain; resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); level = tccp->numresolutions - 1 - resno; gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2)); if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { OPJ_FLOAT64 norm = dwt_norms_real[orient][level]; stepsize = (1 << (gain)) / norm; } dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]); } } /* */ /* Determine maximum computed resolution level for inverse wavelet transform */ /* */ static OPJ_UINT32 dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) { OPJ_UINT32 mr = 0; OPJ_UINT32 w; while( --i ) { ++r; if( mr < ( w = r->x1 - r->x0 ) ) mr = w ; if( mr < ( w = r->y1 - r->y0 ) ) mr = w ; } return mr ; } /* */ /* Inverse wavelet transform in 2-D. */ /* */ static bool dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) { dwt_t h; dwt_t v; opj_tcd_resolution_t* tr = tilec->resolutions; OPJ_UINT32 rw = tr->x1 - tr->x0; /* width of the resolution level computed */ OPJ_UINT32 rh = tr->y1 - tr->y0; /* height of the resolution level computed */ OPJ_UINT32 w = tilec->x1 - tilec->x0; h.mem = opj_aligned_malloc(dwt_max_resolution(tr, numres) * sizeof(OPJ_INT32)); if (! h.mem) { return false; } v.mem = h.mem; while( --numres) { OPJ_INT32 * restrict tiledp = tilec->data; OPJ_UINT32 j; ++tr; h.sn = rw; v.sn = rh; rw = tr->x1 - tr->x0; rh = tr->y1 - tr->y0; h.dn = rw - h.sn; h.cas = tr->x0 % 2; for(j = 0; j < rh; ++j) { dwt_interleave_h(&h, &tiledp[j*w]); (dwt_1D)(&h); memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32)); } v.dn = rh - v.sn; v.cas = tr->y0 % 2; for(j = 0; j < rw; ++j){ OPJ_UINT32 k; dwt_interleave_v(&v, &tiledp[j], w); (dwt_1D)(&v); for(k = 0; k < rh; ++k) { tiledp[k * w + j] = v.mem[k]; } } } opj_aligned_free(h.mem); return true; } static void v4dwt_interleave_h(v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){ OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas); OPJ_INT32 count = w->sn; OPJ_INT32 i, k; for(k = 0; k < 2; ++k){ for(i = 0; i < count; ++i){ OPJ_INT32 j = i; bi[i*8 ] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 1] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 2] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 3] = a[j]; } bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas); a += w->sn; size -= w->sn; count = w->dn; } } static void v4dwt_interleave_v(v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x){ v4* restrict bi = v->wavelet + v->cas; OPJ_INT32 i; for(i = 0; i < v->sn; ++i){ memcpy(&bi[i*2], &a[i*x], 4 * sizeof(OPJ_FLOAT32)); } a += v->sn * x; bi = v->wavelet + 1 - v->cas; for(i = 0; i < v->dn; ++i){ memcpy(&bi[i*2], &a[i*x], 4 * sizeof(OPJ_FLOAT32)); } } #ifdef __SSE__ static void v4dwt_decode_step1_sse(v4* w, OPJ_INT32 count, const __m128 c){ __m128* restrict vw = (__m128*) w; OPJ_INT32 i; for(i = 0; i < count; ++i){ __m128 tmp = vw[i*2]; vw[i*2] = tmp * c; } } static void v4dwt_decode_step2_sse(v4* l, v4* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){ __m128* restrict vl = (__m128*) l; __m128* restrict vw = (__m128*) w; OPJ_INT32 i; for(i = 0; i < m; ++i){ __m128 tmp1 = vl[ 0]; __m128 tmp2 = vw[-1]; __m128 tmp3 = vw[ 0]; vw[-1] = tmp2 + ((tmp1 + tmp3) * c); vl = vw; vw += 2; } if(m >= k){ return; } c += c; c *= vl[0]; for(; m < k; ++m){ __m128 tmp = vw[-1]; vw[-1] = tmp + c; vw += 2; } } #else static void v4dwt_decode_step1(v4* w, OPJ_INT32 count, const OPJ_FLOAT32 c){ OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for(i = 0; i < count; ++i){ OPJ_FLOAT32 tmp1 = fw[i*8 ]; OPJ_FLOAT32 tmp2 = fw[i*8 + 1]; OPJ_FLOAT32 tmp3 = fw[i*8 + 2]; OPJ_FLOAT32 tmp4 = fw[i*8 + 3]; fw[i*8 ] = tmp1 * c; fw[i*8 + 1] = tmp2 * c; fw[i*8 + 2] = tmp3 * c; fw[i*8 + 3] = tmp4 * c; } } static void v4dwt_decode_step2(v4* l, v4* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c){ OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l; OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for(i = 0; i < m; ++i){ OPJ_FLOAT32 tmp1_1 = fl[0]; OPJ_FLOAT32 tmp1_2 = fl[1]; OPJ_FLOAT32 tmp1_3 = fl[2]; OPJ_FLOAT32 tmp1_4 = fl[3]; OPJ_FLOAT32 tmp2_1 = fw[-4]; OPJ_FLOAT32 tmp2_2 = fw[-3]; OPJ_FLOAT32 tmp2_3 = fw[-2]; OPJ_FLOAT32 tmp2_4 = fw[-1]; OPJ_FLOAT32 tmp3_1 = fw[0]; OPJ_FLOAT32 tmp3_2 = fw[1]; OPJ_FLOAT32 tmp3_3 = fw[2]; OPJ_FLOAT32 tmp3_4 = fw[3]; fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); fl = fw; fw += 8; } if(m < k){ OPJ_FLOAT32 c1; OPJ_FLOAT32 c2; OPJ_FLOAT32 c3; OPJ_FLOAT32 c4; c += c; c1 = fl[0] * c; c2 = fl[1] * c; c3 = fl[2] * c; c4 = fl[3] * c; for(; m < k; ++m){ OPJ_FLOAT32 tmp1 = fw[-4]; OPJ_FLOAT32 tmp2 = fw[-3]; OPJ_FLOAT32 tmp3 = fw[-2]; OPJ_FLOAT32 tmp4 = fw[-1]; fw[-4] = tmp1 + c1; fw[-3] = tmp2 + c2; fw[-2] = tmp3 + c3; fw[-1] = tmp4 + c4; fw += 8; } } } #endif /* */ /* Inverse 9-7 wavelet transform in 1-D. */ /* */ static void v4dwt_decode(v4dwt_t* restrict dwt){ OPJ_INT32 a, b; if(dwt->cas == 0) { if(!((dwt->dn > 0) || (dwt->sn > 1))){ return; } a = 0; b = 1; }else{ if(!((dwt->sn > 0) || (dwt->dn > 1))) { return; } a = 1; b = 0; } #ifdef __SSE__ v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(K)); v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(c13318)); v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(delta)); v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_gamma)); v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(dwt_beta)); v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_alpha)); #else v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, K); v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, c13318); v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), delta); v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_gamma); v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), dwt_beta); v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_alpha); #endif } /* */ /* Inverse 9-7 wavelet transform in 2-D. */ /* */ bool dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres){ v4dwt_t h; v4dwt_t v; opj_tcd_resolution_t* res = tilec->resolutions; OPJ_UINT32 rw = res->x1 - res->x0; /* width of the resolution level computed */ OPJ_UINT32 rh = res->y1 - res->y0; /* height of the resolution level computed */ OPJ_UINT32 w = tilec->x1 - tilec->x0; h.wavelet = (v4*) opj_aligned_malloc((dwt_max_resolution(res, numres)+5) * sizeof(v4)); v.wavelet = h.wavelet; while( --numres) { OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data; OPJ_UINT32 bufsize = (tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0); OPJ_INT32 j; h.sn = rw; v.sn = rh; ++res; rw = res->x1 - res->x0; /* width of the resolution level computed */ rh = res->y1 - res->y0; /* height of the resolution level computed */ h.dn = rw - h.sn; h.cas = res->x0 & 1; for(j = rh; j > 0; j -= 4){ v4dwt_interleave_h(&h, aj, w, bufsize); v4dwt_decode(&h); if(j >= 4){ OPJ_INT32 k = rw; while (--k >= 0) { aj[k ] = h.wavelet[k].f[0]; aj[k+w ] = h.wavelet[k].f[1]; aj[k+w*2] = h.wavelet[k].f[2]; aj[k+w*3] = h.wavelet[k].f[3]; } }else{ OPJ_INT32 k = rw; while (--k >= 0) { switch(j) { case 3: aj[k+w*2] = h.wavelet[k].f[2]; case 2: aj[k+w ] = h.wavelet[k].f[1]; case 1: aj[k ] = h.wavelet[k].f[0]; } } } aj += w*4; bufsize -= w*4; } v.dn = rh - v.sn; v.cas = res->y0 % 2; aj = (OPJ_FLOAT32*) tilec->data; for(j = rw; j > 0; j -= 4){ v4dwt_interleave_v(&v, aj, w); v4dwt_decode(&v); if(j >= 4){ OPJ_UINT32 k; for(k = 0; k < rh; ++k){ memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); } }else{ OPJ_UINT32 k; for(k = 0; k < rh; ++k){ memcpy(&aj[k*w], &v.wavelet[k], j * sizeof(OPJ_FLOAT32)); } } aj += 4; } } opj_aligned_free(h.wavelet); return true; }