/* * Stack-less Just-In-Time compiler * * Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved. * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* TileGX architecture. */ /* Contributed by Tilera Corporation. */ #include "sljitNativeTILEGX-encoder.c" #define SIMM_8BIT_MAX (0x7f) #define SIMM_8BIT_MIN (-0x80) #define SIMM_16BIT_MAX (0x7fff) #define SIMM_16BIT_MIN (-0x8000) #define SIMM_17BIT_MAX (0xffff) #define SIMM_17BIT_MIN (-0x10000) #define SIMM_32BIT_MAX (0x7fffffff) #define SIMM_32BIT_MIN (-0x7fffffff - 1) #define SIMM_48BIT_MAX (0x7fffffff0000L) #define SIMM_48BIT_MIN (-0x800000000000L) #define IMM16(imm) ((imm) & 0xffff) #define UIMM_16BIT_MAX (0xffff) #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4) #define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5) #define PIC_ADDR_REG TMP_REG2 static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = { 63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7 }; #define SLJIT_LOCALS_REG_mapped 54 #define TMP_REG1_mapped 5 #define TMP_REG2_mapped 16 #define TMP_REG3_mapped 6 #define ADDR_TMP_mapped 7 /* Flags are keept in volatile registers. */ #define EQUAL_FLAG 8 /* And carry flag as well. */ #define ULESS_FLAG 9 #define UGREATER_FLAG 10 #define LESS_FLAG 11 #define GREATER_FLAG 12 #define OVERFLOW_FLAG 13 #define ZERO 63 #define RA 55 #define TMP_EREG1 14 #define TMP_EREG2 15 #define LOAD_DATA 0x01 #define WORD_DATA 0x00 #define BYTE_DATA 0x02 #define HALF_DATA 0x04 #define INT_DATA 0x06 #define SIGNED_DATA 0x08 #define DOUBLE_DATA 0x10 /* Separates integer and floating point registers */ #define GPR_REG 0xf #define MEM_MASK 0x1f #define WRITE_BACK 0x00020 #define ARG_TEST 0x00040 #define ALT_KEEP_CACHE 0x00080 #define CUMULATIVE_OP 0x00100 #define LOGICAL_OP 0x00200 #define IMM_OP 0x00400 #define SRC2_IMM 0x00800 #define UNUSED_DEST 0x01000 #define REG_DEST 0x02000 #define REG1_SOURCE 0x04000 #define REG2_SOURCE 0x08000 #define SLOW_SRC1 0x10000 #define SLOW_SRC2 0x20000 #define SLOW_DEST 0x40000 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set. */ #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list)))) SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void) { return "TileGX" SLJIT_CPUINFO; } /* Length of an instruction word */ typedef sljit_uw sljit_ins; struct jit_instr { const struct tilegx_opcode* opcode; tilegx_pipeline pipe; unsigned long input_registers; unsigned long output_registers; int operand_value[4]; int line; }; /* Opcode Helper Macros */ #define TILEGX_X_MODE 0 #define X_MODE create_Mode(TILEGX_X_MODE) #define FNOP_X0 \ create_Opcode_X0(RRR_0_OPCODE_X0) | \ create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \ create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0) #define FNOP_X1 \ create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \ create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1) #define NOP \ create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1 #define ANOP_X0 \ create_Opcode_X0(RRR_0_OPCODE_X0) | \ create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \ create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0) #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \ create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \ create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0 #define ADD_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0 #define ADDI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \ create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0 #define SUB_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0 #define NOR_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0 #define OR_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0 #define AND_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0 #define XOR_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0 #define CMOVNEZ_X0 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \ create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1 #define CMOVEQZ_X0 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \ create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1 #define ADDLI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0 #define V4INT_L_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0 #define BFEXTU_X0 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \ create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1 #define BFEXTS_X0 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \ create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1 #define SHL16INSLI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0 #define ST_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0 #define LD_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \ create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0 #define JR_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \ create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0 #define JALR_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \ create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0 #define CLZ_X0 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \ create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \ create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1 #define CMPLTUI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \ create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0 #define CMPLTU_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0 #define CMPLTS_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0 #define XORI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \ create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0 #define ORI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \ create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0 #define ANDI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \ create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0 #define SHLI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \ create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0 #define SHL_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0 #define SHRSI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \ create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0 #define SHRS_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0 #define SHRUI_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \ create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0 #define SHRU_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \ create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0 #define BEQZ_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \ create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0 #define BNEZ_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \ create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0 #define J_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \ create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0 #define JAL_X1 \ create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \ create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0 #define DEST_X0(x) create_Dest_X0(x) #define SRCA_X0(x) create_SrcA_X0(x) #define SRCB_X0(x) create_SrcB_X0(x) #define DEST_X1(x) create_Dest_X1(x) #define SRCA_X1(x) create_SrcA_X1(x) #define SRCB_X1(x) create_SrcB_X1(x) #define IMM16_X1(x) create_Imm16_X1(x) #define IMM8_X1(x) create_Imm8_X1(x) #define BFSTART_X0(x) create_BFStart_X0(x) #define BFEND_X0(x) create_BFEnd_X0(x) #define SHIFTIMM_X1(x) create_ShAmt_X1(x) #define JOFF_X1(x) create_JumpOff_X1(x) #define BOFF_X1(x) create_BrOff_X1(x) static const tilegx_mnemonic data_transfer_insts[16] = { /* u w s */ TILEGX_OPC_ST /* st */, /* u w l */ TILEGX_OPC_LD /* ld */, /* u b s */ TILEGX_OPC_ST1 /* st1 */, /* u b l */ TILEGX_OPC_LD1U /* ld1u */, /* u h s */ TILEGX_OPC_ST2 /* st2 */, /* u h l */ TILEGX_OPC_LD2U /* ld2u */, /* u i s */ TILEGX_OPC_ST4 /* st4 */, /* u i l */ TILEGX_OPC_LD4U /* ld4u */, /* s w s */ TILEGX_OPC_ST /* st */, /* s w l */ TILEGX_OPC_LD /* ld */, /* s b s */ TILEGX_OPC_ST1 /* st1 */, /* s b l */ TILEGX_OPC_LD1S /* ld1s */, /* s h s */ TILEGX_OPC_ST2 /* st2 */, /* s h l */ TILEGX_OPC_LD2S /* ld2s */, /* s i s */ TILEGX_OPC_ST4 /* st4 */, /* s i l */ TILEGX_OPC_LD4S /* ld4s */, }; #ifdef TILEGX_JIT_DEBUG static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line) { sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr = ins; compiler->size++; printf("|%04d|S0|:\t\t", line); print_insn_tilegx(ptr); return SLJIT_SUCCESS; } static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins) { sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr = ins; compiler->size++; return SLJIT_SUCCESS; } #define push_inst(a, b) push_inst_debug(a, b, __LINE__) #else static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins) { sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr = ins; compiler->size++; return SLJIT_SUCCESS; } #endif #define BUNDLE_FORMAT_MASK(p0, p1, p2) \ ((p0) | ((p1) << 8) | ((p2) << 16)) #define BUNDLE_FORMAT(p0, p1, p2) \ { \ { \ (tilegx_pipeline)(p0), \ (tilegx_pipeline)(p1), \ (tilegx_pipeline)(p2) \ }, \ BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \ } #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1) #define PI(encoding) \ push_inst(compiler, encoding) #define PB3(opcode, dst, srca, srcb) \ push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__) #define PB2(opcode, dst, src) \ push_2_buffer(compiler, opcode, dst, src, __LINE__) #define JR(reg) \ push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__) #define ADD(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__) #define SUB(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__) #define MUL(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__) #define NOR(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__) #define OR(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__) #define XOR(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__) #define AND(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__) #define CLZ(dst, src) \ push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__) #define SHLI(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__) #define SHRUI(dst, srca, imm) \ push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__) #define XORI(dst, srca, imm) \ push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__) #define ORI(dst, srca, imm) \ push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__) #define CMPLTU(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__) #define CMPLTS(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__) #define CMPLTUI(dst, srca, imm) \ push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__) #define CMOVNEZ(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__) #define CMOVEQZ(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__) #define ADDLI(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__) #define SHL16INSLI(dst, srca, srcb) \ push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__) #define LD_ADD(dst, addr, adjust) \ push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__) #define ST_ADD(src, addr, adjust) \ push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__) #define LD(dst, addr) \ push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__) #define BFEXTU(dst, src, start, end) \ push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__) #define BFEXTS(dst, src, start, end) \ push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__) #define ADD_SOLO(dest, srca, srcb) \ push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb)) #define ADDI_SOLO(dest, srca, imm) \ push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm)) #define ADDLI_SOLO(dest, srca, imm) \ push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm)) #define SHL16INSLI_SOLO(dest, srca, imm) \ push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm)) #define JALR_SOLO(reg) \ push_inst(compiler, JALR_X1 | SRCA_X1(reg)) #define JR_SOLO(reg) \ push_inst(compiler, JR_X1 | SRCA_X1(reg)) struct Format { /* Mapping of bundle issue slot to assigned pipe. */ tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE]; /* Mask of pipes used by this bundle. */ unsigned int pipe_mask; }; const struct Format formats[] = { /* In Y format we must always have something in Y2, since it has * no fnop, so this conveys that Y2 must always be used. */ BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE), BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE), BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE), BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE), /* Y format has three instructions. */ BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2), BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1), BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2), BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0), BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1), BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0), /* X format has only two instructions. */ BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE), BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE) }; struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE]; unsigned long inst_buf_index; tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode) { /* FIXME: tile: we could pregenerate this. */ int pipe; for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++) ; return (tilegx_pipeline)(pipe); } void insert_nop(tilegx_mnemonic opc, int line) { const struct tilegx_opcode* opcode = NULL; memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]); opcode = &tilegx_opcodes[opc]; inst_buf[0].opcode = opcode; inst_buf[0].pipe = get_any_valid_pipe(opcode); inst_buf[0].input_registers = 0; inst_buf[0].output_registers = 0; inst_buf[0].line = line; ++inst_buf_index; } const struct Format* compute_format() { unsigned int compatible_pipes = BUNDLE_FORMAT_MASK( inst_buf[0].opcode->pipes, inst_buf[1].opcode->pipes, (inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE))); const struct Format* match = NULL; const struct Format *b = NULL; unsigned int i; for (i = 0; i < sizeof formats / sizeof formats[0]; i++) { b = &formats[i]; if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) { match = b; break; } } return match; } sljit_s32 assign_pipes() { unsigned long output_registers = 0; unsigned int i = 0; if (inst_buf_index == 1) { tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle ? TILEGX_OPC_FNOP : TILEGX_OPC_NOP; insert_nop(opc, __LINE__); } const struct Format* match = compute_format(); if (match == NULL) return -1; for (i = 0; i < inst_buf_index; i++) { if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0)) return -1; if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0)) return -1; /* Don't include Rzero in the match set, to avoid triggering needlessly on 'prefetch' instrs. */ output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL; inst_buf[i].pipe = match->pipe[i]; } /* If only 2 instrs, and in Y-mode, insert a nop. */ if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) { insert_nop(TILEGX_OPC_FNOP, __LINE__); /* Select the yet unassigned pipe. */ tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0 + TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2) - (inst_buf[1].pipe + inst_buf[2].pipe))); inst_buf[0].pipe = pipe; } return 0; } tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst) { int i, val; const struct tilegx_opcode* opcode = inst->opcode; tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe]; const struct tilegx_operand* operand = NULL; for (i = 0; i < opcode->num_operands; i++) { operand = &tilegx_operands[opcode->operands[inst->pipe][i]]; val = inst->operand_value[i]; bits |= operand->insert(val); } return bits; } static sljit_s32 update_buffer(struct sljit_compiler *compiler) { int i; int orig_index = inst_buf_index; struct jit_instr inst0 = inst_buf[0]; struct jit_instr inst1 = inst_buf[1]; struct jit_instr inst2 = inst_buf[2]; tilegx_bundle_bits bits = 0; /* If the bundle is valid as is, perform the encoding and return 1. */ if (assign_pipes() == 0) { for (i = 0; i < inst_buf_index; i++) { bits |= get_bundle_bit(inst_buf + i); #ifdef TILEGX_JIT_DEBUG printf("|%04d", inst_buf[i].line); #endif } #ifdef TILEGX_JIT_DEBUG if (inst_buf_index == 3) printf("|M0|:\t"); else printf("|M0|:\t\t"); print_insn_tilegx(&bits); #endif inst_buf_index = 0; #ifdef TILEGX_JIT_DEBUG return push_inst_nodebug(compiler, bits); #else return push_inst(compiler, bits); #endif } /* If the bundle is invalid, split it in two. First encode the first two (or possibly 1) instructions, and then the last, separately. Note that assign_pipes may have re-ordered the instrs (by inserting no-ops in lower slots) so we need to reset them. */ inst_buf_index = orig_index - 1; inst_buf[0] = inst0; inst_buf[1] = inst1; inst_buf[2] = inst2; if (assign_pipes() == 0) { for (i = 0; i < inst_buf_index; i++) { bits |= get_bundle_bit(inst_buf + i); #ifdef TILEGX_JIT_DEBUG printf("|%04d", inst_buf[i].line); #endif } #ifdef TILEGX_JIT_DEBUG if (inst_buf_index == 3) printf("|M1|:\t"); else printf("|M1|:\t\t"); print_insn_tilegx(&bits); #endif if ((orig_index - 1) == 2) { inst_buf[0] = inst2; inst_buf_index = 1; } else if ((orig_index - 1) == 1) { inst_buf[0] = inst1; inst_buf_index = 1; } else SLJIT_ASSERT_STOP(); #ifdef TILEGX_JIT_DEBUG return push_inst_nodebug(compiler, bits); #else return push_inst(compiler, bits); #endif } else { /* We had 3 instrs of which the first 2 can't live in the same bundle. Split those two. Note that we don't try to then combine the second and third instr into a single bundle. First instruction: */ inst_buf_index = 1; inst_buf[0] = inst0; inst_buf[1] = inst1; inst_buf[2] = inst2; if (assign_pipes() == 0) { for (i = 0; i < inst_buf_index; i++) { bits |= get_bundle_bit(inst_buf + i); #ifdef TILEGX_JIT_DEBUG printf("|%04d", inst_buf[i].line); #endif } #ifdef TILEGX_JIT_DEBUG if (inst_buf_index == 3) printf("|M2|:\t"); else printf("|M2|:\t\t"); print_insn_tilegx(&bits); #endif inst_buf[0] = inst1; inst_buf[1] = inst2; inst_buf_index = orig_index - 1; #ifdef TILEGX_JIT_DEBUG return push_inst_nodebug(compiler, bits); #else return push_inst(compiler, bits); #endif } else SLJIT_ASSERT_STOP(); } SLJIT_ASSERT_STOP(); } static sljit_s32 flush_buffer(struct sljit_compiler *compiler) { while (inst_buf_index != 0) { FAIL_IF(update_buffer(compiler)); } return SLJIT_SUCCESS; } static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line) { if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE) FAIL_IF(update_buffer(compiler)); const struct tilegx_opcode* opcode = &tilegx_opcodes[opc]; inst_buf[inst_buf_index].opcode = opcode; inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode); inst_buf[inst_buf_index].operand_value[0] = op0; inst_buf[inst_buf_index].operand_value[1] = op1; inst_buf[inst_buf_index].operand_value[2] = op2; inst_buf[inst_buf_index].operand_value[3] = op3; inst_buf[inst_buf_index].input_registers = 1L << op1; inst_buf[inst_buf_index].output_registers = 1L << op0; inst_buf[inst_buf_index].line = line; inst_buf_index++; return SLJIT_SUCCESS; } static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line) { if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE) FAIL_IF(update_buffer(compiler)); const struct tilegx_opcode* opcode = &tilegx_opcodes[opc]; inst_buf[inst_buf_index].opcode = opcode; inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode); inst_buf[inst_buf_index].operand_value[0] = op0; inst_buf[inst_buf_index].operand_value[1] = op1; inst_buf[inst_buf_index].operand_value[2] = op2; inst_buf[inst_buf_index].line = line; switch (opc) { case TILEGX_OPC_ST_ADD: inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1); inst_buf[inst_buf_index].output_registers = 1L << op0; break; case TILEGX_OPC_LD_ADD: inst_buf[inst_buf_index].input_registers = 1L << op1; inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1); break; case TILEGX_OPC_ADD: case TILEGX_OPC_AND: case TILEGX_OPC_SUB: case TILEGX_OPC_MULX: case TILEGX_OPC_OR: case TILEGX_OPC_XOR: case TILEGX_OPC_NOR: case TILEGX_OPC_SHL: case TILEGX_OPC_SHRU: case TILEGX_OPC_SHRS: case TILEGX_OPC_CMPLTU: case TILEGX_OPC_CMPLTS: case TILEGX_OPC_CMOVEQZ: case TILEGX_OPC_CMOVNEZ: inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2); inst_buf[inst_buf_index].output_registers = 1L << op0; break; case TILEGX_OPC_ADDLI: case TILEGX_OPC_XORI: case TILEGX_OPC_ORI: case TILEGX_OPC_SHLI: case TILEGX_OPC_SHRUI: case TILEGX_OPC_SHRSI: case TILEGX_OPC_SHL16INSLI: case TILEGX_OPC_CMPLTUI: case TILEGX_OPC_CMPLTSI: inst_buf[inst_buf_index].input_registers = 1L << op1; inst_buf[inst_buf_index].output_registers = 1L << op0; break; default: printf("unrecoginzed opc: %s\n", opcode->name); SLJIT_ASSERT_STOP(); } inst_buf_index++; return SLJIT_SUCCESS; } static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line) { if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE) FAIL_IF(update_buffer(compiler)); const struct tilegx_opcode* opcode = &tilegx_opcodes[opc]; inst_buf[inst_buf_index].opcode = opcode; inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode); inst_buf[inst_buf_index].operand_value[0] = op0; inst_buf[inst_buf_index].operand_value[1] = op1; inst_buf[inst_buf_index].line = line; switch (opc) { case TILEGX_OPC_BEQZ: case TILEGX_OPC_BNEZ: inst_buf[inst_buf_index].input_registers = 1L << op0; break; case TILEGX_OPC_ST: case TILEGX_OPC_ST1: case TILEGX_OPC_ST2: case TILEGX_OPC_ST4: inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1); inst_buf[inst_buf_index].output_registers = 0; break; case TILEGX_OPC_CLZ: case TILEGX_OPC_LD: case TILEGX_OPC_LD1U: case TILEGX_OPC_LD1S: case TILEGX_OPC_LD2U: case TILEGX_OPC_LD2S: case TILEGX_OPC_LD4U: case TILEGX_OPC_LD4S: inst_buf[inst_buf_index].input_registers = 1L << op1; inst_buf[inst_buf_index].output_registers = 1L << op0; break; default: printf("unrecoginzed opc: %s\n", opcode->name); SLJIT_ASSERT_STOP(); } inst_buf_index++; return SLJIT_SUCCESS; } static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line) { if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE) FAIL_IF(update_buffer(compiler)); const struct tilegx_opcode* opcode = &tilegx_opcodes[opc]; inst_buf[inst_buf_index].opcode = opcode; inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode); inst_buf[inst_buf_index].input_registers = 0; inst_buf[inst_buf_index].output_registers = 0; inst_buf[inst_buf_index].line = line; inst_buf_index++; return SLJIT_SUCCESS; } static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line) { if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE) FAIL_IF(update_buffer(compiler)); const struct tilegx_opcode* opcode = &tilegx_opcodes[opc]; inst_buf[inst_buf_index].opcode = opcode; inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode); inst_buf[inst_buf_index].operand_value[0] = op0; inst_buf[inst_buf_index].input_registers = 1L << op0; inst_buf[inst_buf_index].output_registers = 0; inst_buf[inst_buf_index].line = line; inst_buf_index++; return flush_buffer(compiler); } static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code) { sljit_sw diff; sljit_uw target_addr; sljit_ins *inst; if (jump->flags & SLJIT_REWRITABLE_JUMP) return code_ptr; if (jump->flags & JUMP_ADDR) target_addr = jump->u.target; else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); target_addr = (sljit_uw)(code + jump->u.label->size); } inst = (sljit_ins *)jump->addr; if (jump->flags & IS_COND) inst--; diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3; if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) { jump->flags |= PATCH_B; if (!(jump->flags & IS_COND)) { if (jump->flags & IS_JAL) { jump->flags &= ~(PATCH_B); jump->flags |= PATCH_J; inst[0] = JAL_X1; #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(inst); #endif } else { inst[0] = BEQZ_X1 | SRCA_X1(ZERO); #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(inst); #endif } return inst; } inst[0] = inst[0] ^ (0x7L << 55); #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(inst); #endif jump->addr -= sizeof(sljit_ins); return inst; } if (jump->flags & IS_COND) { if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) { jump->flags |= PATCH_J; inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2); inst[1] = J_X1; return inst + 1; } return code_ptr; } if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) { jump->flags |= PATCH_J; if (jump->flags & IS_JAL) { inst[0] = JAL_X1; #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(inst); #endif } else { inst[0] = J_X1; #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(inst); #endif } return inst; } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ins *code; sljit_ins *code_ptr; sljit_ins *buf_ptr; sljit_ins *buf_end; sljit_uw word_count; sljit_uw addr; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; word_count = 0; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = (sljit_ins *)buf->memory; buf_end = buf_ptr + (buf->used_size >> 3); do { *code_ptr = *buf_ptr++; SLJIT_ASSERT(!label || label->size >= word_count); SLJIT_ASSERT(!jump || jump->addr >= word_count); SLJIT_ASSERT(!const_ || const_->addr >= word_count); /* These structures are ordered by their address. */ if (label && label->size == word_count) { /* Just recording the address. */ label->addr = (sljit_uw) code_ptr; label->size = code_ptr - code; label = label->next; } if (jump && jump->addr == word_count) { if (jump->flags & IS_JAL) jump->addr = (sljit_uw)(code_ptr - 4); else jump->addr = (sljit_uw)(code_ptr - 3); code_ptr = detect_jump_type(jump, code_ptr, code); jump = jump->next; } if (const_ && const_->addr == word_count) { /* Just recording the address. */ const_->addr = (sljit_uw) code_ptr; const_ = const_->next; } code_ptr++; word_count++; } while (buf_ptr < buf_end); buf = buf->next; } while (buf); if (label && label->size == word_count) { label->addr = (sljit_uw) code_ptr; label->size = code_ptr - code; label = label->next; } SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size); jump = compiler->jumps; while (jump) { do { addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; buf_ptr = (sljit_ins *)jump->addr; if (jump->flags & PATCH_B) { addr = (sljit_sw)(addr - (jump->addr)) >> 3; SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN); buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr); #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(buf_ptr); #endif break; } if (jump->flags & PATCH_J) { SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)); addr = (sljit_sw)(addr - (jump->addr)) >> 3; buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr); #ifdef TILEGX_JIT_DEBUG printf("[runtime relocate]%04d:\t", __LINE__); print_insn_tilegx(buf_ptr); #endif break; } SLJIT_ASSERT(!(jump->flags & IS_JAL)); /* Set the fields of immediate loads. */ buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43); buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43); buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43); } while (0); jump = jump->next; } compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins); SLJIT_CACHE_FLUSH(code, code_ptr); return code; } static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm) { if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN) return ADDLI(dst_ar, ZERO, imm); if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) { FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16)); return SHL16INSLI(dst_ar, dst_ar, imm); } if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) { FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32)); FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16)); return SHL16INSLI(dst_ar, dst_ar, imm); } FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48)); FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32)); FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16)); return SHL16INSLI(dst_ar, dst_ar, imm); } static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush) { /* Should *not* be optimized as load_immediate, as pcre relocation mechanism will match this fixed 4-instruction pattern. */ if (flush) { FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32)); FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16)); return SHL16INSLI_SOLO(dst_ar, dst_ar, imm); } FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32)); FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16)); return SHL16INSLI(dst_ar, dst_ar, imm); } static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush) { /* Should *not* be optimized as load_immediate, as pcre relocation mechanism will match this fixed 4-instruction pattern. */ if (flush) { FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48)); FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32)); FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16)); return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm); } FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48)); FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32)); FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16)); return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_ins base; sljit_s32 i, tmp; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); local_size = (local_size + 7) & ~7; compiler->local_size = local_size; if (local_size <= SIMM_16BIT_MAX) { /* Frequent case. */ FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size)); base = SLJIT_LOCALS_REG_mapped; } else { FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size)); FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO)); FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped)); base = TMP_REG2_mapped; local_size = 0; } /* Save the return address. */ FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8)); FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8)); /* Save the S registers. */ tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) { FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8)); } /* Save the R registers that need to be reserved. */ for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8)); } /* Move the arguments to S registers. */ for (i = 0; i < args; i++) { FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO)); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size); local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); compiler->local_size = (local_size + 7) & ~7; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_s32 local_size; sljit_ins base; sljit_s32 i, tmp; sljit_s32 saveds; CHECK_ERROR(); CHECK(check_sljit_emit_return(compiler, op, src, srcw)); FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); local_size = compiler->local_size; if (local_size <= SIMM_16BIT_MAX) base = SLJIT_LOCALS_REG_mapped; else { FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size)); FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped)); base = TMP_REG1_mapped; local_size = 0; } /* Restore the return address. */ FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8)); FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8)); /* Restore the S registers. */ saveds = compiler->saveds; tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) { FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8)); } /* Restore the R registers that need to be reserved. */ for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8)); } if (compiler->local_size <= SIMM_16BIT_MAX) FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size)); else FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO)); return JR(RA); } /* reg_ar is an absoulute register! */ /* Can perform an operation using at most 1 instruction. */ static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw) { SLJIT_ASSERT(arg & SLJIT_MEM); if ((!(flags & WRITE_BACK) || !(arg & REG_MASK)) && !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) { /* Works for both absoulte and relative addresses. */ if (SLJIT_UNLIKELY(flags & ARG_TEST)) return 1; FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw)); if (flags & LOAD_DATA) FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped)); else FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar)); return -1; } return 0; } /* See getput_arg below. Note: can_cache is called only for binary operators. Those operators always uses word arguments without write back. */ static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) { SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM)); /* Simple operation except for updates. */ if (arg & OFFS_REG_MASK) { argw &= 0x3; next_argw &= 0x3; if (argw && argw == next_argw && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK))) return 1; return 0; } if (arg == next_arg) { if (((next_argw - argw) <= SIMM_16BIT_MAX && (next_argw - argw) >= SIMM_16BIT_MIN)) return 1; return 0; } return 0; } /* Emit the necessary instructions. See can_cache above. */ static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) { sljit_s32 tmp_ar, base; SLJIT_ASSERT(arg & SLJIT_MEM); if (!(next_arg & SLJIT_MEM)) { next_arg = 0; next_argw = 0; } if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) tmp_ar = reg_ar; else tmp_ar = TMP_REG1_mapped; base = arg & REG_MASK; if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { argw &= 0x3; if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) { SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar); FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO)); reg_ar = TMP_REG1_mapped; } /* Using the cache. */ if (argw == compiler->cache_argw) { if (!(flags & WRITE_BACK)) { if (arg == compiler->cache_arg) { if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped); else return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar); } if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) { if (arg == next_arg && argw == (next_argw & 0x3)) { compiler->cache_arg = arg; compiler->cache_argw = argw; FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped)); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped); else return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar); } FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped)); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar); else return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar); } } else { if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) { FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped)); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]); else return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar); } } } if (SLJIT_UNLIKELY(argw)) { compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK); compiler->cache_argw = argw; FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw)); } if (!(flags & WRITE_BACK)) { if (arg == next_arg && argw == (next_argw & 0x3)) { compiler->cache_arg = arg; compiler->cache_argw = argw; FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3])); tmp_ar = TMP_REG3_mapped; } else FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3])); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar); else return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar); } FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3])); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]); else return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar); } if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) { /* Update only applies if a base register exists. */ if (reg_ar == reg_map[base]) { SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar); if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) { FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw)); if (flags & LOAD_DATA) FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped)); else FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar)); if (argw) return ADDLI(reg_map[base], reg_map[base], argw); return SLJIT_SUCCESS; } FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO)); reg_ar = TMP_REG1_mapped; } if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) { if (argw) FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw)); } else { if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_16BIT_MAX && argw - compiler->cache_argw >= SIMM_16BIT_MIN) { if (argw != compiler->cache_argw) { FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw)); compiler->cache_argw = argw; } FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped)); } else { compiler->cache_arg = SLJIT_MEM; compiler->cache_argw = argw; FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw)); FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped)); } } if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]); else return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar); } if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_16BIT_MAX && argw - compiler->cache_argw >= SIMM_16BIT_MIN) { if (argw != compiler->cache_argw) { FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw)); compiler->cache_argw = argw; } if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped); else return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar); } if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_16BIT_MAX && argw - compiler->cache_argw >= SIMM_16BIT_MIN) { if (argw != compiler->cache_argw) FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw)); } else { compiler->cache_arg = SLJIT_MEM; FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw)); } compiler->cache_argw = argw; if (!base) { if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped); else return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar); } if (arg == next_arg && next_argw - argw <= SIMM_16BIT_MAX && next_argw - argw >= SIMM_16BIT_MIN) { compiler->cache_arg = arg; FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base])); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped); else return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar); } FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base])); if (flags & LOAD_DATA) return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar); else return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar); } static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw) { if (getput_arg_fast(compiler, flags, reg_ar, arg, argw)) return compiler->error; compiler->cache_arg = 0; compiler->cache_argw = 0; return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0); } static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w) { if (getput_arg_fast(compiler, flags, reg, arg1, arg1w)) return compiler->error; return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); /* For UNUSED dst. Uncommon, but possible. */ if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; if (FAST_IS_REG(dst)) return ADD(reg_map[dst], RA, ZERO); /* Memory. */ return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_return(compiler, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); if (FAST_IS_REG(src)) FAIL_IF(ADD(RA, reg_map[src], ZERO)); else if (src & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw)); else if (src & SLJIT_IMM) FAIL_IF(load_immediate(compiler, RA, srcw)); return JR(RA); } static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2) { sljit_s32 overflow_ra = 0; switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_P: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if (dst != src2) return ADD(reg_map[dst], reg_map[src2], ZERO); return SLJIT_SUCCESS; case SLJIT_MOV_U32: case SLJIT_MOV_S32: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S32) return BFEXTS(reg_map[dst], reg_map[src2], 0, 31); return BFEXTU(reg_map[dst], reg_map[src2], 0, 31); } else if (dst != src2) { SLJIT_ASSERT(src2 == 0); return ADD(reg_map[dst], reg_map[src2], ZERO); } return SLJIT_SUCCESS; case SLJIT_MOV_U8: case SLJIT_MOV_S8: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S8) return BFEXTS(reg_map[dst], reg_map[src2], 0, 7); return BFEXTU(reg_map[dst], reg_map[src2], 0, 7); } else if (dst != src2) { SLJIT_ASSERT(src2 == 0); return ADD(reg_map[dst], reg_map[src2], ZERO); } return SLJIT_SUCCESS; case SLJIT_MOV_U16: case SLJIT_MOV_S16: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) { if (op == SLJIT_MOV_S16) return BFEXTS(reg_map[dst], reg_map[src2], 0, 15); return BFEXTU(reg_map[dst], reg_map[src2], 0, 15); } else if (dst != src2) { SLJIT_ASSERT(src2 == 0); return ADD(reg_map[dst], reg_map[src2], ZERO); } return SLJIT_SUCCESS; case SLJIT_NOT: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if (op & SLJIT_SET_E) FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2])); if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2])); return SLJIT_SUCCESS; case SLJIT_CLZ: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM)); if (op & SLJIT_SET_E) FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2])); if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(CLZ(reg_map[dst], reg_map[src2])); return SLJIT_SUCCESS; case SLJIT_ADD: if (flags & SRC2_IMM) { if (op & SLJIT_SET_O) { FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63)); if (src2 < 0) FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1)); } if (op & SLJIT_SET_E) FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2)); if (op & SLJIT_SET_C) { if (src2 >= 0) FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2)); else { FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2)); FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG)); } } /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2)); if (op & SLJIT_SET_O) { FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63)); if (src2 < 0) FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1)); } } else { if (op & SLJIT_SET_O) { FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2])); FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63)); if (src1 != dst) overflow_ra = reg_map[src1]; else if (src2 != dst) overflow_ra = reg_map[src2]; else { /* Rare ocasion. */ FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO)); overflow_ra = TMP_EREG2; } } if (op & SLJIT_SET_E) FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2])); if (op & SLJIT_SET_C) FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2])); /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2])); if (op & SLJIT_SET_O) { FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra)); FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63)); } } /* a + b >= a | b (otherwise, the carry should be set to 1). */ if (op & SLJIT_SET_C) FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG)); if (op & SLJIT_SET_O) return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO); return SLJIT_SUCCESS; case SLJIT_ADDC: if (flags & SRC2_IMM) { if (op & SLJIT_SET_C) { if (src2 >= 0) FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2)); else { FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2)); FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1)); } } FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2)); } else { if (op & SLJIT_SET_C) FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2])); /* dst may be the same as src1 or src2. */ FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2])); } if (op & SLJIT_SET_C) FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1)); FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG)); if (!(op & SLJIT_SET_C)) return SLJIT_SUCCESS; /* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */ FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1)); FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG)); /* Set carry flag. */ return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1); case SLJIT_SUB: if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) { FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2)); src2 = TMP_REG2; flags &= ~SRC2_IMM; } if (flags & SRC2_IMM) { if (op & SLJIT_SET_O) { FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63)); if (src2 < 0) FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1)); if (src1 != dst) overflow_ra = reg_map[src1]; else { /* Rare ocasion. */ FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO)); overflow_ra = TMP_EREG2; } } if (op & SLJIT_SET_E) FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2)); if (op & SLJIT_SET_C) { FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped)); } /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E)) FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2)); } else { if (op & SLJIT_SET_O) { FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2])); FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63)); if (src1 != dst) overflow_ra = reg_map[src1]; else { /* Rare ocasion. */ FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO)); overflow_ra = TMP_EREG2; } } if (op & SLJIT_SET_E) FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2])); if (op & (SLJIT_SET_U | SLJIT_SET_C)) FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2])); if (op & SLJIT_SET_U) FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1])); if (op & SLJIT_SET_S) { FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2])); FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1])); } /* dst may be the same as src1 or src2. */ if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C)) FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2])); } if (op & SLJIT_SET_O) { FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra)); FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63)); return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO); } return SLJIT_SUCCESS; case SLJIT_SUBC: if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) { FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2)); src2 = TMP_REG2; flags &= ~SRC2_IMM; } if (flags & SRC2_IMM) { if (op & SLJIT_SET_C) { FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2)); FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped)); } /* dst may be the same as src1 or src2. */ FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2)); } else { if (op & SLJIT_SET_C) FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2])); /* dst may be the same as src1 or src2. */ FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2])); } if (op & SLJIT_SET_C) FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG)); FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG)); if (op & SLJIT_SET_C) FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO)); return SLJIT_SUCCESS; case SLJIT_MUL: if (flags & SRC2_IMM) { FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2)); src2 = TMP_REG2; flags &= ~SRC2_IMM; } FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2])); return SLJIT_SUCCESS; #define EMIT_LOGICAL(op_imm, op_norm) \ if (flags & SRC2_IMM) { \ FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \ if (op & SLJIT_SET_E) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, EQUAL_FLAG, reg_map[src1], \ ADDR_TMP_mapped, __LINE__)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, reg_map[dst], reg_map[src1], \ ADDR_TMP_mapped, __LINE__)); \ } else { \ if (op & SLJIT_SET_E) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, EQUAL_FLAG, reg_map[src1], \ reg_map[src2], __LINE__)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, reg_map[dst], reg_map[src1], \ reg_map[src2], __LINE__)); \ } case SLJIT_AND: EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND); return SLJIT_SUCCESS; case SLJIT_OR: EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR); return SLJIT_SUCCESS; case SLJIT_XOR: EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR); return SLJIT_SUCCESS; #define EMIT_SHIFT(op_imm, op_norm) \ if (flags & SRC2_IMM) { \ if (op & SLJIT_SET_E) \ FAIL_IF(push_3_buffer( \ compiler, op_imm, EQUAL_FLAG, reg_map[src1], \ src2 & 0x3F, __LINE__)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_3_buffer( \ compiler, op_imm, reg_map[dst], reg_map[src1], \ src2 & 0x3F, __LINE__)); \ } else { \ if (op & SLJIT_SET_E) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, EQUAL_FLAG, reg_map[src1], \ reg_map[src2], __LINE__)); \ if (CHECK_FLAGS(SLJIT_SET_E)) \ FAIL_IF(push_3_buffer( \ compiler, op_norm, reg_map[dst], reg_map[src1], \ reg_map[src2], __LINE__)); \ } case SLJIT_SHL: EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL); return SLJIT_SUCCESS; case SLJIT_LSHR: EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU); return SLJIT_SUCCESS; case SLJIT_ASHR: EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS); return SLJIT_SUCCESS; } SLJIT_ASSERT_STOP(); return SLJIT_SUCCESS; } static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { /* arg1 goes to TMP_REG1 or src reg. arg2 goes to TMP_REG2, imm or src reg. TMP_REG3 can be used for caching. result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */ sljit_s32 dst_r = TMP_REG2; sljit_s32 src1_r; sljit_sw src2_r = 0; sljit_s32 sugg_src2_r = TMP_REG2; if (!(flags & ALT_KEEP_CACHE)) { compiler->cache_arg = 0; compiler->cache_argw = 0; } if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM)) return SLJIT_SUCCESS; if (GET_FLAGS(op)) flags |= UNUSED_DEST; } else if (FAST_IS_REG(dst)) { dst_r = dst; flags |= REG_DEST; if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) sugg_src2_r = dst_r; } else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw)) flags |= SLOW_DEST; if (flags & IMM_OP) { if ((src2 & SLJIT_IMM) && src2w) { if ((!(flags & LOGICAL_OP) && (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN)) || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) { flags |= SRC2_IMM; src2_r = src2w; } } if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) { if ((!(flags & LOGICAL_OP) && (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN)) || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) { flags |= SRC2_IMM; src2_r = src1w; /* And swap arguments. */ src1 = src2; src1w = src2w; src2 = SLJIT_IMM; /* src2w = src2_r unneeded. */ } } } /* Source 1. */ if (FAST_IS_REG(src1)) { src1_r = src1; flags |= REG1_SOURCE; } else if (src1 & SLJIT_IMM) { if (src1w) { FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w)); src1_r = TMP_REG1; } else src1_r = 0; } else { if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w)) FAIL_IF(compiler->error); else flags |= SLOW_SRC1; src1_r = TMP_REG1; } /* Source 2. */ if (FAST_IS_REG(src2)) { src2_r = src2; flags |= REG2_SOURCE; if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) dst_r = src2_r; } else if (src2 & SLJIT_IMM) { if (!(flags & SRC2_IMM)) { if (src2w) { FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w)); src2_r = sugg_src2_r; } else { src2_r = 0; if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM)) dst_r = 0; } } } else { if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w)) FAIL_IF(compiler->error); else flags |= SLOW_SRC2; src2_r = sugg_src2_r; } if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) { SLJIT_ASSERT(src2_r == TMP_REG2); if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w)); FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw)); } else { FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w)); FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw)); } } else if (flags & SLOW_SRC1) FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw)); else if (flags & SLOW_SRC2) FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw)); FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r)); if (dst & SLJIT_MEM) { if (!(flags & SLOW_DEST)) { getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw); return compiler->error; } return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type) { sljit_s32 sugg_dst_ar, dst_ar; sljit_s32 flags = GET_ALL_FLAGS(op); sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; op = GET_OPCODE(op); if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32) mem_type = INT_DATA | SIGNED_DATA; sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2]; compiler->cache_arg = 0; compiler->cache_argw = 0; if (op >= SLJIT_ADD && (src & SLJIT_MEM)) { ADJUST_LOCAL_OFFSET(src, srcw); FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw)); src = TMP_REG1; srcw = 0; } switch (type & 0xff) { case SLJIT_EQUAL: case SLJIT_NOT_EQUAL: FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1)); dst_ar = sugg_dst_ar; break; case SLJIT_LESS: case SLJIT_GREATER_EQUAL: dst_ar = ULESS_FLAG; break; case SLJIT_GREATER: case SLJIT_LESS_EQUAL: dst_ar = UGREATER_FLAG; break; case SLJIT_SIG_LESS: case SLJIT_SIG_GREATER_EQUAL: dst_ar = LESS_FLAG; break; case SLJIT_SIG_GREATER: case SLJIT_SIG_LESS_EQUAL: dst_ar = GREATER_FLAG; break; case SLJIT_OVERFLOW: case SLJIT_NOT_OVERFLOW: dst_ar = OVERFLOW_FLAG; break; case SLJIT_MUL_OVERFLOW: case SLJIT_MUL_NOT_OVERFLOW: FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1)); dst_ar = sugg_dst_ar; type ^= 0x1; /* Flip type bit for the XORI below. */ break; default: SLJIT_ASSERT_STOP(); dst_ar = sugg_dst_ar; break; } if (type & 0x1) { FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1)); dst_ar = sugg_dst_ar; } if (op >= SLJIT_ADD) { if (TMP_REG2_mapped != dst_ar) FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO)); return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0); } if (dst & SLJIT_MEM) return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw); if (sugg_dst_ar != dst_ar) return ADD(sugg_dst_ar, dst_ar, ZERO); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); op = GET_OPCODE(op); switch (op) { case SLJIT_NOP: return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__); case SLJIT_BREAKPOINT: return PI(BPT); case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: SLJIT_ASSERT_STOP(); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_P: return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_U32: return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_S32: return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_U8: return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw); case SLJIT_MOV_S8: return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw); case SLJIT_MOV_U16: return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw); case SLJIT_MOV_S16: return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw); case SLJIT_MOVU: case SLJIT_MOVU_P: return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOVU_U32: return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOVU_S32: return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOVU_U8: return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw); case SLJIT_MOVU_S8: return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw); case SLJIT_MOVU_U16: return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw); case SLJIT_MOVU_S16: return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw); case SLJIT_NOT: return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_NEG: return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw); case SLJIT_CLZ: return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); switch (GET_OPCODE(op)) { case SLJIT_ADD: case SLJIT_ADDC: return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: case SLJIT_SUBC: return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: case SLJIT_OR: case SLJIT_XOR: return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: case SLJIT_LSHR: case SLJIT_ASHR: if (src2 & SLJIT_IMM) src2w &= 0x3f; if (op & SLJIT_I32_OP) src2w &= 0x1f; return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; flush_buffer(compiler); CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { sljit_s32 src_r = TMP_REG2; struct sljit_jump *jump = NULL; flush_buffer(compiler); CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); if (FAST_IS_REG(src)) { if (reg_map[src] != 0) src_r = src; else FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO)); } if (type >= SLJIT_CALL0) { SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2); if (src & (SLJIT_IMM | SLJIT_MEM)) { if (src & SLJIT_IMM) FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1)); else { SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM)); FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw)); } FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO)); FAIL_IF(ADDI_SOLO(54, 54, -16)); FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG])); return ADDI_SOLO(54, 54, 16); } /* Register input. */ if (type >= SLJIT_CALL1) FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO)); FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO)); FAIL_IF(ADDI_SOLO(54, 54, -16)); FAIL_IF(JALR_SOLO(reg_map[src_r])); return ADDI_SOLO(54, 54, 16); } if (src & SLJIT_IMM) { jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0)); jump->u.target = srcw; FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1)); if (type >= SLJIT_FAST_CALL) { FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO)); jump->addr = compiler->size; FAIL_IF(JR_SOLO(reg_map[src_r])); } else { jump->addr = compiler->size; FAIL_IF(JR_SOLO(reg_map[src_r])); } return SLJIT_SUCCESS; } else if (src & SLJIT_MEM) { FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw)); flush_buffer(compiler); } FAIL_IF(JR_SOLO(reg_map[src_r])); if (jump) jump->addr = compiler->size; return SLJIT_SUCCESS; } #define BR_Z(src) \ inst = BEQZ_X1 | SRCA_X1(src); \ flags = IS_COND; #define BR_NZ(src) \ inst = BNEZ_X1 | SRCA_X1(src); \ flags = IS_COND; SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { struct sljit_jump *jump; sljit_ins inst; sljit_s32 flags = 0; flush_buffer(compiler); CHECK_ERROR_PTR(); CHECK_DYN_CODE_MOD(type & SLJIT_REWRITABLE_JUMP); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; switch (type) { case SLJIT_EQUAL: BR_NZ(EQUAL_FLAG); break; case SLJIT_NOT_EQUAL: BR_Z(EQUAL_FLAG); break; case SLJIT_LESS: BR_Z(ULESS_FLAG); break; case SLJIT_GREATER_EQUAL: BR_NZ(ULESS_FLAG); break; case SLJIT_GREATER: BR_Z(UGREATER_FLAG); break; case SLJIT_LESS_EQUAL: BR_NZ(UGREATER_FLAG); break; case SLJIT_SIG_LESS: BR_Z(LESS_FLAG); break; case SLJIT_SIG_GREATER_EQUAL: BR_NZ(LESS_FLAG); break; case SLJIT_SIG_GREATER: BR_Z(GREATER_FLAG); break; case SLJIT_SIG_LESS_EQUAL: BR_NZ(GREATER_FLAG); break; case SLJIT_OVERFLOW: case SLJIT_MUL_OVERFLOW: BR_Z(OVERFLOW_FLAG); break; case SLJIT_NOT_OVERFLOW: case SLJIT_MUL_NOT_OVERFLOW: BR_NZ(OVERFLOW_FLAG); break; default: /* Not conditional branch. */ inst = 0; break; } jump->flags |= flags; if (inst) { inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6)); PTR_FAIL_IF(PI(inst)); } PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1)); if (type <= SLJIT_JUMP) { jump->addr = compiler->size; PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped)); } else { SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2); /* Cannot be optimized out if type is >= CALL0. */ jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0); PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO)); jump->addr = compiler->size; PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped)); } return jump; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void) { return 0; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { SLJIT_ASSERT_STOP(); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { SLJIT_ASSERT_STOP(); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_s32 reg; flush_buffer(compiler); CHECK_ERROR_PTR(); CHECK_DYN_CODE_MOD(1); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); reg = FAST_IS_REG(dst) ? dst : TMP_REG2; PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1)); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0)); return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { sljit_ins *inst = (sljit_ins *)addr; inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43); inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43); inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43); SLJIT_CACHE_FLUSH(inst, inst + 3); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant) { sljit_ins *inst = (sljit_ins *)addr; inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43); inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43); inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43); inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43); SLJIT_CACHE_FLUSH(inst, inst + 4); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(reg)); return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_s32 size) { CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); return SLJIT_ERR_UNSUPPORTED; }