/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) { #ifdef __SOFTFP__ return "ARM-Thumb2" SLJIT_CPUINFO " ABI:softfp"; #else return "ARM-Thumb2" SLJIT_CPUINFO " ABI:hardfp"; #endif } /* Length of an instruction word. */ typedef sljit_u32 sljit_ins; /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 4) #define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) #define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 1, 2, 3, 11, 10, 9, 8, 7, 6, 5, 4, 13, 12, 14, 15 }; static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = { 0, 0, 1, 2, 3, 4, 5, 6, 7 }; #define COPY_BITS(src, from, to, bits) \ ((from >= to ? (src >> (from - to)) : (src << (to - from))) & (((1 << bits) - 1) << to)) /* Thumb16 encodings. */ #define RD3(rd) (reg_map[rd]) #define RN3(rn) (reg_map[rn] << 3) #define RM3(rm) (reg_map[rm] << 6) #define RDN3(rdn) (reg_map[rdn] << 8) #define IMM3(imm) (imm << 6) #define IMM8(imm) (imm) /* Thumb16 helpers. */ #define SET_REGS44(rd, rn) \ ((reg_map[rn] << 3) | (reg_map[rd] & 0x7) | ((reg_map[rd] & 0x8) << 4)) #define IS_2_LO_REGS(reg1, reg2) \ (reg_map[reg1] <= 7 && reg_map[reg2] <= 7) #define IS_3_LO_REGS(reg1, reg2, reg3) \ (reg_map[reg1] <= 7 && reg_map[reg2] <= 7 && reg_map[reg3] <= 7) /* Thumb32 encodings. */ #define RD4(rd) (reg_map[rd] << 8) #define RN4(rn) (reg_map[rn] << 16) #define RM4(rm) (reg_map[rm]) #define RT4(rt) (reg_map[rt] << 12) #define DD4(dd) (freg_map[dd] << 12) #define DN4(dn) (freg_map[dn] << 16) #define DM4(dm) (freg_map[dm]) #define IMM5(imm) \ (COPY_BITS(imm, 2, 12, 3) | ((imm & 0x3) << 6)) #define IMM12(imm) \ (COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ /* dot '.' changed to _ I immediate form (possibly followed by number of immediate bits). */ #define ADCI 0xf1400000 #define ADCS 0x4140 #define ADC_W 0xeb400000 #define ADD 0x4400 #define ADDS 0x1800 #define ADDSI3 0x1c00 #define ADDSI8 0x3000 #define ADD_W 0xeb000000 #define ADDWI 0xf2000000 #define ADD_SP 0xb000 #define ADD_W 0xeb000000 #define ADD_WI 0xf1000000 #define ANDI 0xf0000000 #define ANDS 0x4000 #define AND_W 0xea000000 #define ASRS 0x4100 #define ASRSI 0x1000 #define ASR_W 0xfa40f000 #define ASR_WI 0xea4f0020 #define BCC 0xd000 #define BICI 0xf0200000 #define BKPT 0xbe00 #define BLX 0x4780 #define BX 0x4700 #define CLZ 0xfab0f080 #define CMNI_W 0xf1100f00 #define CMP 0x4280 #define CMPI 0x2800 #define CMPI_W 0xf1b00f00 #define CMP_X 0x4500 #define CMP_W 0xebb00f00 #define EORI 0xf0800000 #define EORS 0x4040 #define EOR_W 0xea800000 #define IT 0xbf00 #define LDRI 0xf8500800 #define LSLS 0x4080 #define LSLSI 0x0000 #define LSL_W 0xfa00f000 #define LSL_WI 0xea4f0000 #define LSRS 0x40c0 #define LSRSI 0x0800 #define LSR_W 0xfa20f000 #define LSR_WI 0xea4f0010 #define MOV 0x4600 #define MOVS 0x0000 #define MOVSI 0x2000 #define MOVT 0xf2c00000 #define MOVW 0xf2400000 #define MOV_W 0xea4f0000 #define MOV_WI 0xf04f0000 #define MUL 0xfb00f000 #define MVNS 0x43c0 #define MVN_W 0xea6f0000 #define MVN_WI 0xf06f0000 #define NOP 0xbf00 #define ORNI 0xf0600000 #define ORRI 0xf0400000 #define ORRS 0x4300 #define ORR_W 0xea400000 #define POP 0xbc00 #define POP_W 0xe8bd0000 #define PUSH 0xb400 #define PUSH_W 0xe92d0000 #define RSB_WI 0xf1c00000 #define RSBSI 0x4240 #define SBCI 0xf1600000 #define SBCS 0x4180 #define SBC_W 0xeb600000 #define SDIV 0xfb90f0f0 #define SMULL 0xfb800000 #define STR_SP 0x9000 #define SUBS 0x1a00 #define SUBSI3 0x1e00 #define SUBSI8 0x3800 #define SUB_W 0xeba00000 #define SUBWI 0xf2a00000 #define SUB_SP 0xb080 #define SUB_WI 0xf1a00000 #define SXTB 0xb240 #define SXTB_W 0xfa4ff080 #define SXTH 0xb200 #define SXTH_W 0xfa0ff080 #define TST 0x4200 #define UDIV 0xfbb0f0f0 #define UMULL 0xfba00000 #define UXTB 0xb2c0 #define UXTB_W 0xfa5ff080 #define UXTH 0xb280 #define UXTH_W 0xfa1ff080 #define VABS_F32 0xeeb00ac0 #define VADD_F32 0xee300a00 #define VCMP_F32 0xeeb40a40 #define VCVT_F32_S32 0xeeb80ac0 #define VCVT_F64_F32 0xeeb70ac0 #define VCVT_S32_F32 0xeebd0ac0 #define VDIV_F32 0xee800a00 #define VMOV_F32 0xeeb00a40 #define VMOV 0xee000a10 #define VMOV2 0xec400a10 #define VMRS 0xeef1fa10 #define VMUL_F32 0xee200a00 #define VNEG_F32 0xeeb10a40 #define VSTR_F32 0xed000a00 #define VSUB_F32 0xee300a40 static sljit_s32 push_inst16(struct sljit_compiler *compiler, sljit_ins inst) { sljit_u16 *ptr; SLJIT_ASSERT(!(inst & 0xffff0000)); ptr = (sljit_u16*)ensure_buf(compiler, sizeof(sljit_u16)); FAIL_IF(!ptr); *ptr = inst; compiler->size++; return SLJIT_SUCCESS; } static sljit_s32 push_inst32(struct sljit_compiler *compiler, sljit_ins inst) { sljit_u16 *ptr = (sljit_u16*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); *ptr++ = inst >> 16; *ptr = inst; compiler->size += 2; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_imm32_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_uw imm) { FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) | COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))); return push_inst32(compiler, MOVT | RD4(dst) | COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16)); } static SLJIT_INLINE void modify_imm32_const(sljit_u16 *inst, sljit_uw new_imm) { sljit_s32 dst = inst[1] & 0x0f00; SLJIT_ASSERT(((inst[0] & 0xfbf0) == (MOVW >> 16)) && ((inst[2] & 0xfbf0) == (MOVT >> 16)) && dst == (inst[3] & 0x0f00)); inst[0] = (MOVW >> 16) | COPY_BITS(new_imm, 12, 0, 4) | COPY_BITS(new_imm, 11, 10, 1); inst[1] = dst | COPY_BITS(new_imm, 8, 12, 3) | (new_imm & 0xff); inst[2] = (MOVT >> 16) | COPY_BITS(new_imm, 12 + 16, 0, 4) | COPY_BITS(new_imm, 11 + 16, 10, 1); inst[3] = dst | COPY_BITS(new_imm, 8 + 16, 12, 3) | ((new_imm & 0xff0000) >> 16); } static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_u16 *code_ptr, sljit_u16 *code, sljit_sw executable_offset) { sljit_sw diff; if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; if (jump->flags & JUMP_ADDR) { /* Branch to ARM code is not optimized yet. */ if (!(jump->u.target & 0x1)) return 0; diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2) - executable_offset) >> 1; } else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)) >> 1; } if (jump->flags & IS_COND) { SLJIT_ASSERT(!(jump->flags & IS_BL)); if (diff <= 127 && diff >= -128) { jump->flags |= PATCH_TYPE1; return 5; } if (diff <= 524287 && diff >= -524288) { jump->flags |= PATCH_TYPE2; return 4; } /* +1 comes from the prefix IT instruction. */ diff--; if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_TYPE3; return 3; } } else if (jump->flags & IS_BL) { if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_BL; return 3; } } else { if (diff <= 1023 && diff >= -1024) { jump->flags |= PATCH_TYPE4; return 4; } if (diff <= 8388607 && diff >= -8388608) { jump->flags |= PATCH_TYPE5; return 3; } } return 0; } static SLJIT_INLINE void set_jump_instruction(struct sljit_jump *jump, sljit_sw executable_offset) { sljit_s32 type = (jump->flags >> 4) & 0xf; sljit_sw diff; sljit_u16 *jump_inst; sljit_s32 s, j1, j2; if (SLJIT_UNLIKELY(type == 0)) { modify_imm32_const((sljit_u16*)jump->addr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target); return; } if (jump->flags & JUMP_ADDR) { SLJIT_ASSERT(jump->u.target & 0x1); diff = ((sljit_sw)jump->u.target - (sljit_sw)(jump->addr + sizeof(sljit_u32)) - executable_offset) >> 1; } else { SLJIT_ASSERT(jump->u.label->addr & 0x1); diff = ((sljit_sw)(jump->u.label->addr) - (sljit_sw)(jump->addr + sizeof(sljit_u32)) - executable_offset) >> 1; } jump_inst = (sljit_u16*)jump->addr; switch (type) { case 1: /* Encoding T1 of 'B' instruction */ SLJIT_ASSERT(diff <= 127 && diff >= -128 && (jump->flags & IS_COND)); jump_inst[0] = 0xd000 | (jump->flags & 0xf00) | (diff & 0xff); return; case 2: /* Encoding T3 of 'B' instruction */ SLJIT_ASSERT(diff <= 524287 && diff >= -524288 && (jump->flags & IS_COND)); jump_inst[0] = 0xf000 | COPY_BITS(jump->flags, 8, 6, 4) | COPY_BITS(diff, 11, 0, 6) | COPY_BITS(diff, 19, 10, 1); jump_inst[1] = 0x8000 | COPY_BITS(diff, 17, 13, 1) | COPY_BITS(diff, 18, 11, 1) | (diff & 0x7ff); return; case 3: SLJIT_ASSERT(jump->flags & IS_COND); *jump_inst++ = IT | ((jump->flags >> 4) & 0xf0) | 0x8; diff--; type = 5; break; case 4: /* Encoding T2 of 'B' instruction */ SLJIT_ASSERT(diff <= 1023 && diff >= -1024 && !(jump->flags & IS_COND)); jump_inst[0] = 0xe000 | (diff & 0x7ff); return; } SLJIT_ASSERT(diff <= 8388607 && diff >= -8388608); /* Really complex instruction form for branches. */ s = (diff >> 23) & 0x1; j1 = (~(diff >> 22) ^ s) & 0x1; j2 = (~(diff >> 21) ^ s) & 0x1; jump_inst[0] = 0xf000 | (s << 10) | COPY_BITS(diff, 11, 0, 10); jump_inst[1] = (j1 << 13) | (j2 << 11) | (diff & 0x7ff); /* The others have a common form. */ if (type == 5) /* Encoding T4 of 'B' instruction */ jump_inst[1] |= 0x9000; else if (type == 6) /* Encoding T1 of 'BL' instruction */ jump_inst[1] |= 0xd000; else SLJIT_UNREACHABLE(); } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_u16 *code; sljit_u16 *code_ptr; sljit_u16 *buf_ptr; sljit_u16 *buf_end; sljit_uw half_count; sljit_uw next_addr; sljit_sw executable_offset; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; struct sljit_put_label *put_label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); code = (sljit_u16*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_u16)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; half_count = 0; next_addr = 0; executable_offset = SLJIT_EXEC_OFFSET(code); label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; put_label = compiler->put_labels; do { buf_ptr = (sljit_u16*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 1); do { *code_ptr = *buf_ptr++; if (next_addr == half_count) { SLJIT_ASSERT(!label || label->size >= half_count); SLJIT_ASSERT(!jump || jump->addr >= half_count); SLJIT_ASSERT(!const_ || const_->addr >= half_count); SLJIT_ASSERT(!put_label || put_label->addr >= half_count); /* These structures are ordered by their address. */ if (label && label->size == half_count) { label->addr = ((sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset)) | 0x1; label->size = code_ptr - code; label = label->next; } if (jump && jump->addr == half_count) { jump->addr = (sljit_uw)code_ptr - ((jump->flags & IS_COND) ? 10 : 8); code_ptr -= detect_jump_type(jump, code_ptr, code, executable_offset); jump = jump->next; } if (const_ && const_->addr == half_count) { const_->addr = (sljit_uw)code_ptr; const_ = const_->next; } if (put_label && put_label->addr == half_count) { SLJIT_ASSERT(put_label->label); put_label->addr = (sljit_uw)code_ptr; put_label = put_label->next; } next_addr = compute_next_addr(label, jump, const_, put_label); } code_ptr ++; half_count ++; } while (buf_ptr < buf_end); buf = buf->next; } while (buf); if (label && label->size == half_count) { label->addr = ((sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset)) | 0x1; label->size = code_ptr - code; label = label->next; } SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); SLJIT_ASSERT(!put_label); SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size); jump = compiler->jumps; while (jump) { set_jump_instruction(jump, executable_offset); jump = jump->next; } put_label = compiler->put_labels; while (put_label) { modify_imm32_const((sljit_u16 *)put_label->addr, put_label->label->addr); put_label = put_label->next; } compiler->error = SLJIT_ERR_COMPILED; compiler->executable_offset = executable_offset; compiler->executable_size = (code_ptr - code) * sizeof(sljit_u16); code = (sljit_u16 *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); code_ptr = (sljit_u16 *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); SLJIT_CACHE_FLUSH(code, code_ptr); /* Set thumb mode flag. */ return (void*)((sljit_uw)code | 0x1); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type) { switch (feature_type) { case SLJIT_HAS_FPU: #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #else /* Available by default. */ return 1; #endif case SLJIT_HAS_CLZ: case SLJIT_HAS_CMOV: case SLJIT_HAS_PREFETCH: return 1; default: return 0; } } /* --------------------------------------------------------------------- */ /* Core code generator functions. */ /* --------------------------------------------------------------------- */ #define INVALID_IMM 0x80000000 static sljit_uw get_imm(sljit_uw imm) { /* Thumb immediate form. */ sljit_s32 counter; if (imm <= 0xff) return imm; if ((imm & 0xffff) == (imm >> 16)) { /* Some special cases. */ if (!(imm & 0xff00)) return (1 << 12) | (imm & 0xff); if (!(imm & 0xff)) return (2 << 12) | ((imm >> 8) & 0xff); if ((imm & 0xff00) == ((imm & 0xff) << 8)) return (3 << 12) | (imm & 0xff); } /* Assembly optimization: count leading zeroes? */ counter = 8; if (!(imm & 0xffff0000)) { counter += 16; imm <<= 16; } if (!(imm & 0xff000000)) { counter += 8; imm <<= 8; } if (!(imm & 0xf0000000)) { counter += 4; imm <<= 4; } if (!(imm & 0xc0000000)) { counter += 2; imm <<= 2; } if (!(imm & 0x80000000)) { counter += 1; imm <<= 1; } /* Since imm >= 128, this must be true. */ SLJIT_ASSERT(counter <= 31); if (imm & 0x00ffffff) return INVALID_IMM; /* Cannot be encoded. */ return ((imm >> 24) & 0x7f) | COPY_BITS(counter, 4, 26, 1) | COPY_BITS(counter, 1, 12, 3) | COPY_BITS(counter, 0, 7, 1); } static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst, sljit_uw imm) { sljit_uw tmp; /* MOVS cannot be used since it destroy flags. */ if (imm >= 0x10000) { tmp = get_imm(imm); if (tmp != INVALID_IMM) return push_inst32(compiler, MOV_WI | RD4(dst) | tmp); tmp = get_imm(~imm); if (tmp != INVALID_IMM) return push_inst32(compiler, MVN_WI | RD4(dst) | tmp); } /* set low 16 bits, set hi 16 bits to 0. */ FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) | COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))); /* set hi 16 bit if needed. */ if (imm >= 0x10000) return push_inst32(compiler, MOVT | RD4(dst) | COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16)); return SLJIT_SUCCESS; } #define ARG1_IMM 0x0010000 #define ARG2_IMM 0x0020000 /* SET_FLAGS must be 0x100000 as it is also the value of S bit (can be used for optimization). */ #define SET_FLAGS 0x0100000 #define UNUSED_RETURN 0x0200000 static sljit_s32 emit_op_imm(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 dst, sljit_uw arg1, sljit_uw arg2) { /* dst must be register, TMP_REG1 arg1 must be register, imm arg2 must be register, imm */ sljit_s32 reg; sljit_uw imm, nimm; if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) { /* Both are immediates, no temporaries are used. */ flags &= ~ARG1_IMM; FAIL_IF(load_immediate(compiler, TMP_REG1, arg1)); arg1 = TMP_REG1; } if (flags & (ARG1_IMM | ARG2_IMM)) { reg = (flags & ARG2_IMM) ? arg1 : arg2; imm = (flags & ARG2_IMM) ? arg2 : arg1; switch (flags & 0xffff) { case SLJIT_CLZ: case SLJIT_MUL: /* No form with immediate operand. */ break; case SLJIT_MOV: SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG2); return load_immediate(compiler, dst, imm); case SLJIT_NOT: if (!(flags & SET_FLAGS)) return load_immediate(compiler, dst, ~imm); /* Since the flags should be set, we just fallback to the register mode. Although some clever things could be done here, "NOT IMM" does not worth the efforts. */ break; case SLJIT_ADD: nimm = -imm; if (IS_2_LO_REGS(reg, dst)) { if (imm <= 0x7) return push_inst16(compiler, ADDSI3 | IMM3(imm) | RD3(dst) | RN3(reg)); if (nimm <= 0x7) return push_inst16(compiler, SUBSI3 | IMM3(nimm) | RD3(dst) | RN3(reg)); if (reg == dst) { if (imm <= 0xff) return push_inst16(compiler, ADDSI8 | IMM8(imm) | RDN3(dst)); if (nimm <= 0xff) return push_inst16(compiler, SUBSI8 | IMM8(nimm) | RDN3(dst)); } } if (!(flags & SET_FLAGS)) { if (imm <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(imm)); if (nimm <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(nimm)); } nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ADD_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); nimm = get_imm(-imm); if (nimm != INVALID_IMM) return push_inst32(compiler, SUB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); break; case SLJIT_ADDC: imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, ADCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_SUB: /* SUB operation can be replaced by ADD because of the negative carry flag. */ if (flags & ARG1_IMM) { if (imm == 0 && IS_2_LO_REGS(reg, dst)) return push_inst16(compiler, RSBSI | RD3(dst) | RN3(reg)); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, RSB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; } if (flags & UNUSED_RETURN) { if (imm <= 0xff && reg_map[reg] <= 7) return push_inst16(compiler, CMPI | IMM8(imm) | RDN3(reg)); nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, CMPI_W | RN4(reg) | nimm); nimm = get_imm(-imm); if (nimm != INVALID_IMM) return push_inst32(compiler, CMNI_W | RN4(reg) | nimm); } nimm = -imm; if (IS_2_LO_REGS(reg, dst)) { if (imm <= 0x7) return push_inst16(compiler, SUBSI3 | IMM3(imm) | RD3(dst) | RN3(reg)); if (nimm <= 0x7) return push_inst16(compiler, ADDSI3 | IMM3(nimm) | RD3(dst) | RN3(reg)); if (reg == dst) { if (imm <= 0xff) return push_inst16(compiler, SUBSI8 | IMM8(imm) | RDN3(dst)); if (nimm <= 0xff) return push_inst16(compiler, ADDSI8 | IMM8(nimm) | RDN3(dst)); } } if (!(flags & SET_FLAGS)) { if (imm <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(imm)); if (nimm <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(nimm)); } nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, SUB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); nimm = get_imm(-imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ADD_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); break; case SLJIT_SUBC: if (flags & ARG1_IMM) break; imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, SBCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_AND: nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ANDI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, BICI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_OR: nimm = get_imm(imm); if (nimm != INVALID_IMM) return push_inst32(compiler, ORRI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm); imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, ORNI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_XOR: imm = get_imm(imm); if (imm != INVALID_IMM) return push_inst32(compiler, EORI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm); break; case SLJIT_SHL: case SLJIT_LSHR: case SLJIT_ASHR: if (flags & ARG1_IMM) break; imm &= 0x1f; if (imm == 0) { if (!(flags & SET_FLAGS)) return push_inst16(compiler, MOV | SET_REGS44(dst, reg)); if (IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, MOVS | RD3(dst) | RN3(reg)); return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(dst) | RM4(reg)); } switch (flags & 0xffff) { case SLJIT_SHL: if (IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, LSLSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, LSL_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); case SLJIT_LSHR: if (IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, LSRSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, LSR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); default: /* SLJIT_ASHR */ if (IS_2_LO_REGS(dst, reg)) return push_inst16(compiler, ASRSI | RD3(dst) | RN3(reg) | (imm << 6)); return push_inst32(compiler, ASR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm)); } default: SLJIT_UNREACHABLE(); break; } if (flags & ARG2_IMM) { imm = arg2; arg2 = (arg1 == TMP_REG1) ? TMP_REG2 : TMP_REG1; FAIL_IF(load_immediate(compiler, arg2, imm)); } else { imm = arg1; arg1 = (arg2 == TMP_REG1) ? TMP_REG2 : TMP_REG1; FAIL_IF(load_immediate(compiler, arg1, imm)); } SLJIT_ASSERT(arg1 != arg2); } /* Both arguments are registers. */ switch (flags & 0xffff) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG2); if (dst == arg2) return SLJIT_SUCCESS; return push_inst16(compiler, MOV | SET_REGS44(dst, arg2)); case SLJIT_MOV_U8: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG2); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, UXTB | RD3(dst) | RN3(arg2)); return push_inst32(compiler, UXTB_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_S8: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG2); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SXTB | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SXTB_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_U16: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG2); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, UXTH | RD3(dst) | RN3(arg2)); return push_inst32(compiler, UXTH_W | RD4(dst) | RM4(arg2)); case SLJIT_MOV_S16: SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG2); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SXTH | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SXTH_W | RD4(dst) | RM4(arg2)); case SLJIT_NOT: SLJIT_ASSERT(arg1 == TMP_REG2); if (IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, MVNS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, MVN_W | (flags & SET_FLAGS) | RD4(dst) | RM4(arg2)); case SLJIT_CLZ: SLJIT_ASSERT(arg1 == TMP_REG2); FAIL_IF(push_inst32(compiler, CLZ | RN4(arg2) | RD4(dst) | RM4(arg2))); return SLJIT_SUCCESS; case SLJIT_ADD: if (IS_3_LO_REGS(dst, arg1, arg2)) return push_inst16(compiler, ADDS | RD3(dst) | RN3(arg1) | RM3(arg2)); if (dst == arg1 && !(flags & SET_FLAGS)) return push_inst16(compiler, ADD | SET_REGS44(dst, arg2)); return push_inst32(compiler, ADD_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_ADDC: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ADCS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ADC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SUB: if (flags & UNUSED_RETURN) { if (IS_2_LO_REGS(arg1, arg2)) return push_inst16(compiler, CMP | RD3(arg1) | RN3(arg2)); return push_inst16(compiler, CMP_X | SET_REGS44(arg1, arg2)); } if (IS_3_LO_REGS(dst, arg1, arg2)) return push_inst16(compiler, SUBS | RD3(dst) | RN3(arg1) | RM3(arg2)); return push_inst32(compiler, SUB_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SUBC: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, SBCS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, SBC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_MUL: if (!(flags & SET_FLAGS)) return push_inst32(compiler, MUL | RD4(dst) | RN4(arg1) | RM4(arg2)); SLJIT_ASSERT(dst != TMP_REG2); FAIL_IF(push_inst32(compiler, SMULL | RT4(dst) | RD4(TMP_REG2) | RN4(arg1) | RM4(arg2))); /* cmp TMP_REG2, dst asr #31. */ return push_inst32(compiler, CMP_W | RN4(TMP_REG2) | 0x70e0 | RM4(dst)); case SLJIT_AND: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ANDS | RD3(dst) | RN3(arg2)); if ((flags & UNUSED_RETURN) && IS_2_LO_REGS(arg1, arg2)) return push_inst16(compiler, TST | RD3(arg1) | RN3(arg2)); return push_inst32(compiler, AND_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_OR: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ORRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ORR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_XOR: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, EORS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, EOR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_SHL: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, LSLS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, LSL_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_LSHR: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, LSRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, LSR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); case SLJIT_ASHR: if (dst == arg1 && IS_2_LO_REGS(dst, arg2)) return push_inst16(compiler, ASRS | RD3(dst) | RN3(arg2)); return push_inst32(compiler, ASR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2)); } SLJIT_UNREACHABLE(); return SLJIT_SUCCESS; } #define STORE 0x01 #define SIGNED 0x02 #define WORD_SIZE 0x00 #define BYTE_SIZE 0x04 #define HALF_SIZE 0x08 #define PRELOAD 0x0c #define IS_WORD_SIZE(flags) (!(flags & (BYTE_SIZE | HALF_SIZE))) #define OFFSET_CHECK(imm, shift) (!(argw & ~(imm << shift))) /* 1st letter: w = word b = byte h = half 2nd letter: s = signed u = unsigned 3rd letter: l = load s = store */ static const sljit_ins sljit_mem16[12] = { /* w u l */ 0x5800 /* ldr */, /* w u s */ 0x5000 /* str */, /* w s l */ 0x5800 /* ldr */, /* w s s */ 0x5000 /* str */, /* b u l */ 0x5c00 /* ldrb */, /* b u s */ 0x5400 /* strb */, /* b s l */ 0x5600 /* ldrsb */, /* b s s */ 0x5400 /* strb */, /* h u l */ 0x5a00 /* ldrh */, /* h u s */ 0x5200 /* strh */, /* h s l */ 0x5e00 /* ldrsh */, /* h s s */ 0x5200 /* strh */, }; static const sljit_ins sljit_mem16_imm5[12] = { /* w u l */ 0x6800 /* ldr imm5 */, /* w u s */ 0x6000 /* str imm5 */, /* w s l */ 0x6800 /* ldr imm5 */, /* w s s */ 0x6000 /* str imm5 */, /* b u l */ 0x7800 /* ldrb imm5 */, /* b u s */ 0x7000 /* strb imm5 */, /* b s l */ 0x0000 /* not allowed */, /* b s s */ 0x7000 /* strb imm5 */, /* h u l */ 0x8800 /* ldrh imm5 */, /* h u s */ 0x8000 /* strh imm5 */, /* h s l */ 0x0000 /* not allowed */, /* h s s */ 0x8000 /* strh imm5 */, }; #define MEM_IMM8 0xc00 #define MEM_IMM12 0x800000 static const sljit_ins sljit_mem32[13] = { /* w u l */ 0xf8500000 /* ldr.w */, /* w u s */ 0xf8400000 /* str.w */, /* w s l */ 0xf8500000 /* ldr.w */, /* w s s */ 0xf8400000 /* str.w */, /* b u l */ 0xf8100000 /* ldrb.w */, /* b u s */ 0xf8000000 /* strb.w */, /* b s l */ 0xf9100000 /* ldrsb.w */, /* b s s */ 0xf8000000 /* strb.w */, /* h u l */ 0xf8300000 /* ldrh.w */, /* h u s */ 0xf8200000 /* strsh.w */, /* h s l */ 0xf9300000 /* ldrsh.w */, /* h s s */ 0xf8200000 /* strsh.w */, /* p u l */ 0xf8100000 /* pld */, }; /* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */ static sljit_s32 emit_set_delta(struct sljit_compiler *compiler, sljit_s32 dst, sljit_s32 reg, sljit_sw value) { if (value >= 0) { if (value <= 0xfff) return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(value)); value = get_imm(value); if (value != INVALID_IMM) return push_inst32(compiler, ADD_WI | RD4(dst) | RN4(reg) | value); } else { value = -value; if (value <= 0xfff) return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(value)); value = get_imm(value); if (value != INVALID_IMM) return push_inst32(compiler, SUB_WI | RD4(dst) | RN4(reg) | value); } return SLJIT_ERR_UNSUPPORTED; } static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg) { sljit_s32 other_r; sljit_uw tmp; SLJIT_ASSERT(arg & SLJIT_MEM); SLJIT_ASSERT((arg & REG_MASK) != tmp_reg); arg &= ~SLJIT_MEM; if (SLJIT_UNLIKELY(!(arg & REG_MASK))) { tmp = get_imm(argw & ~0xfff); if (tmp != INVALID_IMM) { FAIL_IF(push_inst32(compiler, MOV_WI | RD4(tmp_reg) | tmp)); return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(tmp_reg) | (argw & 0xfff)); } FAIL_IF(load_immediate(compiler, tmp_reg, argw)); if (IS_2_LO_REGS(reg, tmp_reg) && sljit_mem16_imm5[flags]) return push_inst16(compiler, sljit_mem16_imm5[flags] | RD3(reg) | RN3(tmp_reg)); return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(tmp_reg)); } if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { argw &= 0x3; other_r = OFFS_REG(arg); arg &= 0xf; if (!argw && IS_3_LO_REGS(reg, arg, other_r)) return push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r)); return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4)); } if (argw > 0xfff) { tmp = get_imm(argw & ~0xfff); if (tmp != INVALID_IMM) { push_inst32(compiler, ADD_WI | RD4(tmp_reg) | RN4(arg) | tmp); arg = tmp_reg; argw = argw & 0xfff; } } else if (argw < -0xff) { tmp = get_imm(-argw & ~0xff); if (tmp != INVALID_IMM) { push_inst32(compiler, SUB_WI | RD4(tmp_reg) | RN4(arg) | tmp); arg = tmp_reg; argw = -(-argw & 0xff); } } if (IS_2_LO_REGS(reg, arg) && sljit_mem16_imm5[flags]) { tmp = 3; if (IS_WORD_SIZE(flags)) { if (OFFSET_CHECK(0x1f, 2)) tmp = 2; } else if (flags & BYTE_SIZE) { if (OFFSET_CHECK(0x1f, 0)) tmp = 0; } else { SLJIT_ASSERT(flags & HALF_SIZE); if (OFFSET_CHECK(0x1f, 1)) tmp = 1; } if (tmp < 3) return push_inst16(compiler, sljit_mem16_imm5[flags] | RD3(reg) | RN3(arg) | (argw << (6 - tmp))); } else if (SLJIT_UNLIKELY(arg == SLJIT_SP) && IS_WORD_SIZE(flags) && OFFSET_CHECK(0xff, 2) && reg_map[reg] <= 7) { /* SP based immediate. */ return push_inst16(compiler, STR_SP | ((flags & STORE) ? 0 : 0x800) | RDN3(reg) | (argw >> 2)); } if (argw >= 0 && argw <= 0xfff) return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw); else if (argw < 0 && argw >= -0xff) return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | -argw); SLJIT_ASSERT(arg != tmp_reg); FAIL_IF(load_immediate(compiler, tmp_reg, argw)); if (IS_3_LO_REGS(reg, arg, tmp_reg)) return push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(tmp_reg)); return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(tmp_reg)); } /* --------------------------------------------------------------------- */ /* Entry, exit */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 args, size, i, tmp; sljit_ins push = 0; #ifdef _WIN32 sljit_uw imm; #endif CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) push |= 1 << reg_map[i]; for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) push |= 1 << reg_map[i]; FAIL_IF((push & 0xff00) ? push_inst32(compiler, PUSH_W | (1 << 14) | push) : push_inst16(compiler, PUSH | (1 << 8) | push)); /* Stack must be aligned to 8 bytes: (LR, R4) */ size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); local_size = ((size + local_size + 7) & ~7) - size; compiler->local_size = local_size; #ifdef _WIN32 if (local_size >= 256) { if (local_size > 4096) imm = get_imm(4096); else imm = get_imm(local_size & ~0xff); SLJIT_ASSERT(imm != INVALID_IMM); FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(SLJIT_SP) | imm)); } #else if (local_size > 0) { if (local_size <= (127 << 2)) FAIL_IF(push_inst16(compiler, SUB_SP | (local_size >> 2))); else FAIL_IF(emit_op_imm(compiler, SLJIT_SUB | ARG2_IMM, SLJIT_SP, SLJIT_SP, local_size)); } #endif args = get_arg_count(arg_types); if (args >= 1) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S0, SLJIT_R0))); if (args >= 2) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S1, SLJIT_R1))); if (args >= 3) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S2, SLJIT_R2))); #ifdef _WIN32 if (local_size >= 256) { if (local_size > 4096) { imm = get_imm(4096); SLJIT_ASSERT(imm != INVALID_IMM); if (local_size < 4 * 4096) { if (local_size > 2 * 4096) { FAIL_IF(push_inst32(compiler, LDRI | 0x400 | RT4(TMP_REG2) | RN4(TMP_REG1))); FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(TMP_REG1) | imm)); local_size -= 4096; } if (local_size > 2 * 4096) { FAIL_IF(push_inst32(compiler, LDRI | 0x400 | RT4(TMP_REG2) | RN4(TMP_REG1))); FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(TMP_REG1) | imm)); local_size -= 4096; } FAIL_IF(push_inst32(compiler, LDRI | 0x400 | RT4(TMP_REG2) | RN4(TMP_REG1))); local_size -= 4096; SLJIT_ASSERT(local_size > 0); } else { FAIL_IF(load_immediate(compiler, SLJIT_R3, (local_size >> 12) - 1)); FAIL_IF(push_inst32(compiler, LDRI | 0x400 | RT4(TMP_REG2) | RN4(TMP_REG1))); FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(TMP_REG1) | imm)); SLJIT_ASSERT(reg_map[SLJIT_R3] < 7); FAIL_IF(push_inst16(compiler, SUBSI8 | RDN3(SLJIT_R3) | 1)); FAIL_IF(push_inst16(compiler, BCC | (0x1 << 8) /* not-equal */ | (-7 & 0xff))); local_size &= 0xfff; if (local_size != 0) FAIL_IF(push_inst32(compiler, LDRI | 0x400 | RT4(TMP_REG2) | RN4(TMP_REG1))); } if (local_size >= 256) { imm = get_imm(local_size & ~0xff); SLJIT_ASSERT(imm != INVALID_IMM); FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(TMP_REG1) | imm)); } } local_size &= 0xff; FAIL_IF(push_inst32(compiler, LDRI | 0x400 | (local_size > 0 ? 0x100 : 0) | RT4(TMP_REG2) | RN4(TMP_REG1) | local_size)); FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_SP, TMP_REG1))); } else if (local_size > 0) FAIL_IF(push_inst32(compiler, LDRI | 0x500 | RT4(TMP_REG1) | RN4(SLJIT_SP) | local_size)); #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size; CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); compiler->local_size = ((size + local_size + 7) & ~7) - size; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_s32 i, tmp; sljit_ins pop = 0; CHECK_ERROR(); CHECK(check_sljit_emit_return(compiler, op, src, srcw)); FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); if (compiler->local_size > 0) { if (compiler->local_size <= (127 << 2)) FAIL_IF(push_inst16(compiler, ADD_SP | (compiler->local_size >> 2))); else FAIL_IF(emit_op_imm(compiler, SLJIT_ADD | ARG2_IMM, SLJIT_SP, SLJIT_SP, compiler->local_size)); } tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) pop |= 1 << reg_map[i]; for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) pop |= 1 << reg_map[i]; return (pop & 0xff00) ? push_inst32(compiler, POP_W | (1 << 15) | pop) : push_inst16(compiler, POP | (1 << 8) | pop); } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ #if !(defined __ARM_FEATURE_IDIV) && !(defined __ARM_ARCH_EXT_IDIV__) #ifdef __cplusplus extern "C" { #endif #ifdef _WIN32 extern unsigned long long __rt_udiv(unsigned int denominator, unsigned int numerator); extern long long __rt_sdiv(int denominator, int numerator); #elif defined(__GNUC__) extern unsigned int __aeabi_uidivmod(unsigned int numerator, int unsigned denominator); extern int __aeabi_idivmod(int numerator, int denominator); #else #error "Software divmod functions are needed" #endif #ifdef __cplusplus } #endif #endif /* !__ARM_FEATURE_IDIV && !__ARM_ARCH_EXT_IDIV__ */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { #if !(defined __ARM_FEATURE_IDIV) && !(defined __ARM_ARCH_EXT_IDIV__) sljit_sw saved_reg_list[3]; sljit_sw saved_reg_count; #endif CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: return push_inst16(compiler, BKPT); case SLJIT_NOP: return push_inst16(compiler, NOP); case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: return push_inst32(compiler, (op == SLJIT_LMUL_UW ? UMULL : SMULL) | (reg_map[SLJIT_R1] << 8) | (reg_map[SLJIT_R0] << 12) | (reg_map[SLJIT_R0] << 16) | reg_map[SLJIT_R1]); #if (defined __ARM_FEATURE_IDIV) || (defined __ARM_ARCH_EXT_IDIV__) case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG1, SLJIT_R0))); FAIL_IF(push_inst32(compiler, (op == SLJIT_DIVMOD_UW ? UDIV : SDIV) | RD4(SLJIT_R0) | RN4(SLJIT_R0) | RM4(SLJIT_R1))); FAIL_IF(push_inst32(compiler, MUL | RD4(SLJIT_R1) | RN4(SLJIT_R0) | RM4(SLJIT_R1))); return push_inst32(compiler, SUB_W | RD4(SLJIT_R1) | RN4(TMP_REG1) | RM4(SLJIT_R1)); case SLJIT_DIV_UW: case SLJIT_DIV_SW: return push_inst32(compiler, (op == SLJIT_DIV_UW ? UDIV : SDIV) | RD4(SLJIT_R0) | RN4(SLJIT_R0) | RM4(SLJIT_R1)); #else /* !__ARM_FEATURE_IDIV && !__ARM_ARCH_EXT_IDIV__ */ case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); SLJIT_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 3); saved_reg_count = 0; if (compiler->scratches >= 4) saved_reg_list[saved_reg_count++] = 3; if (compiler->scratches >= 3) saved_reg_list[saved_reg_count++] = 2; if (op >= SLJIT_DIV_UW) saved_reg_list[saved_reg_count++] = 1; if (saved_reg_count > 0) { FAIL_IF(push_inst32(compiler, 0xf84d0d00 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */)); if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst16(compiler, 0x9001 | (saved_reg_list[1] << 8) /* str rX, [sp, #4] */)); } if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst16(compiler, 0x9002 | (saved_reg_list[2] << 8) /* str rX, [sp, #8] */)); } } #ifdef _WIN32 FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG1, SLJIT_R0))); FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_R0, SLJIT_R1))); FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_R1, TMP_REG1))); FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM, ((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_OFFSET(__rt_udiv) : SLJIT_FUNC_OFFSET(__rt_sdiv)))); #elif defined(__GNUC__) FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM, ((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod)))); #else #error "Software divmod functions are needed" #endif if (saved_reg_count > 0) { if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst16(compiler, 0x9802 | (saved_reg_list[2] << 8) /* ldr rX, [sp, #8] */)); } if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst16(compiler, 0x9801 | (saved_reg_list[1] << 8) /* ldr rX, [sp, #4] */)); } return push_inst32(compiler, 0xf85d0b00 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */); } return SLJIT_SUCCESS; #endif /* __ARM_FEATURE_IDIV || __ARM_ARCH_EXT_IDIV__ */ case SLJIT_ENDBR: case SLJIT_SKIP_FRAMES_BEFORE_RETURN: return SLJIT_SUCCESS; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r, flags; sljit_s32 op_flags = GET_ALL_FLAGS(op); CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1; op = GET_OPCODE(op); if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) { switch (op) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: flags = WORD_SIZE; break; case SLJIT_MOV_U8: flags = BYTE_SIZE; if (src & SLJIT_IMM) srcw = (sljit_u8)srcw; break; case SLJIT_MOV_S8: flags = BYTE_SIZE | SIGNED; if (src & SLJIT_IMM) srcw = (sljit_s8)srcw; break; case SLJIT_MOV_U16: flags = HALF_SIZE; if (src & SLJIT_IMM) srcw = (sljit_u16)srcw; break; case SLJIT_MOV_S16: flags = HALF_SIZE | SIGNED; if (src & SLJIT_IMM) srcw = (sljit_s16)srcw; break; default: SLJIT_UNREACHABLE(); flags = 0; break; } if (src & SLJIT_IMM) FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG2, srcw)); else if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, flags, dst_r, src, srcw, TMP_REG1)); } else { if (dst_r != TMP_REG1) return emit_op_imm(compiler, op, dst_r, TMP_REG2, src); dst_r = src; } if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_op_mem(compiler, flags | STORE, dst_r, dst, dstw, TMP_REG2); } if (op == SLJIT_NEG) { #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, SLJIT_SUB | op_flags, dst, dstw, SLJIT_IMM, 0, src, srcw); } flags = HAS_FLAGS(op_flags) ? SET_FLAGS : 0; if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1)); src = TMP_REG1; } emit_op_imm(compiler, flags | op, dst_r, TMP_REG2, src); if (SLJIT_UNLIKELY(dst & SLJIT_MEM)) return emit_op_mem(compiler, flags | STORE, dst_r, dst, dstw, TMP_REG2); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_reg, flags, src2_reg; CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) return SLJIT_SUCCESS; dst_reg = SLOW_IS_REG(dst) ? dst : TMP_REG1; flags = HAS_FLAGS(op) ? SET_FLAGS : 0; if (src1 & SLJIT_IMM) flags |= ARG1_IMM; else if (src1 & SLJIT_MEM) { emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src1, src1w, TMP_REG1); src1w = TMP_REG1; } else src1w = src1; if (src2 & SLJIT_IMM) flags |= ARG2_IMM; else if (src2 & SLJIT_MEM) { src2_reg = (!(flags & ARG1_IMM) && (src1w == TMP_REG1)) ? TMP_REG2 : TMP_REG1; emit_op_mem(compiler, WORD_SIZE, src2_reg, src2, src2w, src2_reg); src2w = src2_reg; } else src2w = src2; if (dst == SLJIT_UNUSED) flags |= UNUSED_RETURN; emit_op_imm(compiler, flags | GET_OPCODE(op), dst_reg, src1w, src2w); if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_op_mem(compiler, WORD_SIZE | STORE, dst_reg, dst, dstw, TMP_REG2); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op_src(compiler, op, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); switch (op) { case SLJIT_FAST_RETURN: SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(src)) FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG2, src))); else FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, src, srcw, TMP_REG2)); return push_inst16(compiler, BX | RN3(TMP_REG2)); case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN: return SLJIT_SUCCESS; case SLJIT_PREFETCH_L1: case SLJIT_PREFETCH_L2: case SLJIT_PREFETCH_L3: case SLJIT_PREFETCH_ONCE: return emit_op_mem(compiler, PRELOAD, TMP_PC, src, srcw, TMP_REG1); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(reg)); return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_float_register_index(reg)); return (freg_map[reg] << 1); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_s32 size) { CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); if (size == 2) return push_inst16(compiler, *(sljit_u16*)instruction); return push_inst32(compiler, *(sljit_ins*)instruction); } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #define FPU_LOAD (1 << 20) static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { sljit_uw imm; sljit_sw inst = VSTR_F32 | (flags & (SLJIT_F32_OP | FPU_LOAD)); SLJIT_ASSERT(arg & SLJIT_MEM); /* Fast loads and stores. */ if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { FAIL_IF(push_inst32(compiler, ADD_W | RD4(TMP_REG1) | RN4(arg & REG_MASK) | RM4(OFFS_REG(arg)) | ((argw & 0x3) << 6))); arg = SLJIT_MEM | TMP_REG1; argw = 0; } if ((arg & REG_MASK) && (argw & 0x3) == 0) { if (!(argw & ~0x3fc)) return push_inst32(compiler, inst | 0x800000 | RN4(arg & REG_MASK) | DD4(reg) | (argw >> 2)); if (!(-argw & ~0x3fc)) return push_inst32(compiler, inst | RN4(arg & REG_MASK) | DD4(reg) | (-argw >> 2)); } if (arg & REG_MASK) { if (emit_set_delta(compiler, TMP_REG1, arg & REG_MASK, argw) != SLJIT_ERR_UNSUPPORTED) { FAIL_IF(compiler->error); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg)); } imm = get_imm(argw & ~0x3fc); if (imm != INVALID_IMM) { FAIL_IF(push_inst32(compiler, ADD_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm)); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2)); } imm = get_imm(-argw & ~0x3fc); if (imm != INVALID_IMM) { argw = -argw; FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm)); return push_inst32(compiler, inst | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2)); } } FAIL_IF(load_immediate(compiler, TMP_REG1, argw)); if (arg & REG_MASK) FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG1, (arg & REG_MASK)))); return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg)); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { op ^= SLJIT_F32_OP; if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src, srcw)); src = TMP_FREG1; } FAIL_IF(push_inst32(compiler, VCVT_S32_F32 | (op & SLJIT_F32_OP) | DD4(TMP_FREG1) | DM4(src))); if (FAST_IS_REG(dst)) return push_inst32(compiler, VMOV | (1 << 20) | RT4(dst) | DN4(TMP_FREG1)); /* Store the integer value from a VFP register. */ return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; op ^= SLJIT_F32_OP; if (FAST_IS_REG(src)) FAIL_IF(push_inst32(compiler, VMOV | RT4(src) | DN4(TMP_FREG1))); else if (src & SLJIT_MEM) { /* Load the integer value into a VFP register. */ FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw)); } else { FAIL_IF(load_immediate(compiler, TMP_REG1, srcw)); FAIL_IF(push_inst32(compiler, VMOV | RT4(TMP_REG1) | DN4(TMP_FREG1))); } FAIL_IF(push_inst32(compiler, VCVT_F32_S32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(TMP_FREG1))); if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { op ^= SLJIT_F32_OP; if (src1 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w); src2 = TMP_FREG2; } FAIL_IF(push_inst32(compiler, VCMP_F32 | (op & SLJIT_F32_OP) | DD4(src1) | DM4(src2))); return push_inst32(compiler, VMRS); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r; CHECK_ERROR(); SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100), float_transfer_bit_error); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (GET_OPCODE(op) != SLJIT_CONV_F64_FROM_F32) op ^= SLJIT_F32_OP; if (src & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, dst_r, src, srcw); src = dst_r; } switch (GET_OPCODE(op)) { case SLJIT_MOV_F64: if (src != dst_r) { if (dst_r != TMP_FREG1) FAIL_IF(push_inst32(compiler, VMOV_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); else dst_r = src; } break; case SLJIT_NEG_F64: FAIL_IF(push_inst32(compiler, VNEG_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); break; case SLJIT_ABS_F64: FAIL_IF(push_inst32(compiler, VABS_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); break; case SLJIT_CONV_F64_FROM_F32: FAIL_IF(push_inst32(compiler, VCVT_F64_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DM4(src))); op ^= SLJIT_F32_OP; break; } if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), dst_r, dst, dstw); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); op ^= SLJIT_F32_OP; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src1 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w); src2 = TMP_FREG2; } switch (GET_OPCODE(op)) { case SLJIT_ADD_F64: FAIL_IF(push_inst32(compiler, VADD_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_SUB_F64: FAIL_IF(push_inst32(compiler, VSUB_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_MUL_F64: FAIL_IF(push_inst32(compiler, VMUL_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; case SLJIT_DIV_F64: FAIL_IF(push_inst32(compiler, VDIV_F32 | (op & SLJIT_F32_OP) | DD4(dst_r) | DN4(src1) | DM4(src2))); break; } if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw); } #undef FPU_LOAD /* --------------------------------------------------------------------- */ /* Other instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(dst)) return push_inst16(compiler, MOV | SET_REGS44(dst, TMP_REG2)); /* Memory. */ return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, TMP_REG1); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ static sljit_uw get_cc(sljit_s32 type) { switch (type) { case SLJIT_EQUAL: case SLJIT_MUL_NOT_OVERFLOW: case SLJIT_EQUAL_F64: return 0x0; case SLJIT_NOT_EQUAL: case SLJIT_MUL_OVERFLOW: case SLJIT_NOT_EQUAL_F64: return 0x1; case SLJIT_LESS: case SLJIT_LESS_F64: return 0x3; case SLJIT_GREATER_EQUAL: case SLJIT_GREATER_EQUAL_F64: return 0x2; case SLJIT_GREATER: case SLJIT_GREATER_F64: return 0x8; case SLJIT_LESS_EQUAL: case SLJIT_LESS_EQUAL_F64: return 0x9; case SLJIT_SIG_LESS: return 0xb; case SLJIT_SIG_GREATER_EQUAL: return 0xa; case SLJIT_SIG_GREATER: return 0xc; case SLJIT_SIG_LESS_EQUAL: return 0xd; case SLJIT_OVERFLOW: case SLJIT_UNORDERED_F64: return 0x6; case SLJIT_NOT_OVERFLOW: case SLJIT_ORDERED_F64: return 0x7; default: /* SLJIT_JUMP */ SLJIT_UNREACHABLE(); return 0xe; } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { struct sljit_jump *jump; sljit_ins cc; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; PTR_FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0)); if (type < SLJIT_JUMP) { jump->flags |= IS_COND; cc = get_cc(type); jump->flags |= cc << 8; PTR_FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); } jump->addr = compiler->size; if (type <= SLJIT_JUMP) PTR_FAIL_IF(push_inst16(compiler, BX | RN3(TMP_REG1))); else { jump->flags |= IS_BL; PTR_FAIL_IF(push_inst16(compiler, BLX | RN3(TMP_REG1))); } return jump; } #ifdef __SOFTFP__ static sljit_s32 softfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src) { sljit_s32 stack_offset = 0; sljit_s32 arg_count = 0; sljit_s32 word_arg_offset = 0; sljit_s32 float_arg_count = 0; sljit_s32 types = 0; sljit_s32 src_offset = 4 * sizeof(sljit_sw); sljit_u8 offsets[4]; if (src && FAST_IS_REG(*src)) src_offset = reg_map[*src] * sizeof(sljit_sw); arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { types = (types << SLJIT_DEF_SHIFT) | (arg_types & SLJIT_DEF_MASK); switch (arg_types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_f32); arg_count++; float_arg_count++; break; case SLJIT_ARG_TYPE_F64: if (stack_offset & 0x7) stack_offset += sizeof(sljit_sw); offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_f64); arg_count++; float_arg_count++; break; default: offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_sw); arg_count++; word_arg_offset += sizeof(sljit_sw); break; } arg_types >>= SLJIT_DEF_SHIFT; } if (stack_offset > 16) FAIL_IF(push_inst16(compiler, SUB_SP | (((stack_offset - 16) + 0x7) & ~0x7) >> 2)); SLJIT_ASSERT(reg_map[TMP_REG1] == 12); /* Process arguments in reversed direction. */ while (types) { switch (types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: arg_count--; float_arg_count--; stack_offset = offsets[arg_count]; if (stack_offset < 16) { if (src_offset == stack_offset) { FAIL_IF(push_inst16(compiler, MOV | (src_offset << 1) | 4 | (1 << 7))); *src = TMP_REG1; } FAIL_IF(push_inst32(compiler, VMOV | 0x100000 | (float_arg_count << 16) | (stack_offset << 10))); } else FAIL_IF(push_inst32(compiler, VSTR_F32 | 0x800000 | RN4(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2))); break; case SLJIT_ARG_TYPE_F64: arg_count--; float_arg_count--; stack_offset = offsets[arg_count]; SLJIT_ASSERT((stack_offset & 0x7) == 0); if (stack_offset < 16) { if (src_offset == stack_offset || src_offset == stack_offset + sizeof(sljit_sw)) { FAIL_IF(push_inst16(compiler, MOV | (src_offset << 1) | 4 | (1 << 7))); *src = TMP_REG1; } FAIL_IF(push_inst32(compiler, VMOV2 | 0x100000 | (stack_offset << 10) | ((stack_offset + sizeof(sljit_sw)) << 14) | float_arg_count)); } else FAIL_IF(push_inst32(compiler, VSTR_F32 | 0x800100 | RN4(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2))); break; default: arg_count--; word_arg_offset -= sizeof(sljit_sw); stack_offset = offsets[arg_count]; SLJIT_ASSERT(stack_offset >= word_arg_offset); if (stack_offset != word_arg_offset) { if (stack_offset < 16) { if (src_offset == stack_offset) { FAIL_IF(push_inst16(compiler, MOV | (src_offset << 1) | 4 | (1 << 7))); *src = TMP_REG1; } else if (src_offset == word_arg_offset) { *src = 1 + (stack_offset >> 2); src_offset = stack_offset; } FAIL_IF(push_inst16(compiler, MOV | (stack_offset >> 2) | (word_arg_offset << 1))); } else FAIL_IF(push_inst16(compiler, STR_SP | (word_arg_offset << 6) | ((stack_offset - 16) >> 2))); } break; } types >>= SLJIT_DEF_SHIFT; } return SLJIT_SUCCESS; } static sljit_s32 softfloat_post_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { sljit_s32 stack_size = 0; if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32) FAIL_IF(push_inst32(compiler, VMOV | (0 << 16) | (0 << 12))); if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64) FAIL_IF(push_inst32(compiler, VMOV2 | (1 << 16) | (0 << 12) | 0)); arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { switch (arg_types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: stack_size += sizeof(sljit_f32); break; case SLJIT_ARG_TYPE_F64: if (stack_size & 0x7) stack_size += sizeof(sljit_sw); stack_size += sizeof(sljit_f64); break; default: stack_size += sizeof(sljit_sw); break; } arg_types >>= SLJIT_DEF_SHIFT; } if (stack_size <= 16) return SLJIT_SUCCESS; return push_inst16(compiler, ADD_SP | ((((stack_size - 16) + 0x7) & ~0x7) >> 2)); } #else static sljit_s32 hardfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { sljit_u32 remap = 0; sljit_u32 offset = 0; sljit_u32 new_offset, mask; /* Remove return value. */ arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32) { new_offset = 0; mask = 1; while (remap & mask) { new_offset++; mask <<= 1; } remap |= mask; if (offset != new_offset) FAIL_IF(push_inst32(compiler, VMOV_F32 | DD4((new_offset >> 1) + 1) | ((new_offset & 0x1) ? 0x400000 : 0) | DM4((offset >> 1) + 1))); offset += 2; } else if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64) { new_offset = 0; mask = 3; while (remap & mask) { new_offset += 2; mask <<= 2; } remap |= mask; if (offset != new_offset) FAIL_IF(push_inst32(compiler, VMOV_F32 | SLJIT_F32_OP | DD4((new_offset >> 1) + 1) | DM4((offset >> 1) + 1))); offset += 2; } arg_types >>= SLJIT_DEF_SHIFT; } return SLJIT_SUCCESS; } #endif SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types) { #ifdef __SOFTFP__ struct sljit_jump *jump; #endif CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types)); #ifdef __SOFTFP__ PTR_FAIL_IF(softfloat_call_with_args(compiler, arg_types, NULL)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif jump = sljit_emit_jump(compiler, type); PTR_FAIL_IF(jump == NULL); PTR_FAIL_IF(softfloat_post_call_with_args(compiler, arg_types)); return jump; #else PTR_FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_jump(compiler, type); #endif } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { struct sljit_jump *jump; CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); SLJIT_ASSERT(reg_map[TMP_REG1] != 14); if (!(src & SLJIT_IMM)) { if (FAST_IS_REG(src)) { SLJIT_ASSERT(reg_map[src] != 14); return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(src)); } FAIL_IF(emit_op_mem(compiler, WORD_SIZE, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, src, srcw, TMP_REG1)); if (type >= SLJIT_FAST_CALL) return push_inst16(compiler, BLX | RN3(TMP_REG1)); } /* These jumps are converted to jump/call instructions when possible. */ jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0)); jump->u.target = srcw; FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0)); jump->addr = compiler->size; return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(TMP_REG1)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw)); #ifdef __SOFTFP__ if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw, TMP_REG1)); src = TMP_REG1; } FAIL_IF(softfloat_call_with_args(compiler, arg_types, &src)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif FAIL_IF(sljit_emit_ijump(compiler, type, src, srcw)); return softfloat_post_call_with_args(compiler, arg_types); #else /* !__SOFTFP__ */ FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_ijump(compiler, type, src, srcw); #endif /* __SOFTFP__ */ } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 type) { sljit_s32 dst_r, flags = GET_ALL_FLAGS(op); sljit_ins cc; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); op = GET_OPCODE(op); cc = get_cc(type & 0xff); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if (op < SLJIT_ADD) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4)); if (reg_map[dst_r] > 7) { FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 1)); FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 0)); } else { /* The movsi (immediate) instruction does not set flags in IT block. */ FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 1)); FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 0)); } if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG1, dst, dstw, TMP_REG2); } if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2)); if (op == SLJIT_AND) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4)); FAIL_IF(push_inst32(compiler, ANDI | RN4(dst_r) | RD4(dst_r) | 1)); FAIL_IF(push_inst32(compiler, ANDI | RN4(dst_r) | RD4(dst_r) | 0)); } else { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); FAIL_IF(push_inst32(compiler, ((op == SLJIT_OR) ? ORRI : EORI) | RN4(dst_r) | RD4(dst_r) | 1)); } if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG1, dst, dstw, TMP_REG2)); if (!(flags & SLJIT_SET_Z)) return SLJIT_SUCCESS; /* The condition must always be set, even if the ORR/EORI is not executed above. */ return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst_r)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_reg, sljit_s32 src, sljit_sw srcw) { sljit_uw cc, tmp; CHECK_ERROR(); CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw)); dst_reg &= ~SLJIT_I32_OP; cc = get_cc(type & 0xff); if (!(src & SLJIT_IMM)) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); return push_inst16(compiler, MOV | SET_REGS44(dst_reg, src)); } tmp = (sljit_uw) srcw; if (tmp < 0x10000) { /* set low 16 bits, set hi 16 bits to 0. */ FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); return push_inst32(compiler, MOVW | RD4(dst_reg) | COPY_BITS(tmp, 12, 16, 4) | COPY_BITS(tmp, 11, 26, 1) | COPY_BITS(tmp, 8, 12, 3) | (tmp & 0xff)); } tmp = get_imm(srcw); if (tmp != INVALID_IMM) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); return push_inst32(compiler, MOV_WI | RD4(dst_reg) | tmp); } tmp = get_imm(~srcw); if (tmp != INVALID_IMM) { FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8)); return push_inst32(compiler, MVN_WI | RD4(dst_reg) | tmp); } FAIL_IF(push_inst16(compiler, IT | (cc << 4) | ((cc & 0x1) << 3) | 0x4)); tmp = (sljit_uw) srcw; FAIL_IF(push_inst32(compiler, MOVW | RD4(dst_reg) | COPY_BITS(tmp, 12, 16, 4) | COPY_BITS(tmp, 11, 26, 1) | COPY_BITS(tmp, 8, 12, 3) | (tmp & 0xff))); return push_inst32(compiler, MOVT | RD4(dst_reg) | COPY_BITS(tmp, 12 + 16, 16, 4) | COPY_BITS(tmp, 11 + 16, 26, 1) | COPY_BITS(tmp, 8 + 16, 12, 3) | ((tmp & 0xff0000) >> 16)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 reg, sljit_s32 mem, sljit_sw memw) { sljit_s32 flags; sljit_ins inst; CHECK_ERROR(); CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw)); if ((mem & OFFS_REG_MASK) || (memw > 255 && memw < -255)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_MEM_SUPP) return SLJIT_SUCCESS; switch (type & 0xff) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: flags = WORD_SIZE; break; case SLJIT_MOV_U8: flags = BYTE_SIZE; break; case SLJIT_MOV_S8: flags = BYTE_SIZE | SIGNED; break; case SLJIT_MOV_U16: flags = HALF_SIZE; break; case SLJIT_MOV_S16: flags = HALF_SIZE | SIGNED; break; default: SLJIT_UNREACHABLE(); flags = WORD_SIZE; break; } if (type & SLJIT_MEM_STORE) flags |= STORE; inst = sljit_mem32[flags] | 0x900; if (type & SLJIT_MEM_PRE) inst |= 0x400; if (memw >= 0) inst |= 0x200; else memw = -memw; return push_inst32(compiler, inst | RT4(reg) | RN4(mem & REG_MASK) | memw); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; PTR_FAIL_IF(emit_imm32_const(compiler, dst_r, init_value)); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw, TMP_REG2)); return const_; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { struct sljit_put_label *put_label; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label)); PTR_FAIL_IF(!put_label); set_put_label(put_label, compiler, 0); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; PTR_FAIL_IF(emit_imm32_const(compiler, dst_r, 0)); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw, TMP_REG2)); return put_label; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { sljit_u16 *inst = (sljit_u16*)addr; modify_imm32_const(inst, new_target); inst = (sljit_u16 *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 4); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { sljit_u16 *inst = (sljit_u16*)addr; modify_imm32_const(inst, new_constant); inst = (sljit_u16 *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 4); }