246 lines
6.0 KiB
C
246 lines
6.0 KiB
C
/*
|
|
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
|
|
* Copyright (c) 2002-2007, Professor Benoit Macq
|
|
* Copyright (c) 2001-2003, David Janssens
|
|
* Copyright (c) 2002-2003, Yannick Verschueren
|
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
|
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef __SSE__
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#include "opj_includes.h"
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the basis function of the reversible MCT. */
|
|
/* </summary> */
|
|
static const double mct_norms[3] = { 1.732, .8292, .8292 };
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the basis function of the irreversible MCT. */
|
|
/* </summary> */
|
|
static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 };
|
|
|
|
/* <summary> */
|
|
/* Foward reversible MCT. */
|
|
/* </summary> */
|
|
void mct_encode(
|
|
int* restrict c0,
|
|
int* restrict c1,
|
|
int* restrict c2,
|
|
int n)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i) {
|
|
int r = c0[i];
|
|
int g = c1[i];
|
|
int b = c2[i];
|
|
int y = (r + (g * 2) + b) >> 2;
|
|
int u = b - g;
|
|
int v = r - g;
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Inverse reversible MCT. */
|
|
/* </summary> */
|
|
void mct_decode(
|
|
int* restrict c0,
|
|
int* restrict c1,
|
|
int* restrict c2,
|
|
int n)
|
|
{
|
|
int i;
|
|
for (i = 0; i < n; ++i) {
|
|
int y = c0[i];
|
|
int u = c1[i];
|
|
int v = c2[i];
|
|
int g = y - ((u + v) >> 2);
|
|
int r = v + g;
|
|
int b = u + g;
|
|
c0[i] = r;
|
|
c1[i] = g;
|
|
c2[i] = b;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get norm of basis function of reversible MCT. */
|
|
/* </summary> */
|
|
double mct_getnorm(int compno) {
|
|
return mct_norms[compno];
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Foward irreversible MCT. */
|
|
/* </summary> */
|
|
void mct_encode_real(
|
|
int* restrict c0,
|
|
int* restrict c1,
|
|
int* restrict c2,
|
|
int n)
|
|
{
|
|
int i;
|
|
for(i = 0; i < n; ++i) {
|
|
int r = c0[i];
|
|
int g = c1[i];
|
|
int b = c2[i];
|
|
int y = fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934);
|
|
int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096);
|
|
int v = fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666);
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Inverse irreversible MCT. */
|
|
/* </summary> */
|
|
void mct_decode_real(
|
|
float* restrict c0,
|
|
float* restrict c1,
|
|
float* restrict c2,
|
|
int n)
|
|
{
|
|
int i;
|
|
#ifdef __SSE__
|
|
__m128 vrv, vgu, vgv, vbu;
|
|
vrv = _mm_set1_ps(1.402f);
|
|
vgu = _mm_set1_ps(0.34413f);
|
|
vgv = _mm_set1_ps(0.71414f);
|
|
vbu = _mm_set1_ps(1.772f);
|
|
for (i = 0; i < (n >> 3); ++i) {
|
|
__m128 vy, vu, vv;
|
|
__m128 vr, vg, vb;
|
|
|
|
vy = _mm_load_ps(c0);
|
|
vu = _mm_load_ps(c1);
|
|
vv = _mm_load_ps(c2);
|
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
|
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
|
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
|
|
_mm_store_ps(c0, vr);
|
|
_mm_store_ps(c1, vg);
|
|
_mm_store_ps(c2, vb);
|
|
c0 += 4;
|
|
c1 += 4;
|
|
c2 += 4;
|
|
|
|
vy = _mm_load_ps(c0);
|
|
vu = _mm_load_ps(c1);
|
|
vv = _mm_load_ps(c2);
|
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
|
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
|
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
|
|
_mm_store_ps(c0, vr);
|
|
_mm_store_ps(c1, vg);
|
|
_mm_store_ps(c2, vb);
|
|
c0 += 4;
|
|
c1 += 4;
|
|
c2 += 4;
|
|
}
|
|
n &= 7;
|
|
#endif
|
|
for(i = 0; i < n; ++i) {
|
|
float y = c0[i];
|
|
float u = c1[i];
|
|
float v = c2[i];
|
|
float r = y + (v * 1.402f);
|
|
float g = y - (u * 0.34413f) - (v * (0.71414f));
|
|
float b = y + (u * 1.772f);
|
|
c0[i] = r;
|
|
c1[i] = g;
|
|
c2[i] = b;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get norm of basis function of irreversible MCT. */
|
|
/* </summary> */
|
|
double mct_getnorm_real(int compno) {
|
|
return mct_norms_real[compno];
|
|
}
|
|
|
|
|
|
opj_bool mct_decode_custom(
|
|
/* MCT data */
|
|
OPJ_BYTE * pDecodingData,
|
|
/* size of components */
|
|
OPJ_UINT32 n,
|
|
/* components */
|
|
OPJ_BYTE ** pData,
|
|
/* nb of components (i.e. size of pData) */
|
|
OPJ_UINT32 pNbComp,
|
|
/* tells if the data is signed */
|
|
OPJ_UINT32 isSigned)
|
|
{
|
|
OPJ_FLOAT32 * lMct;
|
|
OPJ_UINT32 i;
|
|
OPJ_UINT32 j;
|
|
OPJ_UINT32 k;
|
|
|
|
OPJ_FLOAT32 * lCurrentData = 00;
|
|
OPJ_FLOAT32 * lCurrentResult = 00;
|
|
OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
|
|
|
|
lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
|
|
if
|
|
(! lCurrentData)
|
|
{
|
|
return OPJ_FALSE;
|
|
}
|
|
lCurrentResult = lCurrentData + pNbComp;
|
|
|
|
for
|
|
(i = 0; i < n; ++i)
|
|
{
|
|
lMct = (OPJ_FLOAT32 *) pDecodingData;
|
|
for
|
|
(j=0;j<pNbComp;++j)
|
|
{
|
|
lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
|
|
}
|
|
for
|
|
(j=0;j<pNbComp;++j)
|
|
{
|
|
lCurrentResult[j] = 0;
|
|
for
|
|
(k=0;k<pNbComp;++k)
|
|
{
|
|
lCurrentResult[j] += *(lMct++) * lCurrentData[k];
|
|
}
|
|
*(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
|
|
}
|
|
}
|
|
opj_free(lCurrentData);
|
|
return OPJ_TRUE;
|
|
}
|