735 lines
19 KiB
C
735 lines
19 KiB
C
//---------------------------------------------------------------------------------
|
|
//
|
|
// Little Color Management System
|
|
// Copyright (c) 1998-2010 Marti Maria Saguer
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the Software
|
|
// is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
|
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
|
|
#include "lcms2_internal.h"
|
|
|
|
|
|
// ------------------------------------------------------------------------
|
|
|
|
// Gamut boundary description by using Jan Morovic's Segment maxima method
|
|
// Many thanks to Jan for allowing me to use his algorithm.
|
|
|
|
// r = C*
|
|
// alpha = Hab
|
|
// theta = L*
|
|
|
|
#define SECTORS 16 // number of divisions in alpha and theta
|
|
|
|
// Spherical coordinates
|
|
typedef struct {
|
|
|
|
cmsFloat64Number r;
|
|
cmsFloat64Number alpha;
|
|
cmsFloat64Number theta;
|
|
|
|
} cmsSpherical;
|
|
|
|
typedef enum {
|
|
GP_EMPTY,
|
|
GP_SPECIFIED,
|
|
GP_MODELED
|
|
|
|
} GDBPointType;
|
|
|
|
|
|
typedef struct {
|
|
|
|
GDBPointType Type;
|
|
cmsSpherical p; // Keep also alpha & theta of maximum
|
|
|
|
} cmsGDBPoint;
|
|
|
|
|
|
typedef struct {
|
|
|
|
cmsContext ContextID;
|
|
cmsGDBPoint Gamut[SECTORS][SECTORS];
|
|
|
|
} cmsGDB;
|
|
|
|
|
|
// A line using the parametric form
|
|
// P = a + t*u
|
|
typedef struct {
|
|
|
|
cmsVEC3 a;
|
|
cmsVEC3 u;
|
|
|
|
} cmsLine;
|
|
|
|
|
|
// A plane using the parametric form
|
|
// Q = b + r*v + s*w
|
|
typedef struct {
|
|
|
|
cmsVEC3 b;
|
|
cmsVEC3 v;
|
|
cmsVEC3 w;
|
|
|
|
} cmsPlane;
|
|
|
|
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
// ATAN2() which always returns degree positive numbers
|
|
|
|
static
|
|
cmsFloat64Number _cmsAtan2(cmsFloat64Number y, cmsFloat64Number x)
|
|
{
|
|
cmsFloat64Number a;
|
|
|
|
// Deal with undefined case
|
|
if (x == 0.0 && y == 0.0) return 0;
|
|
|
|
a = (atan2(y, x) * 180.0) / M_PI;
|
|
|
|
while (a < 0) {
|
|
a += 360;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
// Convert to spherical coordinates
|
|
static
|
|
void ToSpherical(cmsSpherical* sp, const cmsVEC3* v)
|
|
{
|
|
|
|
cmsFloat64Number L, a, b;
|
|
|
|
L = v ->n[VX];
|
|
a = v ->n[VY];
|
|
b = v ->n[VZ];
|
|
|
|
sp ->r = sqrt( L*L + a*a + b*b );
|
|
|
|
if (sp ->r == 0) {
|
|
sp ->alpha = sp ->theta = 0;
|
|
return;
|
|
}
|
|
|
|
sp ->alpha = _cmsAtan2(a, b);
|
|
sp ->theta = _cmsAtan2(sqrt(a*a + b*b), L);
|
|
}
|
|
|
|
|
|
// Convert to cartesian from spherical
|
|
static
|
|
void ToCartesian(cmsVEC3* v, const cmsSpherical* sp)
|
|
{
|
|
cmsFloat64Number sin_alpha;
|
|
cmsFloat64Number cos_alpha;
|
|
cmsFloat64Number sin_theta;
|
|
cmsFloat64Number cos_theta;
|
|
cmsFloat64Number L, a, b;
|
|
|
|
sin_alpha = sin((M_PI * sp ->alpha) / 180.0);
|
|
cos_alpha = cos((M_PI * sp ->alpha) / 180.0);
|
|
sin_theta = sin((M_PI * sp ->theta) / 180.0);
|
|
cos_theta = cos((M_PI * sp ->theta) / 180.0);
|
|
|
|
a = sp ->r * sin_theta * sin_alpha;
|
|
b = sp ->r * sin_theta * cos_alpha;
|
|
L = sp ->r * cos_theta;
|
|
|
|
v ->n[VX] = L;
|
|
v ->n[VY] = a;
|
|
v ->n[VZ] = b;
|
|
}
|
|
|
|
|
|
// Quantize sector of a spherical coordinate. Saturate 360, 180 to last sector
|
|
// The limits are the centers of each sector, so
|
|
static
|
|
void QuantizeToSector(const cmsSpherical* sp, int* alpha, int* theta)
|
|
{
|
|
*alpha = (int) floor(((sp->alpha * (SECTORS)) / 360.0) );
|
|
*theta = (int) floor(((sp->theta * (SECTORS)) / 180.0) );
|
|
|
|
if (*alpha >= SECTORS)
|
|
*alpha = SECTORS-1;
|
|
if (*theta >= SECTORS)
|
|
*theta = SECTORS-1;
|
|
}
|
|
|
|
|
|
// Line determined by 2 points
|
|
static
|
|
void LineOf2Points(cmsLine* line, cmsVEC3* a, cmsVEC3* b)
|
|
{
|
|
|
|
_cmsVEC3init(&line ->a, a ->n[VX], a ->n[VY], a ->n[VZ]);
|
|
_cmsVEC3init(&line ->u, b ->n[VX] - a ->n[VX],
|
|
b ->n[VY] - a ->n[VY],
|
|
b ->n[VZ] - a ->n[VZ]);
|
|
}
|
|
|
|
|
|
// Evaluate parametric line
|
|
static
|
|
void GetPointOfLine(cmsVEC3* p, const cmsLine* line, cmsFloat64Number t)
|
|
{
|
|
p ->n[VX] = line ->a.n[VX] + t * line->u.n[VX];
|
|
p ->n[VY] = line ->a.n[VY] + t * line->u.n[VY];
|
|
p ->n[VZ] = line ->a.n[VZ] + t * line->u.n[VZ];
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Closest point in sector line1 to sector line2 (both are defined as 0 <=t <= 1)
|
|
http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm
|
|
|
|
Copyright 2001, softSurfer (www.softsurfer.com)
|
|
This code may be freely used and modified for any purpose
|
|
providing that this copyright notice is included with it.
|
|
SoftSurfer makes no warranty for this code, and cannot be held
|
|
liable for any real or imagined damage resulting from its use.
|
|
Users of this code must verify correctness for their application.
|
|
|
|
*/
|
|
|
|
static
|
|
cmsBool ClosestLineToLine(cmsVEC3* r, const cmsLine* line1, const cmsLine* line2)
|
|
{
|
|
cmsFloat64Number a, b, c, d, e, D;
|
|
cmsFloat64Number sc, sN, sD;
|
|
cmsFloat64Number tc, tN, tD;
|
|
cmsVEC3 w0;
|
|
|
|
_cmsVEC3minus(&w0, &line1 ->a, &line2 ->a);
|
|
|
|
a = _cmsVEC3dot(&line1 ->u, &line1 ->u);
|
|
b = _cmsVEC3dot(&line1 ->u, &line2 ->u);
|
|
c = _cmsVEC3dot(&line2 ->u, &line2 ->u);
|
|
d = _cmsVEC3dot(&line1 ->u, &w0);
|
|
e = _cmsVEC3dot(&line2 ->u, &w0);
|
|
|
|
D = a*c - b * b; // Denominator
|
|
sD = tD = D; // default sD = D >= 0
|
|
|
|
if (D < MATRIX_DET_TOLERANCE) { // the lines are almost parallel
|
|
|
|
sN = 0.0; // force using point P0 on segment S1
|
|
sD = 1.0; // to prevent possible division by 0.0 later
|
|
tN = e;
|
|
tD = c;
|
|
}
|
|
else { // get the closest points on the infinite lines
|
|
|
|
sN = (b*e - c*d);
|
|
tN = (a*e - b*d);
|
|
|
|
if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
|
|
|
|
sN = 0.0;
|
|
tN = e;
|
|
tD = c;
|
|
}
|
|
else if (sN > sD) { // sc > 1 => the s=1 edge is visible
|
|
sN = sD;
|
|
tN = e + b;
|
|
tD = c;
|
|
}
|
|
}
|
|
|
|
if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
|
|
|
|
tN = 0.0;
|
|
// recompute sc for this edge
|
|
if (-d < 0.0)
|
|
sN = 0.0;
|
|
else if (-d > a)
|
|
sN = sD;
|
|
else {
|
|
sN = -d;
|
|
sD = a;
|
|
}
|
|
}
|
|
else if (tN > tD) { // tc > 1 => the t=1 edge is visible
|
|
|
|
tN = tD;
|
|
|
|
// recompute sc for this edge
|
|
if ((-d + b) < 0.0)
|
|
sN = 0;
|
|
else if ((-d + b) > a)
|
|
sN = sD;
|
|
else {
|
|
sN = (-d + b);
|
|
sD = a;
|
|
}
|
|
}
|
|
// finally do the division to get sc and tc
|
|
sc = (fabs(sN) < MATRIX_DET_TOLERANCE ? 0.0 : sN / sD);
|
|
tc = (fabs(tN) < MATRIX_DET_TOLERANCE ? 0.0 : tN / tD);
|
|
|
|
GetPointOfLine(r, line1, sc);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------ Wrapper
|
|
|
|
|
|
// Allocate & free structure
|
|
cmsHANDLE CMSEXPORT cmsGBDAlloc(cmsContext ContextID)
|
|
{
|
|
cmsGDB* gbd = (cmsGDB*) _cmsMallocZero(ContextID, sizeof(cmsGDB));
|
|
if (gbd == NULL) return NULL;
|
|
|
|
gbd -> ContextID = ContextID;
|
|
|
|
return (cmsHANDLE) gbd;
|
|
}
|
|
|
|
|
|
void CMSEXPORT cmsGBDFree(cmsHANDLE hGBD)
|
|
{
|
|
cmsGDB* gbd = (cmsGDB*) hGBD;
|
|
if (hGBD != NULL)
|
|
_cmsFree(gbd->ContextID, (void*) gbd);
|
|
}
|
|
|
|
|
|
// Auxiliar to retrieve a pointer to the segmentr containing the Lab value
|
|
static
|
|
cmsGDBPoint* GetPoint(cmsGDB* gbd, const cmsCIELab* Lab, cmsSpherical* sp)
|
|
{
|
|
cmsVEC3 v;
|
|
int alpha, theta;
|
|
|
|
// Housekeeping
|
|
_cmsAssert(gbd != NULL);
|
|
_cmsAssert(Lab != NULL);
|
|
_cmsAssert(sp != NULL);
|
|
|
|
// Center L* by substracting half of its domain, that's 50
|
|
_cmsVEC3init(&v, Lab ->L - 50.0, Lab ->a, Lab ->b);
|
|
|
|
// Convert to spherical coordinates
|
|
ToSpherical(sp, &v);
|
|
|
|
if (sp ->r < 0 || sp ->alpha < 0 || sp->theta < 0) {
|
|
cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, "spherical value out of range");
|
|
return NULL;
|
|
}
|
|
|
|
// On which sector it falls?
|
|
QuantizeToSector(sp, &alpha, &theta);
|
|
|
|
if (alpha < 0 || theta < 0 || alpha >= SECTORS || theta >= SECTORS) {
|
|
cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, " quadrant out of range");
|
|
return NULL;
|
|
}
|
|
|
|
// Get pointer to the sector
|
|
return &gbd ->Gamut[theta][alpha];
|
|
}
|
|
|
|
// Add a point to gamut descriptor. Point to add is in Lab color space.
|
|
// GBD is centered on a=b=0 and L*=50
|
|
cmsBool CMSEXPORT cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab)
|
|
{
|
|
cmsGDB* gbd = (cmsGDB*) hGBD;
|
|
cmsGDBPoint* ptr;
|
|
cmsSpherical sp;
|
|
|
|
|
|
// Get pointer to the sector
|
|
ptr = GetPoint(gbd, Lab, &sp);
|
|
if (ptr == NULL) return FALSE;
|
|
|
|
// If no samples at this sector, add it
|
|
if (ptr ->Type == GP_EMPTY) {
|
|
|
|
ptr -> Type = GP_SPECIFIED;
|
|
ptr -> p = sp;
|
|
}
|
|
else {
|
|
|
|
|
|
// Substitute only if radius is greater
|
|
if (sp.r > ptr -> p.r) {
|
|
|
|
ptr -> Type = GP_SPECIFIED;
|
|
ptr -> p = sp;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
// Check if a given point falls inside gamut
|
|
cmsBool CMSEXPORT cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab)
|
|
{
|
|
cmsGDB* gbd = (cmsGDB*) hGBD;
|
|
cmsGDBPoint* ptr;
|
|
cmsSpherical sp;
|
|
|
|
// Get pointer to the sector
|
|
ptr = GetPoint(gbd, Lab, &sp);
|
|
if (ptr == NULL) return FALSE;
|
|
|
|
// If no samples at this sector, return no data
|
|
if (ptr ->Type == GP_EMPTY) return FALSE;
|
|
|
|
// In gamut only if radius is greater
|
|
|
|
return (sp.r <= ptr -> p.r);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------------------------------------------
|
|
|
|
// Find near sectors. The list of sectors found is returned on Close[].
|
|
// The function returns the number of sectors as well.
|
|
|
|
// 24 9 10 11 12
|
|
// 23 8 1 2 13
|
|
// 22 7 * 3 14
|
|
// 21 6 5 4 15
|
|
// 20 19 18 17 16
|
|
//
|
|
// Those are the relative movements
|
|
// {-2,-2}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2},
|
|
// {-2,-1}, {-1, -1}, {0, -1}, {+1, -1}, {+2, -1},
|
|
// {-2, 0}, {-1, 0}, {0, 0}, {+1, 0}, {+2, 0},
|
|
// {-2,+1}, {-1, +1}, {0, +1}, {+1, +1}, {+2, +1},
|
|
// {-2,+2}, {-1, +2}, {0, +2}, {+1, +2}, {+2, +2}};
|
|
|
|
|
|
static
|
|
const struct _spiral {
|
|
|
|
int AdvX, AdvY;
|
|
|
|
} Spiral[] = { {0, -1}, {+1, -1}, {+1, 0}, {+1, +1}, {0, +1}, {-1, +1},
|
|
{-1, 0}, {-1, -1}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2},
|
|
{+2, -1}, {+2, 0}, {+2, +1}, {+2, +2}, {+1, +2}, {0, +2},
|
|
{-1, +2}, {-2, +2}, {-2, +1}, {-2, 0}, {-2, -1}, {-2, -2} };
|
|
|
|
#define NSTEPS (sizeof(Spiral) / sizeof(struct _spiral))
|
|
|
|
static
|
|
int FindNearSectors(cmsGDB* gbd, int alpha, int theta, cmsGDBPoint* Close[])
|
|
{
|
|
int nSectors = 0;
|
|
int i, a, t;
|
|
cmsGDBPoint* pt;
|
|
|
|
for (i=0; i < NSTEPS; i++) {
|
|
|
|
a = alpha + Spiral[i].AdvX;
|
|
t = theta + Spiral[i].AdvY;
|
|
|
|
// Cycle at the end
|
|
a %= SECTORS;
|
|
t %= SECTORS;
|
|
|
|
// Cycle at the begin
|
|
if (a < 0) a = SECTORS + a;
|
|
if (t < 0) t = SECTORS + t;
|
|
|
|
pt = &gbd ->Gamut[t][a];
|
|
|
|
if (pt -> Type != GP_EMPTY) {
|
|
|
|
Close[nSectors++] = pt;
|
|
}
|
|
}
|
|
|
|
return nSectors;
|
|
}
|
|
|
|
|
|
// Interpolate a missing sector. Method identifies whatever this is top, bottom or mid
|
|
static
|
|
cmsBool InterpolateMissingSector(cmsGDB* gbd, int alpha, int theta)
|
|
{
|
|
cmsSpherical sp;
|
|
cmsVEC3 Lab;
|
|
cmsVEC3 Centre;
|
|
cmsLine ray;
|
|
int nCloseSectors;
|
|
cmsGDBPoint* Close[NSTEPS];
|
|
cmsSpherical closel, templ;
|
|
cmsLine edge;
|
|
int k, m;
|
|
|
|
// Is that point already specified?
|
|
if (gbd ->Gamut[theta][alpha].Type != GP_EMPTY) return TRUE;
|
|
|
|
// Fill close points
|
|
nCloseSectors = FindNearSectors(gbd, alpha, theta, Close);
|
|
|
|
|
|
// Find a central point on the sector
|
|
sp.alpha = (cmsFloat64Number) ((alpha + 0.5) * 360.0) / (SECTORS);
|
|
sp.theta = (cmsFloat64Number) ((theta + 0.5) * 180.0) / (SECTORS);
|
|
sp.r = 50.0;
|
|
|
|
// Convert to Cartesian
|
|
ToCartesian(&Lab, &sp);
|
|
|
|
// Create a ray line from centre to this point
|
|
_cmsVEC3init(&Centre, 50.0, 0, 0);
|
|
LineOf2Points(&ray, &Lab, &Centre);
|
|
|
|
// For all close sectors
|
|
closel.r = 0.0;
|
|
closel.alpha = 0;
|
|
closel.theta = 0;
|
|
|
|
for (k=0; k < nCloseSectors; k++) {
|
|
|
|
for(m = k+1; m < nCloseSectors; m++) {
|
|
|
|
cmsVEC3 temp, a1, a2;
|
|
|
|
// A line from sector to sector
|
|
ToCartesian(&a1, &Close[k]->p);
|
|
ToCartesian(&a2, &Close[m]->p);
|
|
|
|
LineOf2Points(&edge, &a1, &a2);
|
|
|
|
// Find a line
|
|
ClosestLineToLine(&temp, &ray, &edge);
|
|
|
|
// Convert to spherical
|
|
ToSpherical(&templ, &temp);
|
|
|
|
|
|
if ( templ.r > closel.r &&
|
|
templ.theta >= (theta*180.0/SECTORS) &&
|
|
templ.theta <= ((theta+1)*180.0/SECTORS) &&
|
|
templ.alpha >= (alpha*360.0/SECTORS) &&
|
|
templ.alpha <= ((alpha+1)*360.0/SECTORS)) {
|
|
|
|
closel = templ;
|
|
}
|
|
}
|
|
}
|
|
|
|
gbd ->Gamut[theta][alpha].p = closel;
|
|
gbd ->Gamut[theta][alpha].Type = GP_MODELED;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
// Interpolate missing parts. The algorithm fist computes slices at
|
|
// theta=0 and theta=Max.
|
|
cmsBool CMSEXPORT cmsGDBCompute(cmsHANDLE hGBD, cmsUInt32Number dwFlags)
|
|
{
|
|
int alpha, theta;
|
|
cmsGDB* gbd = (cmsGDB*) hGBD;
|
|
|
|
_cmsAssert(hGBD != NULL);
|
|
|
|
// Interpolate black
|
|
for (alpha = 0; alpha <= SECTORS; alpha++) {
|
|
|
|
if (!InterpolateMissingSector(gbd, alpha, 0)) return FALSE;
|
|
}
|
|
|
|
// Interpolate white
|
|
for (alpha = 0; alpha <= SECTORS; alpha++) {
|
|
|
|
if (!InterpolateMissingSector(gbd, alpha, SECTORS-1)) return FALSE;
|
|
}
|
|
|
|
|
|
// Interpolate Mid
|
|
for (theta = 1; theta < SECTORS; theta++) {
|
|
for (alpha = 0; alpha <= SECTORS; alpha++) {
|
|
|
|
if (!InterpolateMissingSector(gbd, alpha, theta)) return FALSE;
|
|
}
|
|
}
|
|
|
|
// Done
|
|
return TRUE;
|
|
|
|
cmsUNUSED_PARAMETER(dwFlags);
|
|
}
|
|
|
|
|
|
|
|
|
|
// --------------------------------------------------------------------------------------------------------
|
|
|
|
// Great for debug, but not suitable for real use
|
|
|
|
#if 0
|
|
cmsBool cmsGBDdumpVRML(cmsHANDLE hGBD, const char* fname)
|
|
{
|
|
FILE* fp;
|
|
int i, j;
|
|
cmsGDB* gbd = (cmsGDB*) hGBD;
|
|
cmsGDBPoint* pt;
|
|
|
|
fp = fopen (fname, "wt");
|
|
if (fp == NULL)
|
|
return FALSE;
|
|
|
|
fprintf (fp, "#VRML V2.0 utf8\n");
|
|
|
|
// set the viewing orientation and distance
|
|
fprintf (fp, "DEF CamTest Group {\n");
|
|
fprintf (fp, "\tchildren [\n");
|
|
fprintf (fp, "\t\tDEF Cameras Group {\n");
|
|
fprintf (fp, "\t\t\tchildren [\n");
|
|
fprintf (fp, "\t\t\t\tDEF DefaultView Viewpoint {\n");
|
|
fprintf (fp, "\t\t\t\t\tposition 0 0 340\n");
|
|
fprintf (fp, "\t\t\t\t\torientation 0 0 1 0\n");
|
|
fprintf (fp, "\t\t\t\t\tdescription \"default view\"\n");
|
|
fprintf (fp, "\t\t\t\t}\n");
|
|
fprintf (fp, "\t\t\t]\n");
|
|
fprintf (fp, "\t\t},\n");
|
|
fprintf (fp, "\t]\n");
|
|
fprintf (fp, "}\n");
|
|
|
|
// Output the background stuff
|
|
fprintf (fp, "Background {\n");
|
|
fprintf (fp, "\tskyColor [\n");
|
|
fprintf (fp, "\t\t.5 .5 .5\n");
|
|
fprintf (fp, "\t]\n");
|
|
fprintf (fp, "}\n");
|
|
|
|
// Output the shape stuff
|
|
fprintf (fp, "Transform {\n");
|
|
fprintf (fp, "\tscale .3 .3 .3\n");
|
|
fprintf (fp, "\tchildren [\n");
|
|
|
|
// Draw the axes as a shape:
|
|
fprintf (fp, "\t\tShape {\n");
|
|
fprintf (fp, "\t\t\tappearance Appearance {\n");
|
|
fprintf (fp, "\t\t\t\tmaterial Material {\n");
|
|
fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n");
|
|
fprintf (fp, "\t\t\t\t\temissiveColor 1.0 1.0 1.0\n");
|
|
fprintf (fp, "\t\t\t\t\tshininess 0.8\n");
|
|
fprintf (fp, "\t\t\t\t}\n");
|
|
fprintf (fp, "\t\t\t}\n");
|
|
fprintf (fp, "\t\t\tgeometry IndexedLineSet {\n");
|
|
fprintf (fp, "\t\t\t\tcoord Coordinate {\n");
|
|
fprintf (fp, "\t\t\t\t\tpoint [\n");
|
|
fprintf (fp, "\t\t\t\t\t0.0 0.0 0.0,\n");
|
|
fprintf (fp, "\t\t\t\t\t%f 0.0 0.0,\n", 255.0);
|
|
fprintf (fp, "\t\t\t\t\t0.0 %f 0.0,\n", 255.0);
|
|
fprintf (fp, "\t\t\t\t\t0.0 0.0 %f]\n", 255.0);
|
|
fprintf (fp, "\t\t\t\t}\n");
|
|
fprintf (fp, "\t\t\t\tcoordIndex [\n");
|
|
fprintf (fp, "\t\t\t\t\t0, 1, -1\n");
|
|
fprintf (fp, "\t\t\t\t\t0, 2, -1\n");
|
|
fprintf (fp, "\t\t\t\t\t0, 3, -1]\n");
|
|
fprintf (fp, "\t\t\t}\n");
|
|
fprintf (fp, "\t\t}\n");
|
|
|
|
|
|
fprintf (fp, "\t\tShape {\n");
|
|
fprintf (fp, "\t\t\tappearance Appearance {\n");
|
|
fprintf (fp, "\t\t\t\tmaterial Material {\n");
|
|
fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n");
|
|
fprintf (fp, "\t\t\t\t\temissiveColor 1 1 1\n");
|
|
fprintf (fp, "\t\t\t\t\tshininess 0.8\n");
|
|
fprintf (fp, "\t\t\t\t}\n");
|
|
fprintf (fp, "\t\t\t}\n");
|
|
fprintf (fp, "\t\t\tgeometry PointSet {\n");
|
|
|
|
// fill in the points here
|
|
fprintf (fp, "\t\t\t\tcoord Coordinate {\n");
|
|
fprintf (fp, "\t\t\t\t\tpoint [\n");
|
|
|
|
// We need to transverse all gamut hull.
|
|
for (i=0; i < SECTORS; i++)
|
|
for (j=0; j < SECTORS; j++) {
|
|
|
|
cmsVEC3 v;
|
|
|
|
pt = &gbd ->Gamut[i][j];
|
|
ToCartesian(&v, &pt ->p);
|
|
|
|
fprintf (fp, "\t\t\t\t\t%g %g %g", v.n[0]+50, v.n[1], v.n[2]);
|
|
|
|
if ((j == SECTORS - 1) && (i == SECTORS - 1))
|
|
fprintf (fp, "]\n");
|
|
else
|
|
fprintf (fp, ",\n");
|
|
|
|
}
|
|
|
|
fprintf (fp, "\t\t\t\t}\n");
|
|
|
|
|
|
|
|
// fill in the face colors
|
|
fprintf (fp, "\t\t\t\tcolor Color {\n");
|
|
fprintf (fp, "\t\t\t\t\tcolor [\n");
|
|
|
|
for (i=0; i < SECTORS; i++)
|
|
for (j=0; j < SECTORS; j++) {
|
|
|
|
cmsVEC3 v;
|
|
|
|
pt = &gbd ->Gamut[i][j];
|
|
|
|
|
|
ToCartesian(&v, &pt ->p);
|
|
|
|
|
|
if (pt ->Type == GP_EMPTY)
|
|
fprintf (fp, "\t\t\t\t\t%g %g %g", 0.0, 0.0, 0.0);
|
|
else
|
|
if (pt ->Type == GP_MODELED)
|
|
fprintf (fp, "\t\t\t\t\t%g %g %g", 1.0, .5, .5);
|
|
else {
|
|
fprintf (fp, "\t\t\t\t\t%g %g %g", 1.0, 1.0, 1.0);
|
|
|
|
}
|
|
|
|
if ((j == SECTORS - 1) && (i == SECTORS - 1))
|
|
fprintf (fp, "]\n");
|
|
else
|
|
fprintf (fp, ",\n");
|
|
}
|
|
fprintf (fp, "\t\t\t}\n");
|
|
|
|
|
|
fprintf (fp, "\t\t\t}\n");
|
|
fprintf (fp, "\t\t}\n");
|
|
fprintf (fp, "\t]\n");
|
|
fprintf (fp, "}\n");
|
|
|
|
fclose (fp);
|
|
|
|
return TRUE;
|
|
}
|
|
#endif
|
|
|