2004 lines
60 KiB
C
2004 lines
60 KiB
C
/*
|
|
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
|
|
* Copyright (c) 2002-2007, Professor Benoit Macq
|
|
* Copyright (c) 2001-2003, David Janssens
|
|
* Copyright (c) 2002-2003, Yannick Verschueren
|
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
|
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team
|
|
* Copyright (c) 2006-2007, Parvatha Elangovan
|
|
* Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "pi.h"
|
|
#include "int.h"
|
|
#include "opj_malloc.h"
|
|
#include "j2k.h"
|
|
/** @defgroup PI PI - Implementation of a packet iterator */
|
|
/*@{*/
|
|
|
|
/** @name Local static functions */
|
|
/*@{*/
|
|
|
|
/**
|
|
Get next packet in layer-resolution-component-precinct order.
|
|
@param pi packet iterator to modify
|
|
@return returns false if pi pointed to the last packet or else returns true
|
|
*/
|
|
static bool pi_next_lrcp(opj_pi_iterator_t * pi);
|
|
/**
|
|
Get next packet in resolution-layer-component-precinct order.
|
|
@param pi packet iterator to modify
|
|
@return returns false if pi pointed to the last packet or else returns true
|
|
*/
|
|
static bool pi_next_rlcp(opj_pi_iterator_t * pi);
|
|
/**
|
|
Get next packet in resolution-precinct-component-layer order.
|
|
@param pi packet iterator to modify
|
|
@return returns false if pi pointed to the last packet or else returns true
|
|
*/
|
|
static bool pi_next_rpcl(opj_pi_iterator_t * pi);
|
|
/**
|
|
Get next packet in precinct-component-resolution-layer order.
|
|
@param pi packet iterator to modify
|
|
@return returns false if pi pointed to the last packet or else returns true
|
|
*/
|
|
static bool pi_next_pcrl(opj_pi_iterator_t * pi);
|
|
/**
|
|
Get next packet in component-precinct-resolution-layer order.
|
|
@param pi packet iterator to modify
|
|
@return returns false if pi pointed to the last packet or else returns true
|
|
*/
|
|
static bool pi_next_cprl(opj_pi_iterator_t * pi);
|
|
|
|
/**
|
|
* Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used).
|
|
*
|
|
* @param p_cp the coding parameters to modify
|
|
* @param p_tileno the tile index being concerned.
|
|
* @param p_tx0 X0 parameter for the tile
|
|
* @param p_tx1 X1 parameter for the tile
|
|
* @param p_ty0 Y0 parameter for the tile
|
|
* @param p_ty1 Y1 parameter for the tile
|
|
* @param p_max_prec the maximum precision for all the bands of the tile
|
|
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void pi_update_encode_poc_and_final (
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tileno,
|
|
OPJ_INT32 p_tx0,
|
|
OPJ_INT32 p_tx1,
|
|
OPJ_INT32 p_ty0,
|
|
OPJ_INT32 p_ty1,
|
|
OPJ_UINT32 p_max_prec,
|
|
OPJ_UINT32 p_max_res,
|
|
OPJ_UINT32 p_dx_min,
|
|
OPJ_UINT32 p_dy_min);
|
|
|
|
/**
|
|
* Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used).
|
|
*
|
|
* @param p_cp the coding parameters to modify
|
|
* @param p_tileno the tile index being concerned.
|
|
* @param p_tx0 X0 parameter for the tile
|
|
* @param p_tx1 X1 parameter for the tile
|
|
* @param p_ty0 Y0 parameter for the tile
|
|
* @param p_ty1 Y1 parameter for the tile
|
|
* @param p_max_prec the maximum precision for all the bands of the tile
|
|
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void pi_update_encode_not_poc (
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_num_comps,
|
|
OPJ_UINT32 p_tileno,
|
|
OPJ_INT32 p_tx0,
|
|
OPJ_INT32 p_tx1,
|
|
OPJ_INT32 p_ty0,
|
|
OPJ_INT32 p_ty1,
|
|
OPJ_UINT32 p_max_prec,
|
|
OPJ_UINT32 p_max_res,
|
|
OPJ_UINT32 p_dx_min,
|
|
OPJ_UINT32 p_dy_min);
|
|
|
|
/**
|
|
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param tileno the tile index of the tile being encoded.
|
|
* @param p_tx0 pointer that will hold the X0 parameter for the tile
|
|
* @param p_tx1 pointer that will hold the X1 parameter for the tile
|
|
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
|
|
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
|
|
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
|
|
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void get_encoding_parameters(
|
|
const opj_image_t *p_image,
|
|
const opj_cp_t *p_cp,
|
|
OPJ_UINT32 tileno,
|
|
OPJ_INT32 * p_tx0,
|
|
OPJ_INT32 * p_tx1,
|
|
OPJ_INT32 * p_ty0,
|
|
OPJ_INT32 * p_ty1,
|
|
OPJ_UINT32 * p_dx_min,
|
|
OPJ_UINT32 * p_dy_min,
|
|
OPJ_UINT32 * p_max_prec,
|
|
OPJ_UINT32 * p_max_res
|
|
);
|
|
|
|
/**
|
|
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
|
|
* The precinct widths, heights, dx and dy for each component at each resolution will be stored as well.
|
|
* the last parameter of the function should be an array of pointers of size nb components, each pointer leading
|
|
* to an area of size 4 * max_res. The data is stored inside this area with the following pattern :
|
|
* dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ...
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param tileno the tile index of the tile being encoded.
|
|
* @param p_tx0 pointer that will hold the X0 parameter for the tile
|
|
* @param p_tx1 pointer that will hold the X1 parameter for the tile
|
|
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
|
|
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
|
|
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
|
|
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
|
|
* @param p_resolutions pointer to an area corresponding to the one described above.
|
|
*/
|
|
void get_all_encoding_parameters(
|
|
const opj_image_t *p_image,
|
|
const opj_cp_t *p_cp,
|
|
OPJ_UINT32 tileno,
|
|
OPJ_INT32 * p_tx0,
|
|
OPJ_INT32 * p_tx1,
|
|
OPJ_INT32 * p_ty0,
|
|
OPJ_INT32 * p_ty1,
|
|
OPJ_UINT32 * p_dx_min,
|
|
OPJ_UINT32 * p_dy_min,
|
|
OPJ_UINT32 * p_max_prec,
|
|
OPJ_UINT32 * p_max_res,
|
|
OPJ_UINT32 ** p_resolutions
|
|
);
|
|
/**
|
|
* Allocates memory for a packet iterator. Data and data sizes are set by this operation.
|
|
* No other data is set. The include section of the packet iterator is not allocated.
|
|
*
|
|
* @param p_image the image used to initialize the packet iterator (in fact only the number of components is relevant.
|
|
* @param p_cp the coding parameters.
|
|
* @param p_tile_no the index of the tile from which creating the packet iterator.
|
|
*/
|
|
opj_pi_iterator_t * pi_create(
|
|
const opj_image_t *image,
|
|
const opj_cp_t *cp,
|
|
OPJ_UINT32 tileno
|
|
);
|
|
void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res);
|
|
void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res);
|
|
|
|
|
|
/*@}*/
|
|
|
|
/*@}*/
|
|
|
|
/*
|
|
==========================================================
|
|
local functions
|
|
==========================================================
|
|
*/
|
|
|
|
static bool pi_next_lrcp(opj_pi_iterator_t * pi) {
|
|
opj_pi_comp_t *comp = 00;
|
|
opj_pi_resolution_t *res = 00;
|
|
OPJ_UINT32 index = 0;
|
|
|
|
if (!pi->first) {
|
|
comp = &pi->comps[pi->compno];
|
|
res = &comp->resolutions[pi->resno];
|
|
goto LABEL_SKIP;
|
|
} else {
|
|
pi->first = 0;
|
|
}
|
|
|
|
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
|
|
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1;
|
|
pi->resno++) {
|
|
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
|
|
comp = &pi->comps[pi->compno];
|
|
if (pi->resno >= comp->numresolutions) {
|
|
continue;
|
|
}
|
|
res = &comp->resolutions[pi->resno];
|
|
if (!pi->tp_on){
|
|
pi->poc.precno1 = res->pw * res->ph;
|
|
}
|
|
for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) {
|
|
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
|
|
if (!pi->include[index]) {
|
|
pi->include[index] = 1;
|
|
return true;
|
|
}
|
|
LABEL_SKIP:;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pi_next_rlcp(opj_pi_iterator_t * pi) {
|
|
opj_pi_comp_t *comp = 00;
|
|
opj_pi_resolution_t *res = 00;
|
|
OPJ_UINT32 index = 0;
|
|
|
|
if (!pi->first) {
|
|
comp = &pi->comps[pi->compno];
|
|
res = &comp->resolutions[pi->resno];
|
|
goto LABEL_SKIP;
|
|
} else {
|
|
pi->first = 0;
|
|
}
|
|
|
|
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) {
|
|
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
|
|
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
|
|
comp = &pi->comps[pi->compno];
|
|
if (pi->resno >= comp->numresolutions) {
|
|
continue;
|
|
}
|
|
res = &comp->resolutions[pi->resno];
|
|
if(!pi->tp_on){
|
|
pi->poc.precno1 = res->pw * res->ph;
|
|
}
|
|
for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) {
|
|
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
|
|
if (!pi->include[index]) {
|
|
pi->include[index] = 1;
|
|
return true;
|
|
}
|
|
LABEL_SKIP:;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pi_next_rpcl(opj_pi_iterator_t * pi) {
|
|
opj_pi_comp_t *comp = 00;
|
|
opj_pi_resolution_t *res = 00;
|
|
OPJ_UINT32 index = 0;
|
|
|
|
if (!pi->first) {
|
|
goto LABEL_SKIP;
|
|
} else {
|
|
OPJ_UINT32 compno, resno;
|
|
pi->first = 0;
|
|
pi->dx = 0;
|
|
pi->dy = 0;
|
|
for (compno = 0; compno < pi->numcomps; compno++) {
|
|
comp = &pi->comps[compno];
|
|
for (resno = 0; resno < comp->numresolutions; resno++) {
|
|
OPJ_UINT32 dx, dy;
|
|
res = &comp->resolutions[resno];
|
|
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
|
|
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
|
|
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
|
|
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
|
|
}
|
|
}
|
|
}
|
|
if (!pi->tp_on){
|
|
pi->poc.ty0 = pi->ty0;
|
|
pi->poc.tx0 = pi->tx0;
|
|
pi->poc.ty1 = pi->ty1;
|
|
pi->poc.tx1 = pi->tx1;
|
|
}
|
|
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) {
|
|
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
|
|
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
|
|
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
|
|
OPJ_UINT32 levelno;
|
|
OPJ_INT32 trx0, try0;
|
|
OPJ_INT32 trx1, try1;
|
|
OPJ_UINT32 rpx, rpy;
|
|
OPJ_INT32 prci, prcj;
|
|
comp = &pi->comps[pi->compno];
|
|
if (pi->resno >= comp->numresolutions) {
|
|
continue;
|
|
}
|
|
res = &comp->resolutions[pi->resno];
|
|
levelno = comp->numresolutions - 1 - pi->resno;
|
|
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
|
|
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
|
|
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
|
|
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
|
|
rpx = res->pdx + levelno;
|
|
rpy = res->pdy + levelno;
|
|
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
|
|
continue;
|
|
}
|
|
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
|
|
continue;
|
|
}
|
|
|
|
if ((res->pw==0)||(res->ph==0)) continue;
|
|
|
|
if ((trx0==trx1)||(try0==try1)) continue;
|
|
|
|
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
|
|
- int_floordivpow2(trx0, res->pdx);
|
|
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
|
|
- int_floordivpow2(try0, res->pdy);
|
|
pi->precno = prci + prcj * res->pw;
|
|
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
|
|
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
|
|
if (!pi->include[index]) {
|
|
pi->include[index] = 1;
|
|
return true;
|
|
}
|
|
LABEL_SKIP:;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pi_next_pcrl(opj_pi_iterator_t * pi) {
|
|
opj_pi_comp_t *comp = 00;
|
|
opj_pi_resolution_t *res = 00;
|
|
OPJ_UINT32 index = 0;
|
|
|
|
if (!pi->first) {
|
|
comp = &pi->comps[pi->compno];
|
|
goto LABEL_SKIP;
|
|
} else {
|
|
OPJ_UINT32 compno, resno;
|
|
pi->first = 0;
|
|
pi->dx = 0;
|
|
pi->dy = 0;
|
|
for (compno = 0; compno < pi->numcomps; compno++) {
|
|
comp = &pi->comps[compno];
|
|
for (resno = 0; resno < comp->numresolutions; resno++) {
|
|
OPJ_UINT32 dx, dy;
|
|
res = &comp->resolutions[resno];
|
|
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
|
|
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
|
|
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
|
|
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
|
|
}
|
|
}
|
|
}
|
|
if (!pi->tp_on){
|
|
pi->poc.ty0 = pi->ty0;
|
|
pi->poc.tx0 = pi->tx0;
|
|
pi->poc.ty1 = pi->ty1;
|
|
pi->poc.tx1 = pi->tx1;
|
|
}
|
|
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
|
|
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
|
|
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
|
|
comp = &pi->comps[pi->compno];
|
|
// TODO
|
|
for (pi->resno = pi->poc.resno0; pi->resno < uint_min(pi->poc.resno1, comp->numresolutions); pi->resno++) {
|
|
OPJ_UINT32 levelno;
|
|
OPJ_INT32 trx0, try0;
|
|
OPJ_INT32 trx1, try1;
|
|
OPJ_UINT32 rpx, rpy;
|
|
OPJ_INT32 prci, prcj;
|
|
res = &comp->resolutions[pi->resno];
|
|
levelno = comp->numresolutions - 1 - pi->resno;
|
|
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
|
|
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
|
|
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
|
|
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
|
|
rpx = res->pdx + levelno;
|
|
rpy = res->pdy + levelno;
|
|
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
|
|
continue;
|
|
}
|
|
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
|
|
continue;
|
|
}
|
|
|
|
if ((res->pw==0)||(res->ph==0)) continue;
|
|
|
|
if ((trx0==trx1)||(try0==try1)) continue;
|
|
|
|
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
|
|
- int_floordivpow2(trx0, res->pdx);
|
|
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
|
|
- int_floordivpow2(try0, res->pdy);
|
|
pi->precno = prci + prcj * res->pw;
|
|
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
|
|
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
|
|
if (!pi->include[index]) {
|
|
pi->include[index] = 1;
|
|
return true;
|
|
}
|
|
LABEL_SKIP:;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pi_next_cprl(opj_pi_iterator_t * pi) {
|
|
opj_pi_comp_t *comp = 00;
|
|
opj_pi_resolution_t *res = 00;
|
|
OPJ_UINT32 index = 0;
|
|
|
|
if (!pi->first) {
|
|
comp = &pi->comps[pi->compno];
|
|
goto LABEL_SKIP;
|
|
} else {
|
|
pi->first = 0;
|
|
}
|
|
|
|
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
|
|
OPJ_UINT32 resno;
|
|
comp = &pi->comps[pi->compno];
|
|
pi->dx = 0;
|
|
pi->dy = 0;
|
|
for (resno = 0; resno < comp->numresolutions; resno++) {
|
|
OPJ_UINT32 dx, dy;
|
|
res = &comp->resolutions[resno];
|
|
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
|
|
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
|
|
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
|
|
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
|
|
}
|
|
if (!pi->tp_on){
|
|
pi->poc.ty0 = pi->ty0;
|
|
pi->poc.tx0 = pi->tx0;
|
|
pi->poc.ty1 = pi->ty1;
|
|
pi->poc.tx1 = pi->tx1;
|
|
}
|
|
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
|
|
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
|
|
// TODO
|
|
for (pi->resno = pi->poc.resno0; pi->resno < uint_min(pi->poc.resno1, comp->numresolutions); pi->resno++) {
|
|
OPJ_UINT32 levelno;
|
|
OPJ_INT32 trx0, try0;
|
|
OPJ_INT32 trx1, try1;
|
|
OPJ_UINT32 rpx, rpy;
|
|
OPJ_INT32 prci, prcj;
|
|
res = &comp->resolutions[pi->resno];
|
|
levelno = comp->numresolutions - 1 - pi->resno;
|
|
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
|
|
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
|
|
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
|
|
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
|
|
rpx = res->pdx + levelno;
|
|
rpy = res->pdy + levelno;
|
|
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
|
|
continue;
|
|
}
|
|
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
|
|
continue;
|
|
}
|
|
|
|
if ((res->pw==0)||(res->ph==0)) continue;
|
|
|
|
if ((trx0==trx1)||(try0==try1)) continue;
|
|
|
|
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
|
|
- int_floordivpow2(trx0, res->pdx);
|
|
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
|
|
- int_floordivpow2(try0, res->pdy);
|
|
pi->precno = prci + prcj * res->pw;
|
|
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
|
|
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
|
|
if (!pi->include[index]) {
|
|
pi->include[index] = 1;
|
|
return true;
|
|
}
|
|
LABEL_SKIP:;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
==========================================================
|
|
Packet iterator interface
|
|
==========================================================
|
|
*/
|
|
opj_pi_iterator_t *pi_create_decode(
|
|
opj_image_t *p_image,
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tile_no
|
|
)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
OPJ_UINT32 compno, resno;
|
|
|
|
// to store w, h, dx and dy fro all components and resolutions
|
|
OPJ_UINT32 * l_tmp_data;
|
|
OPJ_UINT32 ** l_tmp_ptr;
|
|
|
|
// encoding prameters to set
|
|
OPJ_UINT32 l_max_res;
|
|
OPJ_UINT32 l_max_prec;
|
|
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
|
|
OPJ_UINT32 l_dx_min,l_dy_min;
|
|
OPJ_UINT32 l_bound;
|
|
OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ;
|
|
OPJ_UINT32 l_data_stride;
|
|
|
|
// pointers
|
|
opj_pi_iterator_t *l_pi = 00;
|
|
opj_tcp_t *l_tcp = 00;
|
|
const opj_tccp_t *l_tccp = 00;
|
|
opj_pi_comp_t *l_current_comp = 00;
|
|
opj_image_comp_t * l_img_comp = 00;
|
|
opj_pi_iterator_t * l_current_pi = 00;
|
|
OPJ_UINT32 * l_encoding_value_ptr = 00;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_image != 00);
|
|
assert(p_tile_no < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
l_tcp = &p_cp->tcps[p_tile_no];
|
|
l_bound = l_tcp->numpocs+1;
|
|
|
|
l_data_stride = 4 * J2K_MAXRLVLS;
|
|
l_tmp_data = (OPJ_UINT32*)opj_malloc(
|
|
l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32));
|
|
if
|
|
(! l_tmp_data)
|
|
{
|
|
return 00;
|
|
}
|
|
l_tmp_ptr = (OPJ_UINT32**)opj_malloc(
|
|
p_image->numcomps * sizeof(OPJ_UINT32 *));
|
|
if
|
|
(! l_tmp_ptr)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
return 00;
|
|
}
|
|
|
|
// memory allocation for pi
|
|
l_pi = pi_create(p_image,p_cp,p_tile_no);
|
|
if
|
|
(!l_pi)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
opj_free(l_tmp_ptr);
|
|
return 00;
|
|
}
|
|
|
|
l_encoding_value_ptr = l_tmp_data;
|
|
// update pointer array
|
|
for
|
|
(compno = 0; compno < p_image->numcomps; ++compno)
|
|
{
|
|
l_tmp_ptr[compno] = l_encoding_value_ptr;
|
|
l_encoding_value_ptr += l_data_stride;
|
|
}
|
|
// get encoding parameters
|
|
get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr);
|
|
|
|
// step calculations
|
|
l_step_p = 1;
|
|
l_step_c = l_max_prec * l_step_p;
|
|
l_step_r = p_image->numcomps * l_step_c;
|
|
l_step_l = l_max_res * l_step_r;
|
|
|
|
// set values for first packet iterator
|
|
l_current_pi = l_pi;
|
|
|
|
// memory allocation for include
|
|
l_current_pi->include = (OPJ_INT16*) opj_calloc(l_tcp->numlayers * l_step_l, sizeof(OPJ_INT16));
|
|
if
|
|
(!l_current_pi->include)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
opj_free(l_tmp_ptr);
|
|
pi_destroy(l_pi, l_bound);
|
|
return 00;
|
|
}
|
|
memset(l_current_pi->include,0,l_tcp->numlayers * l_step_l* sizeof(OPJ_INT16));
|
|
|
|
// special treatment for the first packet iterator
|
|
l_current_comp = l_current_pi->comps;
|
|
l_img_comp = p_image->comps;
|
|
l_tccp = l_tcp->tccps;
|
|
|
|
l_current_pi->tx0 = l_tx0;
|
|
l_current_pi->ty0 = l_ty0;
|
|
l_current_pi->tx1 = l_tx1;
|
|
l_current_pi->ty1 = l_ty1;
|
|
|
|
//l_current_pi->dx = l_img_comp->dx;
|
|
//l_current_pi->dy = l_img_comp->dy;
|
|
|
|
l_current_pi->step_p = l_step_p;
|
|
l_current_pi->step_c = l_step_c;
|
|
l_current_pi->step_r = l_step_r;
|
|
l_current_pi->step_l = l_step_l;
|
|
|
|
/* allocation for components and number of components has already been calculated by pi_create */
|
|
for
|
|
(compno = 0; compno < l_current_pi->numcomps; ++compno)
|
|
{
|
|
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
|
|
l_encoding_value_ptr = l_tmp_ptr[compno];
|
|
|
|
l_current_comp->dx = l_img_comp->dx;
|
|
l_current_comp->dy = l_img_comp->dy;
|
|
/* resolutions have already been initialized */
|
|
for
|
|
(resno = 0; resno < l_current_comp->numresolutions; resno++)
|
|
{
|
|
l_res->pdx = *(l_encoding_value_ptr++);
|
|
l_res->pdy = *(l_encoding_value_ptr++);
|
|
l_res->pw = *(l_encoding_value_ptr++);
|
|
l_res->ph = *(l_encoding_value_ptr++);
|
|
++l_res;
|
|
}
|
|
++l_current_comp;
|
|
++l_img_comp;
|
|
++l_tccp;
|
|
}
|
|
++l_current_pi;
|
|
|
|
for
|
|
(pino = 1 ; pino<l_bound ; ++pino )
|
|
{
|
|
opj_pi_comp_t *l_current_comp = l_current_pi->comps;
|
|
opj_image_comp_t * l_img_comp = p_image->comps;
|
|
l_tccp = l_tcp->tccps;
|
|
|
|
l_current_pi->tx0 = l_tx0;
|
|
l_current_pi->ty0 = l_ty0;
|
|
l_current_pi->tx1 = l_tx1;
|
|
l_current_pi->ty1 = l_ty1;
|
|
//l_current_pi->dx = l_dx_min;
|
|
//l_current_pi->dy = l_dy_min;
|
|
l_current_pi->step_p = l_step_p;
|
|
l_current_pi->step_c = l_step_c;
|
|
l_current_pi->step_r = l_step_r;
|
|
l_current_pi->step_l = l_step_l;
|
|
|
|
/* allocation for components and number of components has already been calculated by pi_create */
|
|
for
|
|
(compno = 0; compno < l_current_pi->numcomps; ++compno)
|
|
{
|
|
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
|
|
l_encoding_value_ptr = l_tmp_ptr[compno];
|
|
|
|
l_current_comp->dx = l_img_comp->dx;
|
|
l_current_comp->dy = l_img_comp->dy;
|
|
/* resolutions have already been initialized */
|
|
for
|
|
(resno = 0; resno < l_current_comp->numresolutions; resno++)
|
|
{
|
|
l_res->pdx = *(l_encoding_value_ptr++);
|
|
l_res->pdy = *(l_encoding_value_ptr++);
|
|
l_res->pw = *(l_encoding_value_ptr++);
|
|
l_res->ph = *(l_encoding_value_ptr++);
|
|
++l_res;
|
|
}
|
|
++l_current_comp;
|
|
++l_img_comp;
|
|
++l_tccp;
|
|
}
|
|
// special treatment
|
|
l_current_pi->include = (l_current_pi-1)->include;
|
|
++l_current_pi;
|
|
}
|
|
opj_free(l_tmp_data);
|
|
l_tmp_data = 00;
|
|
opj_free(l_tmp_ptr);
|
|
l_tmp_ptr = 00;
|
|
if
|
|
(l_tcp->POC)
|
|
{
|
|
pi_update_decode_poc (l_pi,l_tcp,l_max_prec,l_max_res);
|
|
}
|
|
else
|
|
{
|
|
pi_update_decode_not_poc(l_pi,l_tcp,l_max_prec,l_max_res);
|
|
}
|
|
return l_pi;
|
|
}
|
|
|
|
void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
|
|
// encoding prameters to set
|
|
OPJ_UINT32 l_bound;
|
|
|
|
opj_pi_iterator_t * l_current_pi = 00;
|
|
opj_poc_t* l_current_poc = 0;
|
|
|
|
// preconditions in debug
|
|
assert(p_pi != 00);
|
|
assert(p_tcp != 00);
|
|
|
|
// initializations
|
|
l_bound = p_tcp->numpocs+1;
|
|
l_current_pi = p_pi;
|
|
l_current_poc = p_tcp->pocs;
|
|
|
|
for
|
|
(pino = 0;pino<l_bound;++pino)
|
|
{
|
|
l_current_pi->poc.prg = l_current_poc->prg;
|
|
l_current_pi->first = 1;
|
|
|
|
l_current_pi->poc.resno0 = l_current_poc->resno0;
|
|
l_current_pi->poc.compno0 = l_current_poc->compno0;
|
|
l_current_pi->poc.layno0 = 0;
|
|
l_current_pi->poc.precno0 = 0;
|
|
l_current_pi->poc.resno1 = l_current_poc->resno1;
|
|
l_current_pi->poc.compno1 = l_current_poc->compno1;
|
|
l_current_pi->poc.layno1 = l_current_poc->layno1;
|
|
l_current_pi->poc.precno1 = p_max_precision;
|
|
++l_current_pi;
|
|
++l_current_poc;
|
|
}
|
|
}
|
|
|
|
void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
|
|
// encoding prameters to set
|
|
OPJ_UINT32 l_bound;
|
|
|
|
opj_pi_iterator_t * l_current_pi = 00;
|
|
// preconditions in debug
|
|
assert(p_tcp != 00);
|
|
assert(p_pi != 00);
|
|
|
|
// initializations
|
|
l_bound = p_tcp->numpocs+1;
|
|
l_current_pi = p_pi;
|
|
|
|
for
|
|
(pino = 0;pino<l_bound;++pino)
|
|
{
|
|
l_current_pi->poc.prg = p_tcp->prg;
|
|
l_current_pi->first = 1;
|
|
l_current_pi->poc.resno0 = 0;
|
|
l_current_pi->poc.compno0 = 0;
|
|
l_current_pi->poc.layno0 = 0;
|
|
l_current_pi->poc.precno0 = 0;
|
|
l_current_pi->poc.resno1 = p_max_res;
|
|
l_current_pi->poc.compno1 = l_current_pi->numcomps;
|
|
l_current_pi->poc.layno1 = p_tcp->numlayers;
|
|
l_current_pi->poc.precno1 = p_max_precision;
|
|
++l_current_pi;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a packet iterator for encoding.
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param p_tile_no index of the tile being encoded.
|
|
* @param p_t2_mode the type of pass for generating the packet iterator
|
|
* @return a list of packet iterator that points to the first packet of the tile (not true).
|
|
*/
|
|
opj_pi_iterator_t *pi_initialise_encode(
|
|
const opj_image_t *p_image,
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tile_no,
|
|
J2K_T2_MODE p_t2_mode
|
|
)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
OPJ_UINT32 compno, resno;
|
|
|
|
// to store w, h, dx and dy fro all components and resolutions
|
|
OPJ_UINT32 * l_tmp_data;
|
|
OPJ_UINT32 ** l_tmp_ptr;
|
|
|
|
// encoding prameters to set
|
|
OPJ_UINT32 l_max_res;
|
|
OPJ_UINT32 l_max_prec;
|
|
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
|
|
OPJ_UINT32 l_dx_min,l_dy_min;
|
|
OPJ_UINT32 l_bound;
|
|
OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ;
|
|
OPJ_UINT32 l_data_stride;
|
|
|
|
// pointers
|
|
opj_pi_iterator_t *l_pi = 00;
|
|
opj_tcp_t *l_tcp = 00;
|
|
const opj_tccp_t *l_tccp = 00;
|
|
opj_pi_comp_t *l_current_comp = 00;
|
|
opj_image_comp_t * l_img_comp = 00;
|
|
opj_pi_iterator_t * l_current_pi = 00;
|
|
OPJ_UINT32 * l_encoding_value_ptr = 00;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_image != 00);
|
|
assert(p_tile_no < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
l_tcp = &p_cp->tcps[p_tile_no];
|
|
l_bound = l_tcp->numpocs+1;
|
|
|
|
l_data_stride = 4 * J2K_MAXRLVLS;
|
|
l_tmp_data = (OPJ_UINT32*)opj_malloc(
|
|
l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32));
|
|
if
|
|
(! l_tmp_data)
|
|
{
|
|
return 00;
|
|
}
|
|
l_tmp_ptr = (OPJ_UINT32**)opj_malloc(
|
|
p_image->numcomps * sizeof(OPJ_UINT32 *));
|
|
if
|
|
(! l_tmp_ptr)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
return 00;
|
|
}
|
|
|
|
// memory allocation for pi
|
|
l_pi = pi_create(p_image,p_cp,p_tile_no);
|
|
if
|
|
(!l_pi)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
opj_free(l_tmp_ptr);
|
|
return 00;
|
|
}
|
|
|
|
l_encoding_value_ptr = l_tmp_data;
|
|
// update pointer array
|
|
for
|
|
(compno = 0; compno < p_image->numcomps; ++compno)
|
|
{
|
|
l_tmp_ptr[compno] = l_encoding_value_ptr;
|
|
l_encoding_value_ptr += l_data_stride;
|
|
}
|
|
// get encoding parameters
|
|
get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr);
|
|
|
|
// step calculations
|
|
l_step_p = 1;
|
|
l_step_c = l_max_prec * l_step_p;
|
|
l_step_r = p_image->numcomps * l_step_c;
|
|
l_step_l = l_max_res * l_step_r;
|
|
|
|
// set values for first packet iterator
|
|
l_pi->tp_on = p_cp->m_specific_param.m_enc.m_tp_on;
|
|
l_current_pi = l_pi;
|
|
|
|
// memory allocation for include
|
|
l_current_pi->include = (OPJ_INT16*) opj_calloc(l_tcp->numlayers * l_step_l, sizeof(OPJ_INT16));
|
|
if
|
|
(!l_current_pi->include)
|
|
{
|
|
opj_free(l_tmp_data);
|
|
opj_free(l_tmp_ptr);
|
|
pi_destroy(l_pi, l_bound);
|
|
return 00;
|
|
}
|
|
memset(l_current_pi->include,0,l_tcp->numlayers * l_step_l* sizeof(OPJ_INT16));
|
|
|
|
// special treatment for the first packet iterator
|
|
l_current_comp = l_current_pi->comps;
|
|
l_img_comp = p_image->comps;
|
|
l_tccp = l_tcp->tccps;
|
|
l_current_pi->tx0 = l_tx0;
|
|
l_current_pi->ty0 = l_ty0;
|
|
l_current_pi->tx1 = l_tx1;
|
|
l_current_pi->ty1 = l_ty1;
|
|
l_current_pi->dx = l_dx_min;
|
|
l_current_pi->dy = l_dy_min;
|
|
l_current_pi->step_p = l_step_p;
|
|
l_current_pi->step_c = l_step_c;
|
|
l_current_pi->step_r = l_step_r;
|
|
l_current_pi->step_l = l_step_l;
|
|
|
|
/* allocation for components and number of components has already been calculated by pi_create */
|
|
for
|
|
(compno = 0; compno < l_current_pi->numcomps; ++compno)
|
|
{
|
|
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
|
|
l_encoding_value_ptr = l_tmp_ptr[compno];
|
|
|
|
l_current_comp->dx = l_img_comp->dx;
|
|
l_current_comp->dy = l_img_comp->dy;
|
|
/* resolutions have already been initialized */
|
|
for
|
|
(resno = 0; resno < l_current_comp->numresolutions; resno++)
|
|
{
|
|
l_res->pdx = *(l_encoding_value_ptr++);
|
|
l_res->pdy = *(l_encoding_value_ptr++);
|
|
l_res->pw = *(l_encoding_value_ptr++);
|
|
l_res->ph = *(l_encoding_value_ptr++);
|
|
++l_res;
|
|
}
|
|
++l_current_comp;
|
|
++l_img_comp;
|
|
++l_tccp;
|
|
}
|
|
++l_current_pi;
|
|
|
|
for
|
|
(pino = 1 ; pino<l_bound ; ++pino )
|
|
{
|
|
opj_pi_comp_t *l_current_comp = l_current_pi->comps;
|
|
opj_image_comp_t * l_img_comp = p_image->comps;
|
|
l_tccp = l_tcp->tccps;
|
|
|
|
l_current_pi->tx0 = l_tx0;
|
|
l_current_pi->ty0 = l_ty0;
|
|
l_current_pi->tx1 = l_tx1;
|
|
l_current_pi->ty1 = l_ty1;
|
|
l_current_pi->dx = l_dx_min;
|
|
l_current_pi->dy = l_dy_min;
|
|
l_current_pi->step_p = l_step_p;
|
|
l_current_pi->step_c = l_step_c;
|
|
l_current_pi->step_r = l_step_r;
|
|
l_current_pi->step_l = l_step_l;
|
|
|
|
/* allocation for components and number of components has already been calculated by pi_create */
|
|
for
|
|
(compno = 0; compno < l_current_pi->numcomps; ++compno)
|
|
{
|
|
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
|
|
l_encoding_value_ptr = l_tmp_ptr[compno];
|
|
|
|
l_current_comp->dx = l_img_comp->dx;
|
|
l_current_comp->dy = l_img_comp->dy;
|
|
/* resolutions have already been initialized */
|
|
for
|
|
(resno = 0; resno < l_current_comp->numresolutions; resno++)
|
|
{
|
|
l_res->pdx = *(l_encoding_value_ptr++);
|
|
l_res->pdy = *(l_encoding_value_ptr++);
|
|
l_res->pw = *(l_encoding_value_ptr++);
|
|
l_res->ph = *(l_encoding_value_ptr++);
|
|
++l_res;
|
|
}
|
|
++l_current_comp;
|
|
++l_img_comp;
|
|
++l_tccp;
|
|
}
|
|
// special treatment
|
|
l_current_pi->include = (l_current_pi-1)->include;
|
|
++l_current_pi;
|
|
}
|
|
opj_free(l_tmp_data);
|
|
l_tmp_data = 00;
|
|
opj_free(l_tmp_ptr);
|
|
l_tmp_ptr = 00;
|
|
if
|
|
(l_tcp->POC && ( p_cp->m_specific_param.m_enc.m_cinema || p_t2_mode == FINAL_PASS))
|
|
{
|
|
pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
|
|
}
|
|
else
|
|
{
|
|
pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
|
|
}
|
|
return l_pi;
|
|
}
|
|
|
|
/**
|
|
* Updates the encoding parameters of the codec.
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param p_tile_no index of the tile being encoded.
|
|
*/
|
|
void pi_update_encoding_parameters(
|
|
const opj_image_t *p_image,
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tile_no
|
|
)
|
|
{
|
|
// encoding prameters to set
|
|
OPJ_UINT32 l_max_res;
|
|
OPJ_UINT32 l_max_prec;
|
|
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
|
|
OPJ_UINT32 l_dx_min,l_dy_min;
|
|
|
|
// pointers
|
|
opj_tcp_t *l_tcp = 00;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_image != 00);
|
|
assert(p_tile_no < p_cp->tw * p_cp->th);
|
|
|
|
l_tcp = &(p_cp->tcps[p_tile_no]);
|
|
// get encoding parameters
|
|
get_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res);
|
|
if
|
|
(l_tcp->POC)
|
|
{
|
|
pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
|
|
}
|
|
else
|
|
{
|
|
pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param p_tileno the tile index of the tile being encoded.
|
|
* @param p_tx0 pointer that will hold the X0 parameter for the tile
|
|
* @param p_tx1 pointer that will hold the X1 parameter for the tile
|
|
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
|
|
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
|
|
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
|
|
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void get_encoding_parameters(
|
|
const opj_image_t *p_image,
|
|
const opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tileno,
|
|
OPJ_INT32 * p_tx0,
|
|
OPJ_INT32 * p_tx1,
|
|
OPJ_INT32 * p_ty0,
|
|
OPJ_INT32 * p_ty1,
|
|
OPJ_UINT32 * p_dx_min,
|
|
OPJ_UINT32 * p_dy_min,
|
|
OPJ_UINT32 * p_max_prec,
|
|
OPJ_UINT32 * p_max_res
|
|
)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 compno, resno;
|
|
// pointers
|
|
const opj_tcp_t *l_tcp = 00;
|
|
const opj_tccp_t * l_tccp = 00;
|
|
const opj_image_comp_t * l_img_comp = 00;
|
|
|
|
// position in x and y of tile
|
|
OPJ_UINT32 p, q;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_image != 00);
|
|
assert(p_tileno < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
l_tcp = &p_cp->tcps [p_tileno];
|
|
l_img_comp = p_image->comps;
|
|
l_tccp = l_tcp->tccps;
|
|
|
|
/* here calculation of tx0, tx1, ty0, ty1, maxprec, dx and dy */
|
|
p = p_tileno % p_cp->tw;
|
|
q = p_tileno / p_cp->tw;
|
|
|
|
// find extent of tile
|
|
*p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0);
|
|
*p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1);
|
|
*p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0);
|
|
*p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1);
|
|
|
|
// max precision is 0 (can only grow)
|
|
*p_max_prec = 0;
|
|
*p_max_res = 0;
|
|
|
|
// take the largest value for dx_min and dy_min
|
|
*p_dx_min = 0x7fffffff;
|
|
*p_dy_min = 0x7fffffff;
|
|
|
|
for
|
|
(compno = 0; compno < p_image->numcomps; ++compno)
|
|
{
|
|
// aritmetic variables to calculate
|
|
OPJ_UINT32 l_level_no;
|
|
OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1;
|
|
OPJ_INT32 l_px0, l_py0, l_px1, py1;
|
|
OPJ_UINT32 l_pdx, l_pdy;
|
|
OPJ_UINT32 l_pw, l_ph;
|
|
OPJ_UINT32 l_product;
|
|
OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1;
|
|
|
|
l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx);
|
|
l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy);
|
|
l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx);
|
|
l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy);
|
|
if
|
|
(l_tccp->numresolutions > *p_max_res)
|
|
{
|
|
*p_max_res = l_tccp->numresolutions;
|
|
}
|
|
// use custom size for precincts
|
|
for
|
|
(resno = 0; resno < l_tccp->numresolutions; ++resno)
|
|
{
|
|
OPJ_UINT32 l_dx, l_dy;
|
|
// precinct width and height
|
|
l_pdx = l_tccp->prcw[resno];
|
|
l_pdy = l_tccp->prch[resno];
|
|
|
|
l_dx = l_img_comp->dx * (1 << (l_pdx + l_tccp->numresolutions - 1 - resno));
|
|
l_dy = l_img_comp->dy * (1 << (l_pdy + l_tccp->numresolutions - 1 - resno));
|
|
// take the minimum size for dx for each comp and resolution
|
|
*p_dx_min = uint_min(*p_dx_min, l_dx);
|
|
*p_dy_min = uint_min(*p_dy_min, l_dy);
|
|
// various calculations of extents
|
|
l_level_no = l_tccp->numresolutions - 1 - resno;
|
|
l_rx0 = int_ceildivpow2(l_tcx0, l_level_no);
|
|
l_ry0 = int_ceildivpow2(l_tcy0, l_level_no);
|
|
l_rx1 = int_ceildivpow2(l_tcx1, l_level_no);
|
|
l_ry1 = int_ceildivpow2(l_tcy1, l_level_no);
|
|
l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx;
|
|
l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy;
|
|
l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx;
|
|
py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy;
|
|
l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx);
|
|
l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy);
|
|
l_product = l_pw * l_ph;
|
|
// update precision
|
|
if
|
|
(l_product > *p_max_prec)
|
|
{
|
|
*p_max_prec = l_product;
|
|
}
|
|
}
|
|
++l_img_comp;
|
|
++l_tccp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
|
|
* The precinct widths, heights, dx and dy for each component at each resolution will be stored as well.
|
|
* the last parameter of the function should be an array of pointers of size nb components, each pointer leading
|
|
* to an area of size 4 * max_res. The data is stored inside this area with the following pattern :
|
|
* dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ...
|
|
*
|
|
* @param p_image the image being encoded.
|
|
* @param p_cp the coding parameters.
|
|
* @param tileno the tile index of the tile being encoded.
|
|
* @param p_tx0 pointer that will hold the X0 parameter for the tile
|
|
* @param p_tx1 pointer that will hold the X1 parameter for the tile
|
|
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
|
|
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
|
|
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
|
|
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
|
|
* @param p_resolutions pointer to an area corresponding to the one described above.
|
|
*/
|
|
void get_all_encoding_parameters(
|
|
const opj_image_t *p_image,
|
|
const opj_cp_t *p_cp,
|
|
OPJ_UINT32 tileno,
|
|
OPJ_INT32 * p_tx0,
|
|
OPJ_INT32 * p_tx1,
|
|
OPJ_INT32 * p_ty0,
|
|
OPJ_INT32 * p_ty1,
|
|
OPJ_UINT32 * p_dx_min,
|
|
OPJ_UINT32 * p_dy_min,
|
|
OPJ_UINT32 * p_max_prec,
|
|
OPJ_UINT32 * p_max_res,
|
|
OPJ_UINT32 ** p_resolutions
|
|
)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 compno, resno;
|
|
|
|
// pointers
|
|
const opj_tcp_t *tcp = 00;
|
|
const opj_tccp_t * l_tccp = 00;
|
|
const opj_image_comp_t * l_img_comp = 00;
|
|
|
|
// to store l_dx, l_dy, w and h for each resolution and component.
|
|
OPJ_UINT32 * lResolutionPtr;
|
|
|
|
// position in x and y of tile
|
|
OPJ_UINT32 p, q;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_image != 00);
|
|
assert(tileno < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
tcp = &p_cp->tcps [tileno];
|
|
l_tccp = tcp->tccps;
|
|
l_img_comp = p_image->comps;
|
|
|
|
// position in x and y of tile
|
|
|
|
p = tileno % p_cp->tw;
|
|
q = tileno / p_cp->tw;
|
|
|
|
/* here calculation of tx0, tx1, ty0, ty1, maxprec, l_dx and l_dy */
|
|
*p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0);
|
|
*p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1);
|
|
*p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0);
|
|
*p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1);
|
|
|
|
// max precision and resolution is 0 (can only grow)
|
|
*p_max_prec = 0;
|
|
*p_max_res = 0;
|
|
|
|
// take the largest value for dx_min and dy_min
|
|
*p_dx_min = 0x7fffffff;
|
|
*p_dy_min = 0x7fffffff;
|
|
|
|
for
|
|
(compno = 0; compno < p_image->numcomps; ++compno)
|
|
{
|
|
// aritmetic variables to calculate
|
|
OPJ_UINT32 l_level_no;
|
|
OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1;
|
|
OPJ_INT32 l_px0, l_py0, l_px1, py1;
|
|
OPJ_UINT32 l_product;
|
|
OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1;
|
|
OPJ_UINT32 l_pdx, l_pdy , l_pw , l_ph;
|
|
|
|
lResolutionPtr = p_resolutions[compno];
|
|
|
|
l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx);
|
|
l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy);
|
|
l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx);
|
|
l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy);
|
|
if
|
|
(l_tccp->numresolutions > *p_max_res)
|
|
{
|
|
*p_max_res = l_tccp->numresolutions;
|
|
}
|
|
|
|
// use custom size for precincts
|
|
l_level_no = l_tccp->numresolutions - 1;
|
|
for
|
|
(resno = 0; resno < l_tccp->numresolutions; ++resno)
|
|
{
|
|
OPJ_UINT32 l_dx, l_dy;
|
|
// precinct width and height
|
|
l_pdx = l_tccp->prcw[resno];
|
|
l_pdy = l_tccp->prch[resno];
|
|
*lResolutionPtr++ = l_pdx;
|
|
*lResolutionPtr++ = l_pdy;
|
|
l_dx = l_img_comp->dx * (1 << (l_pdx + l_level_no));
|
|
l_dy = l_img_comp->dy * (1 << (l_pdy + l_level_no));
|
|
// take the minimum size for l_dx for each comp and resolution
|
|
*p_dx_min = int_min(*p_dx_min, l_dx);
|
|
*p_dy_min = int_min(*p_dy_min, l_dy);
|
|
// various calculations of extents
|
|
|
|
l_rx0 = int_ceildivpow2(l_tcx0, l_level_no);
|
|
l_ry0 = int_ceildivpow2(l_tcy0, l_level_no);
|
|
l_rx1 = int_ceildivpow2(l_tcx1, l_level_no);
|
|
l_ry1 = int_ceildivpow2(l_tcy1, l_level_no);
|
|
l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx;
|
|
l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy;
|
|
l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx;
|
|
py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy;
|
|
l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx);
|
|
l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy);
|
|
*lResolutionPtr++ = l_pw;
|
|
*lResolutionPtr++ = l_ph;
|
|
l_product = l_pw * l_ph;
|
|
// update precision
|
|
if
|
|
(l_product > *p_max_prec)
|
|
{
|
|
*p_max_prec = l_product;
|
|
}
|
|
--l_level_no;
|
|
}
|
|
++l_tccp;
|
|
++l_img_comp;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Allocates memory for a packet iterator. Data and data sizes are set by this operation.
|
|
* No other data is set. The include section of the packet iterator is not allocated.
|
|
*
|
|
* @param p_image the image used to initialize the packet iterator (in fact only the number of components is relevant.
|
|
* @param p_cp the coding parameters.
|
|
* @param p_tile_no the index of the tile from which creating the packet iterator.
|
|
*/
|
|
opj_pi_iterator_t * pi_create(
|
|
const opj_image_t *image,
|
|
const opj_cp_t *cp,
|
|
OPJ_UINT32 tileno
|
|
)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino, compno;
|
|
// number of poc in the p_pi
|
|
OPJ_UINT32 l_poc_bound;
|
|
|
|
// pointers to tile coding parameters and components.
|
|
opj_pi_iterator_t *l_pi = 00;
|
|
opj_tcp_t *tcp = 00;
|
|
const opj_tccp_t *tccp = 00;
|
|
|
|
// current packet iterator being allocated
|
|
opj_pi_iterator_t *l_current_pi = 00;
|
|
|
|
// preconditions in debug
|
|
assert(cp != 00);
|
|
assert(image != 00);
|
|
assert(tileno < cp->tw * cp->th);
|
|
|
|
// initializations
|
|
tcp = &cp->tcps[tileno];
|
|
l_poc_bound = tcp->numpocs+1;
|
|
|
|
|
|
// memory allocations
|
|
l_pi = (opj_pi_iterator_t*) opj_calloc((l_poc_bound), sizeof(opj_pi_iterator_t));
|
|
|
|
if
|
|
(!l_pi)
|
|
{
|
|
return 00;
|
|
}
|
|
memset(l_pi,0,l_poc_bound * sizeof(opj_pi_iterator_t));
|
|
l_current_pi = l_pi;
|
|
for
|
|
(pino = 0; pino < l_poc_bound ; ++pino)
|
|
{
|
|
l_current_pi->comps = (opj_pi_comp_t*) opj_calloc(image->numcomps, sizeof(opj_pi_comp_t));
|
|
if
|
|
(! l_current_pi->comps)
|
|
{
|
|
pi_destroy(l_pi, l_poc_bound);
|
|
return 00;
|
|
}
|
|
l_current_pi->numcomps = image->numcomps;
|
|
memset(l_current_pi->comps,0,image->numcomps * sizeof(opj_pi_comp_t));
|
|
for
|
|
(compno = 0; compno < image->numcomps; ++compno)
|
|
{
|
|
opj_pi_comp_t *comp = &l_current_pi->comps[compno];
|
|
tccp = &tcp->tccps[compno];
|
|
comp->resolutions = (opj_pi_resolution_t*) opj_malloc(tccp->numresolutions * sizeof(opj_pi_resolution_t));
|
|
if
|
|
(!comp->resolutions)
|
|
{
|
|
pi_destroy(l_pi, l_poc_bound);
|
|
return 00;
|
|
}
|
|
comp->numresolutions = tccp->numresolutions;
|
|
memset(comp->resolutions,0,tccp->numresolutions * sizeof(opj_pi_resolution_t));
|
|
}
|
|
++l_current_pi;
|
|
}
|
|
return l_pi;
|
|
}
|
|
|
|
/**
|
|
* Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used).
|
|
*
|
|
* @param p_cp the coding parameters to modify
|
|
* @param p_tileno the tile index being concerned.
|
|
* @param p_tx0 X0 parameter for the tile
|
|
* @param p_tx1 X1 parameter for the tile
|
|
* @param p_ty0 Y0 parameter for the tile
|
|
* @param p_ty1 Y1 parameter for the tile
|
|
* @param p_max_prec the maximum precision for all the bands of the tile
|
|
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void pi_update_encode_poc_and_final (
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_tileno,
|
|
OPJ_INT32 p_tx0,
|
|
OPJ_INT32 p_tx1,
|
|
OPJ_INT32 p_ty0,
|
|
OPJ_INT32 p_ty1,
|
|
OPJ_UINT32 p_max_prec,
|
|
OPJ_UINT32 p_max_res,
|
|
OPJ_UINT32 p_dx_min,
|
|
OPJ_UINT32 p_dy_min)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
// tile coding parameter
|
|
opj_tcp_t *l_tcp = 00;
|
|
// current poc being updated
|
|
opj_poc_t * l_current_poc = 00;
|
|
|
|
// number of pocs
|
|
OPJ_UINT32 l_poc_bound;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_tileno < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
l_tcp = &p_cp->tcps [p_tileno];
|
|
/* number of iterations in the loop */
|
|
l_poc_bound = l_tcp->numpocs+1;
|
|
|
|
// start at first element, and to make sure the compiler will not make a calculation each time in the loop
|
|
// store a pointer to the current element to modify rather than l_tcp->pocs[i]
|
|
l_current_poc = l_tcp->pocs;
|
|
|
|
l_current_poc->compS = l_current_poc->compno0;
|
|
l_current_poc->compE = l_current_poc->compno1;
|
|
l_current_poc->resS = l_current_poc->resno0;
|
|
l_current_poc->resE = l_current_poc->resno1;
|
|
l_current_poc->layE = l_current_poc->layno1;
|
|
|
|
// special treatment for the first element
|
|
l_current_poc->layS = 0;
|
|
l_current_poc->prg = l_current_poc->prg1;
|
|
l_current_poc->prcS = 0;
|
|
|
|
l_current_poc->prcE = p_max_prec;
|
|
l_current_poc->txS = p_tx0;
|
|
l_current_poc->txE = p_tx1;
|
|
l_current_poc->tyS = p_ty0;
|
|
l_current_poc->tyE = p_ty1;
|
|
l_current_poc->dx = p_dx_min;
|
|
l_current_poc->dy = p_dy_min;
|
|
|
|
++ l_current_poc;
|
|
for
|
|
(pino = 1;pino < l_poc_bound ; ++pino)
|
|
{
|
|
l_current_poc->compS = l_current_poc->compno0;
|
|
l_current_poc->compE= l_current_poc->compno1;
|
|
l_current_poc->resS = l_current_poc->resno0;
|
|
l_current_poc->resE = l_current_poc->resno1;
|
|
l_current_poc->layE = l_current_poc->layno1;
|
|
l_current_poc->prg = l_current_poc->prg1;
|
|
l_current_poc->prcS = 0;
|
|
// special treatment here different from the first element
|
|
l_current_poc->layS = (l_current_poc->layE > (l_current_poc-1)->layE) ? l_current_poc->layE : 0;
|
|
|
|
l_current_poc->prcE = p_max_prec;
|
|
l_current_poc->txS = p_tx0;
|
|
l_current_poc->txE = p_tx1;
|
|
l_current_poc->tyS = p_ty0;
|
|
l_current_poc->tyE = p_ty1;
|
|
l_current_poc->dx = p_dx_min;
|
|
l_current_poc->dy = p_dy_min;
|
|
++ l_current_poc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used).
|
|
*
|
|
* @param p_cp the coding parameters to modify
|
|
* @param p_tileno the tile index being concerned.
|
|
* @param p_tx0 X0 parameter for the tile
|
|
* @param p_tx1 X1 parameter for the tile
|
|
* @param p_ty0 Y0 parameter for the tile
|
|
* @param p_ty1 Y1 parameter for the tile
|
|
* @param p_max_prec the maximum precision for all the bands of the tile
|
|
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
|
|
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
|
|
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
|
|
*/
|
|
void pi_update_encode_not_poc (
|
|
opj_cp_t *p_cp,
|
|
OPJ_UINT32 p_num_comps,
|
|
OPJ_UINT32 p_tileno,
|
|
OPJ_INT32 p_tx0,
|
|
OPJ_INT32 p_tx1,
|
|
OPJ_INT32 p_ty0,
|
|
OPJ_INT32 p_ty1,
|
|
OPJ_UINT32 p_max_prec,
|
|
OPJ_UINT32 p_max_res,
|
|
OPJ_UINT32 p_dx_min,
|
|
OPJ_UINT32 p_dy_min)
|
|
{
|
|
// loop
|
|
OPJ_UINT32 pino;
|
|
// tile coding parameter
|
|
opj_tcp_t *l_tcp = 00;
|
|
// current poc being updated
|
|
opj_poc_t * l_current_poc = 00;
|
|
// number of pocs
|
|
OPJ_UINT32 l_poc_bound;
|
|
|
|
// preconditions in debug
|
|
assert(p_cp != 00);
|
|
assert(p_tileno < p_cp->tw * p_cp->th);
|
|
|
|
// initializations
|
|
l_tcp = &p_cp->tcps [p_tileno];
|
|
|
|
/* number of iterations in the loop */
|
|
l_poc_bound = l_tcp->numpocs+1;
|
|
|
|
// start at first element, and to make sure the compiler will not make a calculation each time in the loop
|
|
// store a pointer to the current element to modify rather than l_tcp->pocs[i]
|
|
l_current_poc = l_tcp->pocs;
|
|
|
|
for
|
|
(pino = 0; pino < l_poc_bound ; ++pino)
|
|
{
|
|
l_current_poc->compS = 0;
|
|
l_current_poc->compE = p_num_comps;/*p_image->numcomps;*/
|
|
l_current_poc->resS = 0;
|
|
l_current_poc->resE = p_max_res;
|
|
l_current_poc->layS = 0;
|
|
l_current_poc->layE = l_tcp->numlayers;
|
|
l_current_poc->prg = l_tcp->prg;
|
|
l_current_poc->prcS = 0;
|
|
l_current_poc->prcE = p_max_prec;
|
|
l_current_poc->txS = p_tx0;
|
|
l_current_poc->txE = p_tx1;
|
|
l_current_poc->tyS = p_ty0;
|
|
l_current_poc->tyE = p_ty1;
|
|
l_current_poc->dx = p_dx_min;
|
|
l_current_poc->dy = p_dy_min;
|
|
++ l_current_poc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Destroys a packet iterator array.
|
|
*
|
|
* @param p_pi the packet iterator array to destroy.
|
|
* @param p_nb_elements the number of elements in the array.
|
|
*/
|
|
void pi_destroy(
|
|
opj_pi_iterator_t *p_pi,
|
|
OPJ_UINT32 p_nb_elements)
|
|
{
|
|
OPJ_UINT32 compno, pino;
|
|
opj_pi_iterator_t *l_current_pi = p_pi;
|
|
if
|
|
(p_pi)
|
|
{
|
|
if
|
|
(p_pi->include)
|
|
{
|
|
opj_free(p_pi->include);
|
|
p_pi->include = 00;
|
|
}
|
|
// TODO
|
|
for
|
|
(pino = 0; pino < p_nb_elements; ++pino)
|
|
{
|
|
if
|
|
(l_current_pi->comps)
|
|
{
|
|
opj_pi_comp_t *l_current_component = l_current_pi->comps;
|
|
for
|
|
(compno = 0; compno < l_current_pi->numcomps; compno++)
|
|
{
|
|
if
|
|
(l_current_component->resolutions)
|
|
{
|
|
opj_free(l_current_component->resolutions);
|
|
l_current_component->resolutions = 00;
|
|
}
|
|
++l_current_component;
|
|
}
|
|
opj_free(l_current_pi->comps);
|
|
l_current_pi->comps = 0;
|
|
}
|
|
++l_current_pi;
|
|
}
|
|
opj_free(p_pi);
|
|
}
|
|
}
|
|
|
|
bool pi_next(opj_pi_iterator_t * pi) {
|
|
switch (pi->poc.prg) {
|
|
case LRCP:
|
|
return pi_next_lrcp(pi);
|
|
case RLCP:
|
|
return pi_next_rlcp(pi);
|
|
case RPCL:
|
|
return pi_next_rpcl(pi);
|
|
case PCRL:
|
|
return pi_next_pcrl(pi);
|
|
case CPRL:
|
|
return pi_next_cprl(pi);
|
|
case PROG_UNKNOWN:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
OPJ_INT32 pi_check_next_level(OPJ_INT32 pos,opj_cp_t *cp,OPJ_UINT32 tileno, OPJ_UINT32 pino, const OPJ_CHAR *prog)
|
|
{
|
|
OPJ_INT32 i,l;
|
|
opj_tcp_t *tcps =&cp->tcps[tileno];
|
|
opj_poc_t *tcp = &tcps->pocs[pino];
|
|
if(pos>=0){
|
|
for(i=pos;pos>=0;i--){
|
|
switch(prog[i]){
|
|
case 'R':
|
|
if(tcp->res_t==tcp->resE){
|
|
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}else{
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'C':
|
|
if(tcp->comp_t==tcp->compE){
|
|
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}else{
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'L':
|
|
if(tcp->lay_t==tcp->layE){
|
|
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}else{
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'P':
|
|
switch(tcp->prg){
|
|
case LRCP||RLCP:
|
|
if(tcp->prc_t == tcp->prcE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}else{
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
if(tcp->tx0_t == tcp->txE){
|
|
//TY
|
|
if(tcp->ty0_t == tcp->tyE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}else{
|
|
return 1;
|
|
}//TY
|
|
}else{
|
|
return 1;
|
|
}
|
|
break;
|
|
}//end case P
|
|
}//end switch
|
|
}//end for
|
|
}//end if
|
|
return 0;
|
|
}
|
|
|
|
|
|
void pi_create_encode( opj_pi_iterator_t *pi, opj_cp_t *cp,OPJ_UINT32 tileno, OPJ_UINT32 pino,OPJ_UINT32 tpnum, OPJ_INT32 tppos, J2K_T2_MODE t2_mode)
|
|
{
|
|
const OPJ_CHAR *prog;
|
|
OPJ_INT32 i,l;
|
|
OPJ_UINT32 incr_top=1,resetX=0;
|
|
opj_tcp_t *tcps =&cp->tcps[tileno];
|
|
opj_poc_t *tcp= &tcps->pocs[pino];
|
|
|
|
prog = j2k_convert_progression_order(tcp->prg);
|
|
|
|
pi[pino].first = 1;
|
|
pi[pino].poc.prg = tcp->prg;
|
|
|
|
if(!(cp->m_specific_param.m_enc.m_tp_on&& ((!cp->m_specific_param.m_enc.m_cinema && (t2_mode == FINAL_PASS)) || cp->m_specific_param.m_enc.m_cinema))){
|
|
pi[pino].poc.resno0 = tcp->resS;
|
|
pi[pino].poc.resno1 = tcp->resE;
|
|
pi[pino].poc.compno0 = tcp->compS;
|
|
pi[pino].poc.compno1 = tcp->compE;
|
|
pi[pino].poc.layno0 = tcp->layS;
|
|
pi[pino].poc.layno1 = tcp->layE;
|
|
pi[pino].poc.precno0 = tcp->prcS;
|
|
pi[pino].poc.precno1 = tcp->prcE;
|
|
pi[pino].poc.tx0 = tcp->txS;
|
|
pi[pino].poc.ty0 = tcp->tyS;
|
|
pi[pino].poc.tx1 = tcp->txE;
|
|
pi[pino].poc.ty1 = tcp->tyE;
|
|
}else {
|
|
for(i=tppos+1;i<4;i++){
|
|
switch(prog[i]){
|
|
case 'R':
|
|
pi[pino].poc.resno0 = tcp->resS;
|
|
pi[pino].poc.resno1 = tcp->resE;
|
|
break;
|
|
case 'C':
|
|
pi[pino].poc.compno0 = tcp->compS;
|
|
pi[pino].poc.compno1 = tcp->compE;
|
|
break;
|
|
case 'L':
|
|
pi[pino].poc.layno0 = tcp->layS;
|
|
pi[pino].poc.layno1 = tcp->layE;
|
|
break;
|
|
case 'P':
|
|
switch(tcp->prg){
|
|
case LRCP:
|
|
case RLCP:
|
|
pi[pino].poc.precno0 = tcp->prcS;
|
|
pi[pino].poc.precno1 = tcp->prcE;
|
|
break;
|
|
default:
|
|
pi[pino].poc.tx0 = tcp->txS;
|
|
pi[pino].poc.ty0 = tcp->tyS;
|
|
pi[pino].poc.tx1 = tcp->txE;
|
|
pi[pino].poc.ty1 = tcp->tyE;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(tpnum==0){
|
|
for(i=tppos;i>=0;i--){
|
|
switch(prog[i]){
|
|
case 'C':
|
|
tcp->comp_t = tcp->compS;
|
|
pi[pino].poc.compno0 = tcp->comp_t;
|
|
pi[pino].poc.compno1 = tcp->comp_t+1;
|
|
tcp->comp_t+=1;
|
|
break;
|
|
case 'R':
|
|
tcp->res_t = tcp->resS;
|
|
pi[pino].poc.resno0 = tcp->res_t;
|
|
pi[pino].poc.resno1 = tcp->res_t+1;
|
|
tcp->res_t+=1;
|
|
break;
|
|
case 'L':
|
|
tcp->lay_t = tcp->layS;
|
|
pi[pino].poc.layno0 = tcp->lay_t;
|
|
pi[pino].poc.layno1 = tcp->lay_t+1;
|
|
tcp->lay_t+=1;
|
|
break;
|
|
case 'P':
|
|
switch(tcp->prg){
|
|
case LRCP:
|
|
case RLCP:
|
|
tcp->prc_t = tcp->prcS;
|
|
pi[pino].poc.precno0 = tcp->prc_t;
|
|
pi[pino].poc.precno1 = tcp->prc_t+1;
|
|
tcp->prc_t+=1;
|
|
break;
|
|
default:
|
|
tcp->tx0_t = tcp->txS;
|
|
tcp->ty0_t = tcp->tyS;
|
|
pi[pino].poc.tx0 = tcp->tx0_t;
|
|
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx - (tcp->tx0_t % tcp->dx);
|
|
pi[pino].poc.ty0 = tcp->ty0_t;
|
|
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
|
|
tcp->tx0_t = pi[pino].poc.tx1;
|
|
tcp->ty0_t = pi[pino].poc.ty1;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
incr_top=1;
|
|
}else{
|
|
for(i=tppos;i>=0;i--){
|
|
switch(prog[i]){
|
|
case 'C':
|
|
pi[pino].poc.compno0 = tcp->comp_t-1;
|
|
pi[pino].poc.compno1 = tcp->comp_t;
|
|
break;
|
|
case 'R':
|
|
pi[pino].poc.resno0 = tcp->res_t-1;
|
|
pi[pino].poc.resno1 = tcp->res_t;
|
|
break;
|
|
case 'L':
|
|
pi[pino].poc.layno0 = tcp->lay_t-1;
|
|
pi[pino].poc.layno1 = tcp->lay_t;
|
|
break;
|
|
case 'P':
|
|
switch(tcp->prg){
|
|
case LRCP:
|
|
case RLCP:
|
|
pi[pino].poc.precno0 = tcp->prc_t-1;
|
|
pi[pino].poc.precno1 = tcp->prc_t;
|
|
break;
|
|
default:
|
|
pi[pino].poc.tx0 = tcp->tx0_t - tcp->dx - (tcp->tx0_t % tcp->dx);
|
|
pi[pino].poc.tx1 = tcp->tx0_t ;
|
|
pi[pino].poc.ty0 = tcp->ty0_t - tcp->dy - (tcp->ty0_t % tcp->dy);
|
|
pi[pino].poc.ty1 = tcp->ty0_t ;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
if(incr_top==1){
|
|
switch(prog[i]){
|
|
case 'R':
|
|
if(tcp->res_t==tcp->resE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
tcp->res_t = tcp->resS;
|
|
pi[pino].poc.resno0 = tcp->res_t;
|
|
pi[pino].poc.resno1 = tcp->res_t+1;
|
|
tcp->res_t+=1;
|
|
incr_top=1;
|
|
}else{
|
|
incr_top=0;
|
|
}
|
|
}else{
|
|
pi[pino].poc.resno0 = tcp->res_t;
|
|
pi[pino].poc.resno1 = tcp->res_t+1;
|
|
tcp->res_t+=1;
|
|
incr_top=0;
|
|
}
|
|
break;
|
|
case 'C':
|
|
if(tcp->comp_t ==tcp->compE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
tcp->comp_t = tcp->compS;
|
|
pi[pino].poc.compno0 = tcp->comp_t;
|
|
pi[pino].poc.compno1 = tcp->comp_t+1;
|
|
tcp->comp_t+=1;
|
|
incr_top=1;
|
|
}else{
|
|
incr_top=0;
|
|
}
|
|
}else{
|
|
pi[pino].poc.compno0 = tcp->comp_t;
|
|
pi[pino].poc.compno1 = tcp->comp_t+1;
|
|
tcp->comp_t+=1;
|
|
incr_top=0;
|
|
}
|
|
break;
|
|
case 'L':
|
|
if(tcp->lay_t == tcp->layE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
tcp->lay_t = tcp->layS;
|
|
pi[pino].poc.layno0 = tcp->lay_t;
|
|
pi[pino].poc.layno1 = tcp->lay_t+1;
|
|
tcp->lay_t+=1;
|
|
incr_top=1;
|
|
}else{
|
|
incr_top=0;
|
|
}
|
|
}else{
|
|
pi[pino].poc.layno0 = tcp->lay_t;
|
|
pi[pino].poc.layno1 = tcp->lay_t+1;
|
|
tcp->lay_t+=1;
|
|
incr_top=0;
|
|
}
|
|
break;
|
|
case 'P':
|
|
switch(tcp->prg){
|
|
case LRCP:
|
|
case RLCP:
|
|
if(tcp->prc_t == tcp->prcE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
tcp->prc_t = tcp->prcS;
|
|
pi[pino].poc.precno0 = tcp->prc_t;
|
|
pi[pino].poc.precno1 = tcp->prc_t+1;
|
|
tcp->prc_t+=1;
|
|
incr_top=1;
|
|
}else{
|
|
incr_top=0;
|
|
}
|
|
}else{
|
|
pi[pino].poc.precno0 = tcp->prc_t;
|
|
pi[pino].poc.precno1 = tcp->prc_t+1;
|
|
tcp->prc_t+=1;
|
|
incr_top=0;
|
|
}
|
|
break;
|
|
default:
|
|
if(tcp->tx0_t >= tcp->txE){
|
|
if(tcp->ty0_t >= tcp->tyE){
|
|
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
|
|
if(l==1){
|
|
tcp->ty0_t = tcp->tyS;
|
|
pi[pino].poc.ty0 = tcp->ty0_t;
|
|
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
|
|
tcp->ty0_t = pi[pino].poc.ty1;
|
|
incr_top=1;resetX=1;
|
|
}else{
|
|
incr_top=0;resetX=0;
|
|
}
|
|
}else{
|
|
pi[pino].poc.ty0 = tcp->ty0_t;
|
|
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
|
|
tcp->ty0_t = pi[pino].poc.ty1;
|
|
incr_top=0;resetX=1;
|
|
}
|
|
if(resetX==1){
|
|
tcp->tx0_t = tcp->txS;
|
|
pi[pino].poc.tx0 = tcp->tx0_t;
|
|
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
|
|
tcp->tx0_t = pi[pino].poc.tx1;
|
|
}
|
|
}else{
|
|
pi[pino].poc.tx0 = tcp->tx0_t;
|
|
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
|
|
tcp->tx0_t = pi[pino].poc.tx1;
|
|
incr_top=0;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|