1632 lines
53 KiB
C
1632 lines
53 KiB
C
|
||
//---------------------------------------------------------------------------------
|
||
//
|
||
// Little Color Management System
|
||
// Copyright (c) 1998-2010 Marti Maria Saguer
|
||
//
|
||
// Permission is hereby granted, free of charge, to any person obtaining
|
||
// a copy of this software and associated documentation files (the "Software"),
|
||
// to deal in the Software without restriction, including without limitation
|
||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
// and/or sell copies of the Software, and to permit persons to whom the Software
|
||
// is furnished to do so, subject to the following conditions:
|
||
//
|
||
// The above copyright notice and this permission notice shall be included in
|
||
// all copies or substantial portions of the Software.
|
||
//
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
||
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
//
|
||
//---------------------------------------------------------------------------------
|
||
//
|
||
|
||
#include "lcms2_internal.h"
|
||
|
||
|
||
//----------------------------------------------------------------------------------
|
||
|
||
// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
|
||
typedef struct {
|
||
|
||
cmsContext ContextID;
|
||
|
||
const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
|
||
|
||
cmsUInt16Number rx[256], ry[256], rz[256];
|
||
cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
|
||
|
||
|
||
} Prelin8Data;
|
||
|
||
|
||
// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
|
||
typedef struct {
|
||
|
||
cmsContext ContextID;
|
||
|
||
// Number of channels
|
||
int nInputs;
|
||
int nOutputs;
|
||
|
||
// Since there is no limitation of the output number of channels, this buffer holding the connexion CLUT-shaper
|
||
// has to be dynamically allocated. This is not the case of first step shaper-CLUT, which is limited to max inputs
|
||
cmsUInt16Number* StageDEF;
|
||
|
||
_cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
|
||
cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
|
||
|
||
_cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
|
||
const cmsInterpParams* CLUTparams; // (not-owned pointer)
|
||
|
||
|
||
_cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
|
||
cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
|
||
|
||
|
||
} Prelin16Data;
|
||
|
||
|
||
// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
|
||
|
||
typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
|
||
|
||
#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
|
||
|
||
typedef struct {
|
||
|
||
cmsContext ContextID;
|
||
|
||
cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
|
||
cmsS1Fixed14Number Shaper1G[256];
|
||
cmsS1Fixed14Number Shaper1B[256];
|
||
|
||
cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
|
||
cmsS1Fixed14Number Off[3];
|
||
|
||
cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
|
||
cmsUInt16Number Shaper2G[16385];
|
||
cmsUInt16Number Shaper2B[16385];
|
||
|
||
} MatShaper8Data;
|
||
|
||
// Curves, optimization is shared between 8 and 16 bits
|
||
typedef struct {
|
||
|
||
cmsContext ContextID;
|
||
|
||
int nCurves; // Number of curves
|
||
int nElements; // Elements in curves
|
||
cmsUInt16Number** Curves; // Points to a dynamically allocated array
|
||
|
||
} Curves16Data;
|
||
|
||
|
||
// Simple optimizations ----------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
// Remove an element in linked chain
|
||
static
|
||
void _RemoveElement(cmsStage** head)
|
||
{
|
||
cmsStage* mpe = *head;
|
||
cmsStage* next = mpe ->Next;
|
||
*head = next;
|
||
cmsStageFree(mpe);
|
||
}
|
||
|
||
// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
|
||
static
|
||
cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
|
||
{
|
||
cmsStage** pt = &Lut ->Elements;
|
||
cmsBool AnyOpt = FALSE;
|
||
|
||
while (*pt != NULL) {
|
||
|
||
if ((*pt) ->Implements == UnaryOp) {
|
||
_RemoveElement(pt);
|
||
AnyOpt = TRUE;
|
||
}
|
||
else
|
||
pt = &((*pt) -> Next);
|
||
}
|
||
|
||
return AnyOpt;
|
||
}
|
||
|
||
// Same, but only if two adjacent elements are found
|
||
static
|
||
cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
|
||
{
|
||
cmsStage** pt1;
|
||
cmsStage** pt2;
|
||
cmsBool AnyOpt = FALSE;
|
||
|
||
pt1 = &Lut ->Elements;
|
||
if (*pt1 == NULL) return AnyOpt;
|
||
|
||
while (*pt1 != NULL) {
|
||
|
||
pt2 = &((*pt1) -> Next);
|
||
if (*pt2 == NULL) return AnyOpt;
|
||
|
||
if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
|
||
_RemoveElement(pt2);
|
||
_RemoveElement(pt1);
|
||
AnyOpt = TRUE;
|
||
}
|
||
else
|
||
pt1 = &((*pt1) -> Next);
|
||
}
|
||
|
||
return AnyOpt;
|
||
}
|
||
|
||
// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
|
||
// by a v4 to v2 and vice-versa. The elements are then discarded.
|
||
static
|
||
cmsBool PreOptimize(cmsPipeline* Lut)
|
||
{
|
||
cmsBool AnyOpt = FALSE, Opt;
|
||
|
||
AnyOpt = FALSE;
|
||
|
||
do {
|
||
|
||
Opt = FALSE;
|
||
|
||
// Remove all identities
|
||
Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
|
||
|
||
// Remove XYZ2Lab followed by Lab2XYZ
|
||
Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
|
||
|
||
// Remove Lab2XYZ followed by XYZ2Lab
|
||
Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
|
||
|
||
// Remove V4 to V2 followed by V2 to V4
|
||
Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
|
||
|
||
// Remove V2 to V4 followed by V4 to V2
|
||
Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
|
||
|
||
if (Opt) AnyOpt = TRUE;
|
||
|
||
} while (Opt);
|
||
|
||
return AnyOpt;
|
||
}
|
||
|
||
static
|
||
void Eval16nop1D(register const cmsUInt16Number Input[],
|
||
register cmsUInt16Number Output[],
|
||
register const struct _cms_interp_struc* p)
|
||
{
|
||
Output[0] = Input[0];
|
||
|
||
cmsUNUSED_PARAMETER(p);
|
||
}
|
||
|
||
static
|
||
void PrelinEval16(register const cmsUInt16Number Input[],
|
||
register cmsUInt16Number Output[],
|
||
register const void* D)
|
||
{
|
||
Prelin16Data* p16 = (Prelin16Data*) D;
|
||
cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
|
||
int i;
|
||
|
||
for (i=0; i < p16 ->nInputs; i++) {
|
||
|
||
p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
|
||
}
|
||
|
||
p16 ->EvalCLUT(StageABC, p16 ->StageDEF, p16 ->CLUTparams);
|
||
|
||
for (i=0; i < p16 ->nOutputs; i++) {
|
||
|
||
p16 ->EvalCurveOut16[i](&p16->StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
|
||
}
|
||
}
|
||
|
||
|
||
static
|
||
void PrelinOpt16free(cmsContext ContextID, void* ptr)
|
||
{
|
||
Prelin16Data* p16 = (Prelin16Data*) ptr;
|
||
|
||
_cmsFree(ContextID, p16 ->StageDEF);
|
||
_cmsFree(ContextID, p16 ->EvalCurveOut16);
|
||
_cmsFree(ContextID, p16 ->ParamsCurveOut16);
|
||
|
||
_cmsFree(ContextID, p16);
|
||
}
|
||
|
||
static
|
||
void* Prelin16dup(cmsContext ContextID, const void* ptr)
|
||
{
|
||
Prelin16Data* p16 = (Prelin16Data*) ptr;
|
||
Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
|
||
|
||
if (Duped == NULL) return NULL;
|
||
|
||
Duped ->StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
|
||
Duped ->EvalCurveOut16 = _cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16));
|
||
Duped ->ParamsCurveOut16 = _cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* ));
|
||
|
||
return Duped;
|
||
}
|
||
|
||
|
||
static
|
||
Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
|
||
const cmsInterpParams* ColorMap,
|
||
int nInputs, cmsToneCurve** In,
|
||
int nOutputs, cmsToneCurve** Out )
|
||
{
|
||
int i;
|
||
Prelin16Data* p16 = (Prelin16Data*) _cmsMallocZero(ContextID, sizeof(Prelin16Data));
|
||
if (p16 == NULL) return NULL;
|
||
|
||
p16 ->nInputs = nInputs;
|
||
p16 -> nOutputs = nOutputs;
|
||
|
||
|
||
for (i=0; i < nInputs; i++) {
|
||
|
||
if (In == NULL) {
|
||
p16 -> ParamsCurveIn16[i] = NULL;
|
||
p16 -> EvalCurveIn16[i] = Eval16nop1D;
|
||
|
||
}
|
||
else {
|
||
p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
|
||
p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
|
||
}
|
||
}
|
||
|
||
p16 ->CLUTparams = ColorMap;
|
||
p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
|
||
|
||
|
||
p16 -> StageDEF = _cmsCalloc(ContextID, p16 ->nOutputs, sizeof(cmsUInt16Number));
|
||
p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
|
||
p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
|
||
|
||
for (i=0; i < nOutputs; i++) {
|
||
|
||
if (Out == NULL) {
|
||
p16 ->ParamsCurveOut16[i] = NULL;
|
||
p16 -> EvalCurveOut16[i] = Eval16nop1D;
|
||
}
|
||
else {
|
||
|
||
p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
|
||
p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
|
||
}
|
||
}
|
||
|
||
return p16;
|
||
}
|
||
|
||
|
||
|
||
// Resampling ---------------------------------------------------------------------------------
|
||
|
||
#define PRELINEARIZATION_POINTS 4096
|
||
|
||
// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
|
||
// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
|
||
static
|
||
int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
|
||
{
|
||
cmsPipeline* Lut = (cmsPipeline*) Cargo;
|
||
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
|
||
cmsUInt32Number i;
|
||
|
||
_cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
|
||
_cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
|
||
|
||
// From 16 bit to floating point
|
||
for (i=0; i < Lut ->InputChannels; i++)
|
||
InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
|
||
|
||
// Evaluate in floating point
|
||
cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
|
||
|
||
// Back to 16 bits representation
|
||
for (i=0; i < Lut ->OutputChannels; i++)
|
||
Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
|
||
|
||
// Always succeed
|
||
return TRUE;
|
||
}
|
||
|
||
// Try to see if the curves of a given MPE are linear
|
||
static
|
||
cmsBool AllCurvesAreLinear(cmsStage* mpe)
|
||
{
|
||
cmsToneCurve** Curves;
|
||
cmsUInt32Number i, n;
|
||
|
||
Curves = _cmsStageGetPtrToCurveSet(mpe);
|
||
if (Curves == NULL) return FALSE;
|
||
|
||
n = cmsStageOutputChannels(mpe);
|
||
|
||
for (i=0; i < n; i++) {
|
||
if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
|
||
// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
|
||
static
|
||
cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
|
||
int nChannelsOut, int nChannelsIn)
|
||
{
|
||
_cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
|
||
cmsInterpParams* p16 = Grid ->Params;
|
||
cmsFloat64Number px, py, pz, pw;
|
||
int x0, y0, z0, w0;
|
||
int i, index;
|
||
|
||
if (CLUT -> Type != cmsSigCLutElemType) {
|
||
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut MPE");
|
||
return FALSE;
|
||
}
|
||
|
||
px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
|
||
py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
|
||
pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
|
||
pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
|
||
|
||
x0 = (int) floor(px);
|
||
y0 = (int) floor(py);
|
||
z0 = (int) floor(pz);
|
||
w0 = (int) floor(pw);
|
||
|
||
if (nChannelsIn == 4) {
|
||
|
||
if (((px - x0) != 0) ||
|
||
((py - y0) != 0) ||
|
||
((pz - z0) != 0) ||
|
||
((pw - w0) != 0)) return FALSE; // Not on exact node
|
||
|
||
index = p16 -> opta[3] * x0 +
|
||
p16 -> opta[2] * y0 +
|
||
p16 -> opta[1] * z0 +
|
||
p16 -> opta[0] * w0;
|
||
}
|
||
else
|
||
if (nChannelsIn == 3) {
|
||
|
||
if (((px - x0) != 0) ||
|
||
((py - y0) != 0) ||
|
||
((pz - z0) != 0)) return FALSE; // Not on exact node
|
||
|
||
index = p16 -> opta[2] * x0 +
|
||
p16 -> opta[1] * y0 +
|
||
p16 -> opta[0] * z0;
|
||
}
|
||
else
|
||
if (nChannelsIn == 1) {
|
||
|
||
if (((px - x0) != 0)) return FALSE; // Not on exact node
|
||
|
||
index = p16 -> opta[0] * x0;
|
||
}
|
||
else {
|
||
cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
|
||
return FALSE;
|
||
}
|
||
|
||
for (i=0; i < nChannelsOut; i++)
|
||
Grid -> Tab.T[index + i] = Value[i];
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
// Auxiliar, to see if two values are equal.
|
||
static
|
||
cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
|
||
{
|
||
int i;
|
||
|
||
for (i=0; i < n; i++) {
|
||
if (White1[i] != White2[i]) return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
|
||
static
|
||
cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
|
||
{
|
||
cmsUInt16Number *WhitePointIn, *WhitePointOut;
|
||
cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
|
||
cmsUInt32Number i, nOuts, nIns;
|
||
cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
|
||
|
||
if (!_cmsEndPointsBySpace(EntryColorSpace,
|
||
&WhitePointIn, NULL, &nIns)) return FALSE;
|
||
|
||
if (!_cmsEndPointsBySpace(ExitColorSpace,
|
||
&WhitePointOut, NULL, &nOuts)) return FALSE;
|
||
|
||
// It needs to be fixed?
|
||
|
||
cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
|
||
|
||
if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
|
||
|
||
// Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
|
||
if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
|
||
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
|
||
if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
|
||
if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
|
||
return FALSE;
|
||
|
||
// We need to interpolate white points of both, pre and post curves
|
||
if (PreLin) {
|
||
|
||
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
|
||
|
||
for (i=0; i < nIns; i++) {
|
||
WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
|
||
}
|
||
}
|
||
else {
|
||
for (i=0; i < nIns; i++)
|
||
WhiteIn[i] = WhitePointIn[i];
|
||
}
|
||
|
||
// If any post-linearization, we need to find how is represented white before the curve, do
|
||
// a reverse interpolation in this case.
|
||
if (PostLin) {
|
||
|
||
cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
|
||
|
||
for (i=0; i < nOuts; i++) {
|
||
|
||
cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
|
||
WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
|
||
cmsFreeToneCurve(InversePostLin);
|
||
}
|
||
}
|
||
else {
|
||
for (i=0; i < nOuts; i++)
|
||
WhiteOut[i] = WhitePointOut[i];
|
||
}
|
||
|
||
// Ok, proceed with patching. May fail and we don't care if it fails
|
||
PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------------------------------------------------------------------------
|
||
// This function creates simple LUT from complex ones. The generated LUT has an optional set of
|
||
// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
|
||
// These curves have to exist in the original LUT in order to be used in the simplified output.
|
||
// Caller may also use the flags to allow this feature.
|
||
// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
|
||
// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
|
||
// -----------------------------------------------------------------------------------------------------------------------------------------------
|
||
|
||
static
|
||
cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
|
||
{
|
||
cmsPipeline* Src;
|
||
cmsPipeline* Dest;
|
||
cmsStage* CLUT;
|
||
cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
|
||
int nGridPoints;
|
||
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
|
||
cmsStage *NewPreLin = NULL;
|
||
cmsStage *NewPostLin = NULL;
|
||
_cmsStageCLutData* DataCLUT;
|
||
cmsToneCurve** DataSetIn;
|
||
cmsToneCurve** DataSetOut;
|
||
Prelin16Data* p16;
|
||
|
||
|
||
// This is a loosy optimization! does not apply in floating-point cases
|
||
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
|
||
|
||
ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
|
||
OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
|
||
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
|
||
|
||
// For empty LUTs, 2 points are enough
|
||
if (cmsPipelineStageCount(*Lut) == 0)
|
||
nGridPoints = 2;
|
||
|
||
Src = *Lut;
|
||
|
||
// Allocate an empty LUT
|
||
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
|
||
if (!Dest) return FALSE;
|
||
|
||
// Prelinearization tables are kept unless indicated by flags
|
||
if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
|
||
|
||
// Get a pointer to the prelinearization element
|
||
cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
|
||
|
||
// Check if suitable
|
||
if (PreLin ->Type == cmsSigCurveSetElemType) {
|
||
|
||
// Maybe this is a linear tram, so we can avoid the whole stuff
|
||
if (!AllCurvesAreLinear(PreLin)) {
|
||
|
||
// All seems ok, proceed.
|
||
NewPreLin = cmsStageDup(PreLin);
|
||
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin);
|
||
|
||
// Remove prelinearization. Since we have duplicated the curve
|
||
// in destination LUT, the sampling shoud be applied after this stage.
|
||
cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Allocate the CLUT
|
||
CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
|
||
if (CLUT == NULL) return FALSE;
|
||
|
||
// Add the CLUT to the destination LUT
|
||
cmsPipelineInsertStage(Dest, cmsAT_END, CLUT);
|
||
|
||
// Postlinearization tables are kept unless indicated by flags
|
||
if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
|
||
|
||
// Get a pointer to the postlinearization if present
|
||
cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
|
||
|
||
// Check if suitable
|
||
if (cmsStageType(PostLin) == cmsSigCurveSetElemType) {
|
||
|
||
// Maybe this is a linear tram, so we can avoid the whole stuff
|
||
if (!AllCurvesAreLinear(PostLin)) {
|
||
|
||
// All seems ok, proceed.
|
||
NewPostLin = cmsStageDup(PostLin);
|
||
cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin);
|
||
|
||
// In destination LUT, the sampling shoud be applied after this stage.
|
||
cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Now its time to do the sampling. We have to ignore pre/post linearization
|
||
// The source LUT whithout pre/post curves is passed as parameter.
|
||
if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
|
||
|
||
// Ops, something went wrong, Restore stages
|
||
if (KeepPreLin != NULL) cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin);
|
||
if (KeepPostLin != NULL) cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin);
|
||
cmsPipelineFree(Dest);
|
||
return FALSE;
|
||
}
|
||
|
||
// Done.
|
||
|
||
if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
|
||
if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
|
||
cmsPipelineFree(Src);
|
||
|
||
DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
|
||
|
||
if (NewPreLin == NULL) DataSetIn = NULL;
|
||
else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
|
||
|
||
if (NewPostLin == NULL) DataSetOut = NULL;
|
||
else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
|
||
|
||
|
||
if (DataSetIn == NULL && DataSetOut == NULL) {
|
||
|
||
_cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
|
||
}
|
||
else {
|
||
|
||
p16 = PrelinOpt16alloc(Dest ->ContextID,
|
||
DataCLUT ->Params,
|
||
Dest ->InputChannels,
|
||
DataSetIn,
|
||
Dest ->OutputChannels,
|
||
DataSetOut);
|
||
|
||
|
||
_cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
|
||
}
|
||
|
||
|
||
// Don't fix white on absolute colorimetric
|
||
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
|
||
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
|
||
|
||
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
|
||
|
||
FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
|
||
}
|
||
|
||
*Lut = Dest;
|
||
return TRUE;
|
||
|
||
cmsUNUSED_PARAMETER(Intent);
|
||
}
|
||
|
||
|
||
// -----------------------------------------------------------------------------------------------------------------------------------------------
|
||
// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
|
||
// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
|
||
// for RGB transforms. See the paper for more details
|
||
// -----------------------------------------------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
|
||
// Descending curves are handled as well.
|
||
static
|
||
void SlopeLimiting(cmsToneCurve* g)
|
||
{
|
||
int BeginVal, EndVal;
|
||
int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
|
||
int AtEnd = g ->nEntries - AtBegin - 1; // And 98%
|
||
cmsFloat64Number Val, Slope, beta;
|
||
int i;
|
||
|
||
if (cmsIsToneCurveDescending(g)) {
|
||
BeginVal = 0xffff; EndVal = 0;
|
||
}
|
||
else {
|
||
BeginVal = 0; EndVal = 0xffff;
|
||
}
|
||
|
||
// Compute slope and offset for begin of curve
|
||
Val = g ->Table16[AtBegin];
|
||
Slope = (Val - BeginVal) / AtBegin;
|
||
beta = Val - Slope * AtBegin;
|
||
|
||
for (i=0; i < AtBegin; i++)
|
||
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
|
||
|
||
// Compute slope and offset for the end
|
||
Val = g ->Table16[AtEnd];
|
||
Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
|
||
beta = Val - Slope * AtEnd;
|
||
|
||
for (i = AtEnd; i < (int) g ->nEntries; i++)
|
||
g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
|
||
}
|
||
|
||
|
||
// Precomputes tables for 8-bit on input devicelink.
|
||
static
|
||
Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
|
||
{
|
||
int i;
|
||
cmsUInt16Number Input[3];
|
||
cmsS15Fixed16Number v1, v2, v3;
|
||
Prelin8Data* p8;
|
||
|
||
p8 = _cmsMallocZero(ContextID, sizeof(Prelin8Data));
|
||
if (p8 == NULL) return NULL;
|
||
|
||
// Since this only works for 8 bit input, values comes always as x * 257,
|
||
// we can safely take msb byte (x << 8 + x)
|
||
|
||
for (i=0; i < 256; i++) {
|
||
|
||
if (G != NULL) {
|
||
|
||
// Get 16-bit representation
|
||
Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
|
||
Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
|
||
Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
|
||
}
|
||
else {
|
||
Input[0] = FROM_8_TO_16(i);
|
||
Input[1] = FROM_8_TO_16(i);
|
||
Input[2] = FROM_8_TO_16(i);
|
||
}
|
||
|
||
|
||
// Move to 0..1.0 in fixed domain
|
||
v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
|
||
v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
|
||
v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
|
||
|
||
// Store the precalculated table of nodes
|
||
p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
|
||
p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
|
||
p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
|
||
|
||
// Store the precalculated table of offsets
|
||
p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
|
||
p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
|
||
p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
|
||
}
|
||
|
||
p8 ->ContextID = ContextID;
|
||
p8 ->p = p;
|
||
|
||
return p8;
|
||
}
|
||
|
||
static
|
||
void Prelin8free(cmsContext ContextID, void* ptr)
|
||
{
|
||
_cmsFree(ContextID, ptr);
|
||
}
|
||
|
||
static
|
||
void* Prelin8dup(cmsContext ContextID, const void* ptr)
|
||
{
|
||
return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
|
||
}
|
||
|
||
|
||
|
||
// A optimized interpolation for 8-bit input.
|
||
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
|
||
static
|
||
void PrelinEval8(register const cmsUInt16Number Input[],
|
||
register cmsUInt16Number Output[],
|
||
register const void* D)
|
||
{
|
||
|
||
cmsUInt8Number r, g, b;
|
||
cmsS15Fixed16Number rx, ry, rz;
|
||
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
|
||
int OutChan;
|
||
register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
|
||
Prelin8Data* p8 = (Prelin8Data*) D;
|
||
register const cmsInterpParams* p = p8 ->p;
|
||
int TotalOut = p -> nOutputs;
|
||
const cmsUInt16Number* LutTable = p -> Table;
|
||
|
||
r = Input[0] >> 8;
|
||
g = Input[1] >> 8;
|
||
b = Input[2] >> 8;
|
||
|
||
X0 = X1 = p8->X0[r];
|
||
Y0 = Y1 = p8->Y0[g];
|
||
Z0 = Z1 = p8->Z0[b];
|
||
|
||
rx = p8 ->rx[r];
|
||
ry = p8 ->ry[g];
|
||
rz = p8 ->rz[b];
|
||
|
||
X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
|
||
Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
|
||
Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
|
||
|
||
|
||
// These are the 6 Tetrahedral
|
||
for (OutChan=0; OutChan < TotalOut; OutChan++) {
|
||
|
||
c0 = DENS(X0, Y0, Z0);
|
||
|
||
if (rx >= ry && ry >= rz)
|
||
{
|
||
c1 = DENS(X1, Y0, Z0) - c0;
|
||
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
|
||
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
|
||
}
|
||
else
|
||
if (rx >= rz && rz >= ry)
|
||
{
|
||
c1 = DENS(X1, Y0, Z0) - c0;
|
||
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
|
||
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
|
||
}
|
||
else
|
||
if (rz >= rx && rx >= ry)
|
||
{
|
||
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
|
||
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
|
||
c3 = DENS(X0, Y0, Z1) - c0;
|
||
}
|
||
else
|
||
if (ry >= rx && rx >= rz)
|
||
{
|
||
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
|
||
c2 = DENS(X0, Y1, Z0) - c0;
|
||
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
|
||
}
|
||
else
|
||
if (ry >= rz && rz >= rx)
|
||
{
|
||
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
|
||
c2 = DENS(X0, Y1, Z0) - c0;
|
||
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
|
||
}
|
||
else
|
||
if (rz >= ry && ry >= rx)
|
||
{
|
||
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
|
||
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
|
||
c3 = DENS(X0, Y0, Z1) - c0;
|
||
}
|
||
else {
|
||
c1 = c2 = c3 = 0;
|
||
}
|
||
|
||
|
||
Rest = c1 * rx + c2 * ry + c3 * rz;
|
||
|
||
Output[OutChan] = (cmsUInt16Number)c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest));
|
||
|
||
}
|
||
}
|
||
|
||
#undef DENS
|
||
|
||
// --------------------------------------------------------------------------------------------------------------
|
||
// We need xput over here
|
||
|
||
static
|
||
cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
|
||
{
|
||
cmsPipeline* OriginalLut;
|
||
int nGridPoints;
|
||
cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
|
||
cmsUInt32Number t, i;
|
||
cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
|
||
cmsBool lIsSuitable, lIsLinear;
|
||
cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
|
||
cmsStage* OptimizedCLUTmpe;
|
||
cmsColorSpaceSignature ColorSpace, OutputColorSpace;
|
||
cmsStage* OptimizedPrelinMpe;
|
||
cmsToneCurve** OptimizedPrelinCurves;
|
||
_cmsStageCLutData* OptimizedPrelinCLUT;
|
||
|
||
|
||
// This is a loosy optimization! does not apply in floating-point cases
|
||
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
|
||
|
||
// Only on RGB
|
||
if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
|
||
if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
|
||
|
||
|
||
// On 16 bits, user has to specify the feature
|
||
if (!_cmsFormatterIs8bit(*InputFormat)) {
|
||
if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
|
||
}
|
||
|
||
OriginalLut = *Lut;
|
||
ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
|
||
OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
|
||
nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
|
||
|
||
// Empty gamma containers
|
||
memset(Trans, 0, sizeof(Trans));
|
||
memset(TransReverse, 0, sizeof(TransReverse));
|
||
|
||
for (t = 0; t < OriginalLut ->InputChannels; t++) {
|
||
Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
|
||
if (Trans[t] == NULL) goto Error;
|
||
}
|
||
|
||
// Populate the curves
|
||
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
|
||
|
||
v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
|
||
|
||
// Feed input with a gray ramp
|
||
for (t=0; t < OriginalLut ->InputChannels; t++)
|
||
In[t] = v;
|
||
|
||
// Evaluate the gray value
|
||
cmsPipelineEvalFloat(In, Out, OriginalLut);
|
||
|
||
// Store result in curve
|
||
for (t=0; t < OriginalLut ->InputChannels; t++)
|
||
Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
|
||
}
|
||
|
||
// Slope-limit the obtained curves
|
||
for (t = 0; t < OriginalLut ->InputChannels; t++)
|
||
SlopeLimiting(Trans[t]);
|
||
|
||
// Check for validity
|
||
lIsSuitable = TRUE;
|
||
lIsLinear = TRUE;
|
||
for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
|
||
|
||
// Exclude if already linear
|
||
if (!cmsIsToneCurveLinear(Trans[t]))
|
||
lIsLinear = FALSE;
|
||
|
||
// Exclude if non-monotonic
|
||
if (!cmsIsToneCurveMonotonic(Trans[t]))
|
||
lIsSuitable = FALSE;
|
||
}
|
||
|
||
// If it is not suitable, just quit
|
||
if (!lIsSuitable) goto Error;
|
||
|
||
// Invert curves if possible
|
||
for (t = 0; t < OriginalLut ->InputChannels; t++) {
|
||
TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
|
||
if (TransReverse[t] == NULL) goto Error;
|
||
}
|
||
|
||
// Now inset the reversed curves at the begin of transform
|
||
LutPlusCurves = cmsPipelineDup(OriginalLut);
|
||
if (LutPlusCurves == NULL) goto Error;
|
||
|
||
cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse));
|
||
|
||
// Create the result LUT
|
||
OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
|
||
if (OptimizedLUT == NULL) goto Error;
|
||
|
||
OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
|
||
|
||
// Create and insert the curves at the beginning
|
||
cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe);
|
||
|
||
// Allocate the CLUT for result
|
||
OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
|
||
|
||
// Add the CLUT to the destination LUT
|
||
cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe);
|
||
|
||
// Resample the LUT
|
||
if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
|
||
|
||
// Free resources
|
||
for (t = 0; t < OriginalLut ->InputChannels; t++) {
|
||
|
||
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
|
||
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
|
||
}
|
||
|
||
cmsPipelineFree(LutPlusCurves);
|
||
|
||
|
||
OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
|
||
OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
|
||
|
||
// Set the evaluator if 8-bit
|
||
if (_cmsFormatterIs8bit(*InputFormat)) {
|
||
|
||
Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
|
||
OptimizedPrelinCLUT ->Params,
|
||
OptimizedPrelinCurves);
|
||
if (p8 == NULL) return FALSE;
|
||
|
||
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
|
||
|
||
}
|
||
else
|
||
{
|
||
Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
|
||
OptimizedPrelinCLUT ->Params,
|
||
3, OptimizedPrelinCurves, 3, NULL);
|
||
if (p16 == NULL) return FALSE;
|
||
|
||
_cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
|
||
|
||
}
|
||
|
||
// Don't fix white on absolute colorimetric
|
||
if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
|
||
*dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
|
||
|
||
if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
|
||
|
||
if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
|
||
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
// And return the obtained LUT
|
||
|
||
cmsPipelineFree(OriginalLut);
|
||
*Lut = OptimizedLUT;
|
||
return TRUE;
|
||
|
||
Error:
|
||
|
||
for (t = 0; t < OriginalLut ->InputChannels; t++) {
|
||
|
||
if (Trans[t]) cmsFreeToneCurve(Trans[t]);
|
||
if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
|
||
}
|
||
|
||
if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
|
||
if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
|
||
|
||
return FALSE;
|
||
|
||
cmsUNUSED_PARAMETER(Intent);
|
||
}
|
||
|
||
|
||
// Curves optimizer ------------------------------------------------------------------------------------------------------------------
|
||
|
||
static
|
||
void CurvesFree(cmsContext ContextID, void* ptr)
|
||
{
|
||
Curves16Data* Data = (Curves16Data*) ptr;
|
||
int i;
|
||
|
||
for (i=0; i < Data -> nCurves; i++) {
|
||
|
||
_cmsFree(ContextID, Data ->Curves[i]);
|
||
}
|
||
|
||
_cmsFree(ContextID, Data ->Curves);
|
||
_cmsFree(ContextID, ptr);
|
||
}
|
||
|
||
static
|
||
void* CurvesDup(cmsContext ContextID, const void* ptr)
|
||
{
|
||
Curves16Data* Data = _cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
|
||
int i;
|
||
|
||
if (Data == NULL) return NULL;
|
||
|
||
Data ->Curves = _cmsDupMem(ContextID, Data ->Curves, Data ->nCurves * sizeof(cmsUInt16Number*));
|
||
|
||
for (i=0; i < Data -> nCurves; i++) {
|
||
Data ->Curves[i] = _cmsDupMem(ContextID, Data ->Curves[i], Data -> nElements * sizeof(cmsUInt16Number));
|
||
}
|
||
|
||
return (void*) Data;
|
||
}
|
||
|
||
// Precomputes tables for 8-bit on input devicelink.
|
||
static
|
||
Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
|
||
{
|
||
int i, j;
|
||
Curves16Data* c16;
|
||
|
||
c16 = _cmsMallocZero(ContextID, sizeof(Curves16Data));
|
||
if (c16 == NULL) return NULL;
|
||
|
||
c16 ->nCurves = nCurves;
|
||
c16 ->nElements = nElements;
|
||
|
||
c16 ->Curves = _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
|
||
if (c16 ->Curves == NULL) return NULL;
|
||
|
||
for (i=0; i < nCurves; i++) {
|
||
|
||
c16->Curves[i] = _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
|
||
|
||
if (nElements == 256) {
|
||
|
||
for (j=0; j < nElements; j++) {
|
||
|
||
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
|
||
}
|
||
}
|
||
else {
|
||
|
||
for (j=0; j < nElements; j++) {
|
||
c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
|
||
}
|
||
}
|
||
}
|
||
|
||
return c16;
|
||
}
|
||
|
||
static
|
||
void FastEvaluateCurves8(register const cmsUInt16Number In[],
|
||
register cmsUInt16Number Out[],
|
||
register const void* D)
|
||
{
|
||
Curves16Data* Data = (Curves16Data*) D;
|
||
cmsUInt8Number x;
|
||
int i;
|
||
|
||
for (i=0; i < Data ->nCurves; i++) {
|
||
|
||
x = (In[i] >> 8);
|
||
Out[i] = Data -> Curves[i][x];
|
||
}
|
||
}
|
||
|
||
|
||
static
|
||
void FastEvaluateCurves16(register const cmsUInt16Number In[],
|
||
register cmsUInt16Number Out[],
|
||
register const void* D)
|
||
{
|
||
Curves16Data* Data = (Curves16Data*) D;
|
||
int i;
|
||
|
||
for (i=0; i < Data ->nCurves; i++) {
|
||
Out[i] = Data -> Curves[i][In[i]];
|
||
}
|
||
}
|
||
|
||
|
||
static
|
||
void FastIdentity16(register const cmsUInt16Number In[],
|
||
register cmsUInt16Number Out[],
|
||
register const void* D)
|
||
{
|
||
cmsPipeline* Lut = (cmsPipeline*) D;
|
||
cmsUInt32Number i;
|
||
|
||
for (i=0; i < Lut ->InputChannels; i++) {
|
||
Out[i] = In[i];
|
||
}
|
||
}
|
||
|
||
|
||
// If the target LUT holds only curves, the optimization procedure is to join all those
|
||
// curves together. That only works on curves and does not work on matrices.
|
||
static
|
||
cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
|
||
{
|
||
cmsToneCurve** GammaTables = NULL;
|
||
cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
|
||
cmsUInt32Number i, j;
|
||
cmsPipeline* Src = *Lut;
|
||
cmsPipeline* Dest = NULL;
|
||
cmsStage* mpe;
|
||
cmsStage* ObtainedCurves = NULL;
|
||
|
||
|
||
// This is a loosy optimization! does not apply in floating-point cases
|
||
if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
|
||
|
||
// Only curves in this LUT?
|
||
for (mpe = cmsPipelineGetPtrToFirstStage(Src);
|
||
mpe != NULL;
|
||
mpe = cmsStageNext(mpe)) {
|
||
if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
|
||
}
|
||
|
||
// Allocate an empty LUT
|
||
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
|
||
if (Dest == NULL) return FALSE;
|
||
|
||
// Create target curves
|
||
GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
|
||
if (GammaTables == NULL) goto Error;
|
||
|
||
for (i=0; i < Src ->InputChannels; i++) {
|
||
GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
|
||
if (GammaTables[i] == NULL) goto Error;
|
||
}
|
||
|
||
// Compute 16 bit result by using floating point
|
||
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
|
||
|
||
for (j=0; j < Src ->InputChannels; j++)
|
||
InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
|
||
|
||
cmsPipelineEvalFloat(InFloat, OutFloat, Src);
|
||
|
||
for (j=0; j < Src ->InputChannels; j++)
|
||
GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
|
||
}
|
||
|
||
ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
|
||
if (ObtainedCurves == NULL) goto Error;
|
||
|
||
for (i=0; i < Src ->InputChannels; i++) {
|
||
cmsFreeToneCurve(GammaTables[i]);
|
||
GammaTables[i] = NULL;
|
||
}
|
||
|
||
if (GammaTables != NULL) _cmsFree(Src ->ContextID, GammaTables);
|
||
|
||
// Maybe the curves are linear at the end
|
||
if (!AllCurvesAreLinear(ObtainedCurves)) {
|
||
|
||
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves);
|
||
|
||
// If the curves are to be applied in 8 bits, we can save memory
|
||
if (_cmsFormatterIs8bit(*InputFormat)) {
|
||
|
||
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
|
||
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
|
||
|
||
*dwFlags |= cmsFLAGS_NOCACHE;
|
||
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
|
||
|
||
}
|
||
else {
|
||
|
||
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
|
||
Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
|
||
|
||
*dwFlags |= cmsFLAGS_NOCACHE;
|
||
_cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
|
||
}
|
||
}
|
||
else {
|
||
|
||
// LUT optimizes to nothing. Set the identity LUT
|
||
cmsStageFree(ObtainedCurves);
|
||
|
||
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels));
|
||
|
||
*dwFlags |= cmsFLAGS_NOCACHE;
|
||
_cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
|
||
}
|
||
|
||
// We are done.
|
||
cmsPipelineFree(Src);
|
||
*Lut = Dest;
|
||
return TRUE;
|
||
|
||
Error:
|
||
|
||
if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
|
||
if (GammaTables != NULL) {
|
||
for (i=0; i < Src ->InputChannels; i++) {
|
||
if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
|
||
}
|
||
|
||
_cmsFree(Src ->ContextID, GammaTables);
|
||
}
|
||
|
||
if (Dest != NULL) cmsPipelineFree(Dest);
|
||
return FALSE;
|
||
|
||
cmsUNUSED_PARAMETER(Intent);
|
||
cmsUNUSED_PARAMETER(InputFormat);
|
||
cmsUNUSED_PARAMETER(OutputFormat);
|
||
cmsUNUSED_PARAMETER(dwFlags);
|
||
}
|
||
|
||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||
// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
|
||
|
||
|
||
static
|
||
void FreeMatShaper(cmsContext ContextID, void* Data)
|
||
{
|
||
if (Data != NULL) _cmsFree(ContextID, Data);
|
||
}
|
||
|
||
static
|
||
void* DupMatShaper(cmsContext ContextID, const void* Data)
|
||
{
|
||
return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
|
||
}
|
||
|
||
|
||
// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
|
||
// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
|
||
// in total about 50K, and the performance boost is huge!
|
||
static
|
||
void MatShaperEval16(register const cmsUInt16Number In[],
|
||
register cmsUInt16Number Out[],
|
||
register const void* D)
|
||
{
|
||
MatShaper8Data* p = (MatShaper8Data*) D;
|
||
cmsS1Fixed14Number l1, l2, l3, r, g, b;
|
||
cmsUInt32Number ri, gi, bi;
|
||
|
||
// In this case (and only in this case!) we can use this simplification since
|
||
// In[] is assured to come from a 8 bit number. (a << 8 | a)
|
||
ri = In[0] & 0xFF;
|
||
gi = In[1] & 0xFF;
|
||
bi = In[2] & 0xFF;
|
||
|
||
// Across first shaper, which also converts to 1.14 fixed point
|
||
r = p->Shaper1R[ri];
|
||
g = p->Shaper1G[gi];
|
||
b = p->Shaper1B[bi];
|
||
|
||
// Evaluate the matrix in 1.14 fixed point
|
||
l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
|
||
l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
|
||
l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
|
||
|
||
// Now we have to clip to 0..1.0 range
|
||
ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
|
||
gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
|
||
bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
|
||
|
||
// And across second shaper,
|
||
Out[0] = p->Shaper2R[ri];
|
||
Out[1] = p->Shaper2G[gi];
|
||
Out[2] = p->Shaper2B[bi];
|
||
|
||
}
|
||
|
||
// This table converts from 8 bits to 1.14 after applying the curve
|
||
static
|
||
void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
|
||
{
|
||
int i;
|
||
cmsFloat32Number R, y;
|
||
|
||
for (i=0; i < 256; i++) {
|
||
|
||
R = (cmsFloat32Number) (i / 255.0);
|
||
y = cmsEvalToneCurveFloat(Curve, R);
|
||
|
||
Table[i] = DOUBLE_TO_1FIXED14(y);
|
||
}
|
||
}
|
||
|
||
// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
|
||
static
|
||
void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
|
||
{
|
||
int i;
|
||
cmsFloat32Number R, Val;
|
||
|
||
for (i=0; i < 16385; i++) {
|
||
|
||
R = (cmsFloat32Number) (i / 16384.0);
|
||
Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
|
||
|
||
if (Is8BitsOutput) {
|
||
|
||
// If 8 bits output, we can optimize further by computing the / 257 part.
|
||
// first we compute the resulting byte and then we store the byte times
|
||
// 257. This quantization allows to round very quick by doing a >> 8, but
|
||
// since the low byte is always equal to msb, we can do a & 0xff and this works!
|
||
cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0 + 0.5);
|
||
cmsUInt8Number b = FROM_16_TO_8(w);
|
||
|
||
Table[i] = FROM_8_TO_16(b);
|
||
}
|
||
else Table[i] = _cmsQuickSaturateWord(Val * 65535.0 + 0.5);
|
||
}
|
||
}
|
||
|
||
// Compute the matrix-shaper structure
|
||
static
|
||
cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
|
||
{
|
||
MatShaper8Data* p;
|
||
int i, j;
|
||
cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
|
||
|
||
// Allocate a big chuck of memory to store precomputed tables
|
||
p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
|
||
if (p == NULL) return FALSE;
|
||
|
||
p -> ContextID = Dest -> ContextID;
|
||
|
||
// Precompute tables
|
||
FillFirstShaper(p ->Shaper1R, Curve1[0]);
|
||
FillFirstShaper(p ->Shaper1G, Curve1[1]);
|
||
FillFirstShaper(p ->Shaper1B, Curve1[2]);
|
||
|
||
FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
|
||
FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
|
||
FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
|
||
|
||
// Convert matrix to nFixed14. Note that those values may take more than 16 bits as
|
||
for (i=0; i < 3; i++) {
|
||
for (j=0; j < 3; j++) {
|
||
p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
|
||
}
|
||
}
|
||
|
||
for (i=0; i < 3; i++) {
|
||
|
||
if (Off == NULL) {
|
||
p ->Off[i] = 0;
|
||
}
|
||
else {
|
||
p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
|
||
}
|
||
}
|
||
|
||
// Mark as optimized for faster formatter
|
||
if (Is8Bits)
|
||
*OutputFormat |= OPTIMIZED_SH(1);
|
||
|
||
// Fill function pointers
|
||
_cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
|
||
return TRUE;
|
||
}
|
||
|
||
// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
|
||
// TODO: Allow a third matrix for abs. colorimetric
|
||
static
|
||
cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
|
||
{
|
||
cmsStage* Curve1, *Curve2;
|
||
cmsStage* Matrix1, *Matrix2;
|
||
_cmsStageMatrixData* Data1;
|
||
_cmsStageMatrixData* Data2;
|
||
cmsMAT3 res;
|
||
cmsBool IdentityMat;
|
||
cmsPipeline* Dest, *Src;
|
||
|
||
// Only works on RGB to RGB
|
||
if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
|
||
|
||
// Only works on 8 bit input
|
||
if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
|
||
|
||
// Seems suitable, proceed
|
||
Src = *Lut;
|
||
|
||
// Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for
|
||
if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
|
||
cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
|
||
&Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE;
|
||
|
||
// Get both matrices
|
||
Data1 = (_cmsStageMatrixData*) cmsStageData(Matrix1);
|
||
Data2 = (_cmsStageMatrixData*) cmsStageData(Matrix2);
|
||
|
||
// Input offset should be zero
|
||
if (Data1 ->Offset != NULL) return FALSE;
|
||
|
||
// Multiply both matrices to get the result
|
||
_cmsMAT3per(&res, (cmsMAT3*) Data2 ->Double, (cmsMAT3*) Data1 ->Double);
|
||
|
||
// Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
|
||
IdentityMat = FALSE;
|
||
if (_cmsMAT3isIdentity(&res) && Data2 ->Offset == NULL) {
|
||
|
||
// We can get rid of full matrix
|
||
IdentityMat = TRUE;
|
||
}
|
||
|
||
// Allocate an empty LUT
|
||
Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
|
||
if (!Dest) return FALSE;
|
||
|
||
// Assamble the new LUT
|
||
cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1));
|
||
if (!IdentityMat)
|
||
cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset));
|
||
cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2));
|
||
|
||
// If identity on matrix, we can further optimize the curves, so call the join curves routine
|
||
if (IdentityMat) {
|
||
|
||
OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
|
||
}
|
||
else {
|
||
_cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
|
||
_cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
|
||
|
||
// In this particular optimization, cach<63> does not help as it takes more time to deal with
|
||
// the cach<63> that with the pixel handling
|
||
*dwFlags |= cmsFLAGS_NOCACHE;
|
||
|
||
// Setup the optimizarion routines
|
||
SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Data2 ->Offset, mpeC2->TheCurves, OutputFormat);
|
||
}
|
||
|
||
cmsPipelineFree(Src);
|
||
*Lut = Dest;
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||
// Optimization plug-ins
|
||
|
||
// List of optimizations
|
||
typedef struct _cmsOptimizationCollection_st {
|
||
|
||
_cmsOPToptimizeFn OptimizePtr;
|
||
|
||
struct _cmsOptimizationCollection_st *Next;
|
||
|
||
} _cmsOptimizationCollection;
|
||
|
||
|
||
// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
|
||
static _cmsOptimizationCollection DefaultOptimization[] = {
|
||
|
||
{ OptimizeByJoiningCurves, &DefaultOptimization[1] },
|
||
{ OptimizeMatrixShaper, &DefaultOptimization[2] },
|
||
{ OptimizeByComputingLinearization, &DefaultOptimization[3] },
|
||
{ OptimizeByResampling, NULL }
|
||
};
|
||
|
||
// The linked list head
|
||
static _cmsOptimizationCollection* OptimizationCollection = DefaultOptimization;
|
||
|
||
// Register new ways to optimize
|
||
cmsBool _cmsRegisterOptimizationPlugin(cmsPluginBase* Data)
|
||
{
|
||
cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
|
||
_cmsOptimizationCollection* fl;
|
||
|
||
if (Data == NULL) {
|
||
|
||
OptimizationCollection = DefaultOptimization;
|
||
return TRUE;
|
||
}
|
||
|
||
// Optimizer callback is required
|
||
if (Plugin ->OptimizePtr == NULL) return FALSE;
|
||
|
||
fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(sizeof(_cmsOptimizationCollection));
|
||
if (fl == NULL) return FALSE;
|
||
|
||
// Copy the parameters
|
||
fl ->OptimizePtr = Plugin ->OptimizePtr;
|
||
|
||
// Keep linked list
|
||
fl ->Next = OptimizationCollection;
|
||
OptimizationCollection = fl;
|
||
|
||
// All is ok
|
||
return TRUE;
|
||
}
|
||
|
||
// The entry point for LUT optimization
|
||
cmsBool _cmsOptimizePipeline(cmsPipeline** PtrLut,
|
||
int Intent,
|
||
cmsUInt32Number* InputFormat,
|
||
cmsUInt32Number* OutputFormat,
|
||
cmsUInt32Number* dwFlags)
|
||
{
|
||
_cmsOptimizationCollection* Opts;
|
||
cmsBool AnySuccess = FALSE;
|
||
|
||
// A CLUT is being asked, so force this specific optimization
|
||
if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
|
||
|
||
PreOptimize(*PtrLut);
|
||
return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
|
||
}
|
||
|
||
// Anything to optimize?
|
||
if ((*PtrLut) ->Elements == NULL) {
|
||
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
|
||
return TRUE;
|
||
}
|
||
|
||
// Try to get rid of identities and trivial conversions.
|
||
AnySuccess = PreOptimize(*PtrLut);
|
||
|
||
// After removal do we end with an identity?
|
||
if ((*PtrLut) ->Elements == NULL) {
|
||
_cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
|
||
return TRUE;
|
||
}
|
||
|
||
// Do not optimize, keep all precision
|
||
if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
|
||
return FALSE;
|
||
|
||
// Try built-in optimizations and plug-in
|
||
for (Opts = OptimizationCollection;
|
||
Opts != NULL;
|
||
Opts = Opts ->Next) {
|
||
|
||
// If one schema succeeded, we are done
|
||
if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
|
||
|
||
return TRUE; // Optimized!
|
||
}
|
||
}
|
||
|
||
// Only simple optimizations succeeded
|
||
return AnySuccess;
|
||
}
|
||
|
||
|
||
|