openjpeg/libopenjpeg/dwt.c

611 lines
20 KiB
C

/*
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2005, Francois Devaux and Antonin Descampe
* Copyright (c) 2005, Hervé Drolon, FreeImage Team
* Copyright (c) 2002-2005, Communications and remote sensing Laboratory, Universite catholique de Louvain, Belgium
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NOTE:
* This is a modified version of the openjpeg dwt.c file.
* Average speed improvement compared to the original file (measured on
* my own machine, a P4 running at 3.0 GHz):
* 5x3 wavelets about 2 times faster
* 9x7 wavelets about 3 times faster
* for both, encoding and decoding.
*
* The better performance is caused by doing the 1-dimensional DWT
* within a temporary buffer where the data can be accessed sequential
* for both directions, horizontal and vertical. The 2d vertical DWT was
* the major bottleneck in the former version.
*
* I have also removed the "Add Patrick" part because it is not longer
* needed.
*
* 6/6/2005
* -Ive (aka Reiner Wahler)
* mail: ive@lilysoft.com
*/
#include "opj_includes.h"
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/
/** @name Local static functions */
/*@{*/
/**
Forward lazy transform (horizontal)
*/
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas);
/**
Forward lazy transform (vertical)
*/
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas);
/**
Inverse lazy transform (horizontal)
*/
static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas);
/**
Inverse lazy transform (vertical)
*/
static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas);
/**
Forward 5-3 wavelet tranform in 1-D
*/
static void dwt_encode_1(int *a, int dn, int sn, int cas);
/**
Inverse 5-3 wavelet tranform in 1-D
*/
static void dwt_decode_1(int *a, int dn, int sn, int cas);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void dwt_encode_1_real(int *a, int dn, int sn, int cas);
/**
Inverse 9-7 wavelet transform in 1-D
*/
static void dwt_decode_1_real(int *a, int dn, int sn, int cas);
/**
FIXME : comment ???
*/
static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize);
/*@}*/
/*@}*/
#define S(i) a[(i)*2]
#define D(i) a[(1+(i)*2)]
#define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i)))
#define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i)))
/* new */
#define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i)))
#define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i)))
/* <summary> */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary> */
static const double dwt_norms[4][10] = {
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};
/* <summary> */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary> */
static const double dwt_norms_real[4][10] = {
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};
/*
==========================================================
local functions
==========================================================
*/
/* <summary> */
/* Forward lazy transform (horizontal). */
/* </summary> */
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas) {
int i;
for (i=0; i<sn; i++) b[i]=a[2*i+cas];
for (i=0; i<dn; i++) b[sn+i]=a[(2*i+1-cas)];
}
/* <summary> */
/* Forward lazy transform (vertical). */
/* </summary> */
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas) {
int i;
for (i=0; i<sn; i++) b[i*x]=a[2*i+cas];
for (i=0; i<dn; i++) b[(sn+i)*x]=a[(2*i+1-cas)];
}
/* <summary> */
/* Inverse lazy transform (horizontal). */
/* </summary> */
static void dwt_interleave_h(int *a, int *b, int dn, int sn, int cas) {
int i;
int *ai = NULL;
int *bi = NULL;
ai = a;
bi = b + cas;
for (i = 0; i < sn; i++) {
*bi = *ai;
bi += 2;
ai++;
}
ai = a + sn;
bi = b + 1 - cas;
for (i = 0; i < dn; i++) {
*bi = *ai;
bi += 2;
ai++;
}
}
/* <summary> */
/* Inverse lazy transform (vertical). */
/* </summary> */
static void dwt_interleave_v(int *a, int *b, int dn, int sn, int x, int cas) {
int i;
int *ai = NULL;
int *bi = NULL;
ai = a;
bi = b + cas;
for (i = 0; i < sn; i++) {
*bi = *ai;
bi += 2;
ai += x;
}
ai = a + (sn * x);
bi = b + 1 - cas;
for (i = 0; i < dn; i++) {
*bi = *ai;
bi += 2;
ai += x;
}
}
/* <summary> */
/* Forward 5-3 wavelet tranform in 1-D. */
/* </summary> */
static void dwt_encode_1(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1;
for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
S(0) *= 2;
else {
for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1;
for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2;
}
}
}
/* <summary> */
/* Inverse 5-3 wavelet tranform in 1-D. */
/* </summary> */
static void dwt_decode_1(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++) S(i) -= (D_(i - 1) + D_(i) + 2) >> 2;
for (i = 0; i < dn; i++) D(i) += (S_(i) + S_(i + 1)) >> 1;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
S(0) /= 2;
else {
for (i = 0; i < sn; i++) D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2;
for (i = 0; i < dn; i++) S(i) += (DD_(i) + DD_(i - 1)) >> 1;
}
}
}
/* <summary> */
/* Forward 9-7 wavelet transform in 1-D. */
/* </summary> */
static void dwt_encode_1_real(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
D(i) -= fix_mul(S_(i) + S_(i + 1), 12993);
for (i = 0; i < sn; i++)
S(i) -= fix_mul(D_(i - 1) + D_(i), 434);
for (i = 0; i < dn; i++)
D(i) += fix_mul(S_(i) + S_(i + 1), 7233);
for (i = 0; i < sn; i++)
S(i) += fix_mul(D_(i - 1) + D_(i), 3633);
for (i = 0; i < dn; i++)
D(i) = fix_mul(D(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
S(i) = fix_mul(S(i), 6659); /*6660 */
}
} else {
if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993);
for (i = 0; i < sn; i++)
D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434);
for (i = 0; i < dn; i++)
S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233);
for (i = 0; i < sn; i++)
D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633);
for (i = 0; i < dn; i++)
S(i) = fix_mul(S(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
D(i) = fix_mul(D(i), 6659); /*6660 */
}
}
}
/* <summary> */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary> */
static void dwt_decode_1_real(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++)
S(i) = fix_mul(S(i), 10078); /* 10076 */
for (i = 0; i < dn; i++)
D(i) = fix_mul(D(i), 13318); /* 13320 */
for (i = 0; i < sn; i++)
S(i) -= fix_mul(D_(i - 1) + D_(i), 3633);
for (i = 0; i < dn; i++)
D(i) -= fix_mul(S_(i) + S_(i + 1), 7233);
for (i = 0; i < sn; i++)
S(i) += fix_mul(D_(i - 1) + D_(i), 434);
for (i = 0; i < dn; i++)
D(i) += fix_mul(S_(i) + S_(i + 1), 12994); /* 12993 */
}
} else {
if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++)
D(i) = fix_mul(D(i), 10078); /* 10076 */
for (i = 0; i < dn; i++)
S(i) = fix_mul(S(i), 13318); /* 13320 */
for (i = 0; i < sn; i++)
D(i) -= fix_mul(SS_(i) + SS_(i + 1), 3633);
for (i = 0; i < dn; i++)
S(i) -= fix_mul(DD_(i) + DD_(i - 1), 7233);
for (i = 0; i < sn; i++)
D(i) += fix_mul(SS_(i) + SS_(i + 1), 434);
for (i = 0; i < dn; i++)
S(i) += fix_mul(DD_(i) + DD_(i - 1), 12994); /* 12993 */
}
}
}
static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize) {
int p, n;
p = int_floorlog2(stepsize) - 13;
n = 11 - int_floorlog2(stepsize);
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
bandno_stepsize->expn = numbps - p;
}
/*
==========================================================
DWT interface
==========================================================
*/
/* <summary> */
/* Forward 5-3 wavelet tranform in 2-D. */
/* </summary> */
void dwt_encode(opj_tcd_tilecomp_t * tilec) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = 0; i < l; i++) {
int rw; /* width of the resolution level computed */
int rh; /* heigth of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_row = tilec->resolutions[l - i].x0 % 2;
cas_col = tilec->resolutions[l - i].y0 % 2;
sn = rh1;
dn = rh - rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
for (k = 0; k < rh; k++) bj[k] = aj[k*w];
dwt_encode_1(bj, dn, sn, cas_col);
dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
}
opj_free(bj);
sn = rw1;
dn = rw - rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j * w;
for (k = 0; k < rw; k++) bj[k] = aj[k];
dwt_encode_1(bj, dn, sn, cas_row);
dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
}
opj_free(bj);
}
}
/* <summary> */
/* Inverse 5-3 wavelet tranform in 2-D. */
/* </summary> */
void dwt_decode(opj_tcd_tilecomp_t * tilec, int stop) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = l - 1; i >= stop; i--) {
int rw; /* width of the resolution level computed */
int rh; /* heigth of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_row = tilec->resolutions[l - i].x0 % 2;
cas_col = tilec->resolutions[l - i].y0 % 2;
sn = rw1;
dn = rw - rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j*w;
dwt_interleave_h(aj, bj, dn, sn, cas_row);
dwt_decode_1(bj, dn, sn, cas_row);
for (k = 0; k < rw; k++) aj[k] = bj[k];
}
opj_free(bj);
sn = rh1;
dn = rh - rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
dwt_interleave_v(aj, bj, dn, sn, w, cas_col);
dwt_decode_1(bj, dn, sn, cas_col);
for (k = 0; k < rh; k++) aj[k * w] = bj[k];
}
opj_free(bj);
}
}
/* <summary> */
/* Get gain of 5-3 wavelet transform. */
/* </summary> */
int dwt_getgain(int orient) {
if (orient == 0)
return 0;
if (orient == 1 || orient == 2)
return 1;
return 2;
}
/* <summary> */
/* Get norm of 5-3 wavelet. */
/* </summary> */
double dwt_getnorm(int level, int orient) {
return dwt_norms[orient][level];
}
/* <summary> */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary> */
void dwt_encode_real(opj_tcd_tilecomp_t * tilec) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = 0; i < l; i++) {
int rw; /* width of the resolution level computed */
int rh; /* heigth of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_row = tilec->resolutions[l - i].x0 % 2;
cas_col = tilec->resolutions[l - i].y0 % 2;
sn = rh1;
dn = rh - rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
for (k = 0; k < rh; k++) bj[k] = aj[k*w];
dwt_encode_1_real(bj, dn, sn, cas_col);
dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
}
opj_free(bj);
sn = rw1;
dn = rw - rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j * w;
for (k = 0; k < rw; k++) bj[k] = aj[k];
dwt_encode_1_real(bj, dn, sn, cas_row);
dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
}
opj_free(bj);
}
}
/* <summary> */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary> */
void dwt_decode_real(opj_tcd_tilecomp_t * tilec, int stop) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = l-1; i >= stop; i--) {
int rw; /* width of the resolution level computed */
int rh; /* heigth of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_col = tilec->resolutions[l - i].x0 % 2; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
cas_row = tilec->resolutions[l - i].y0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
sn = rw1;
dn = rw-rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j * w;
dwt_interleave_h(aj, bj, dn, sn, cas_col);
dwt_decode_1_real(bj, dn, sn, cas_col);
for (k = 0; k < rw; k++) aj[k] = bj[k];
}
opj_free(bj);
sn = rh1;
dn = rh-rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
dwt_interleave_v(aj, bj, dn, sn, w, cas_row);
dwt_decode_1_real(bj, dn, sn, cas_row);
for (k = 0; k < rh; k++) aj[k * w] = bj[k];
}
opj_free(bj);
}
}
/* <summary> */
/* Get gain of 9-7 wavelet transform. */
/* </summary> */
int dwt_getgain_real(int orient) {
(void)orient;
return 0;
}
/* <summary> */
/* Get norm of 9-7 wavelet. */
/* </summary> */
double dwt_getnorm_real(int level, int orient) {
return dwt_norms_real[orient][level];
}
void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec) {
int numbands, bandno;
numbands = 3 * tccp->numresolutions - 2;
for (bandno = 0; bandno < numbands; bandno++) {
double stepsize;
int resno, level, orient, gain;
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
level = tccp->numresolutions - 1 - resno;
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
stepsize = 1.0;
} else {
double norm = dwt_norms_real[orient][level];
stepsize = (1 << (gain)) / norm;
}
dwt_encode_stepsize((int) floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]);
}
}