pcre2/src/sljit/sljitNativePPC_64.c

505 lines
17 KiB
C

/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* ppc 64-bit arch dependent functions. */
#if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
#define ASM_SLJIT_CLZ(src, dst) \
__asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
#elif defined(__xlc__)
#error "Please enable GCC syntax for inline assembly statements"
#else
#error "Must implement count leading zeroes"
#endif
#define PUSH_RLDICR(reg, shift) \
push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
{
sljit_uw tmp;
sljit_uw shift;
sljit_uw tmp2;
sljit_uw shift2;
if (imm <= SIMM_MAX && imm >= SIMM_MIN)
return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
if (!(imm & ~0xffff))
return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
}
/* Count leading zeroes. */
tmp = (sljit_uw)((imm >= 0) ? imm : ~imm);
ASM_SLJIT_CLZ(tmp, shift);
SLJIT_ASSERT(shift > 0);
shift--;
tmp = ((sljit_uw)imm << shift);
if ((tmp & ~0xffff000000000000ul) == 0) {
FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | (sljit_ins)(tmp >> 48)));
shift += 15;
return PUSH_RLDICR(reg, shift);
}
if ((tmp & ~0xffffffff00000000ul) == 0) {
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | (sljit_ins)(tmp >> 48)));
FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
shift += 31;
return PUSH_RLDICR(reg, shift);
}
/* Cut out the 16 bit from immediate. */
shift += 15;
tmp2 = (sljit_uw)imm & (((sljit_uw)1 << (63 - shift)) - 1);
if (tmp2 <= 0xffff) {
FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | (sljit_ins)(tmp >> 48)));
FAIL_IF(PUSH_RLDICR(reg, shift));
return push_inst(compiler, ORI | S(reg) | A(reg) | (sljit_ins)tmp2);
}
if (tmp2 <= 0xffffffff) {
FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
FAIL_IF(PUSH_RLDICR(reg, shift));
FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (sljit_ins)(tmp2 >> 16)));
return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
}
ASM_SLJIT_CLZ(tmp2, shift2);
tmp2 <<= shift2;
if ((tmp2 & ~0xffff000000000000ul) == 0) {
FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | (sljit_ins)(tmp >> 48)));
shift2 += 15;
shift += (63 - shift2);
FAIL_IF(PUSH_RLDICR(reg, shift));
FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (sljit_ins)(tmp2 >> 48)));
return PUSH_RLDICR(reg, shift2);
}
/* The general version. */
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | (sljit_ins)((sljit_uw)imm >> 48)));
FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
FAIL_IF(PUSH_RLDICR(reg, 31));
FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
}
/* Simplified mnemonics: clrldi. */
#define INS_CLEAR_LEFT(dst, src, from) \
(RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
/* Sign extension for integer operations. */
#define UN_EXTS() \
if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
src2 = TMP_REG2; \
}
#define BIN_EXTS() \
if (flags & ALT_SIGN_EXT) { \
if (flags & REG1_SOURCE) { \
FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
src1 = TMP_REG1; \
} \
if (flags & REG2_SOURCE) { \
FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
src2 = TMP_REG2; \
} \
}
#define BIN_IMM_EXTS() \
if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
src1 = TMP_REG1; \
}
static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
{
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
SLJIT_ASSERT(src1 == TMP_REG1);
if (dst != src2)
return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
return SLJIT_SUCCESS;
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
SLJIT_ASSERT(src1 == TMP_REG1);
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_S32)
return push_inst(compiler, EXTSW | S(src2) | A(dst));
return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
}
else {
SLJIT_ASSERT(dst == src2);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_U8:
case SLJIT_MOV_S8:
SLJIT_ASSERT(src1 == TMP_REG1);
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_S8)
return push_inst(compiler, EXTSB | S(src2) | A(dst));
return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
}
else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
return push_inst(compiler, EXTSB | S(src2) | A(dst));
else {
SLJIT_ASSERT(dst == src2);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_U16:
case SLJIT_MOV_S16:
SLJIT_ASSERT(src1 == TMP_REG1);
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_S16)
return push_inst(compiler, EXTSH | S(src2) | A(dst));
return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
}
else {
SLJIT_ASSERT(dst == src2);
}
return SLJIT_SUCCESS;
case SLJIT_NOT:
SLJIT_ASSERT(src1 == TMP_REG1);
UN_EXTS();
return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
case SLJIT_CLZ:
SLJIT_ASSERT(src1 == TMP_REG1);
if (flags & ALT_FORM1)
return push_inst(compiler, CNTLZW | S(src2) | A(dst));
return push_inst(compiler, CNTLZD | S(src2) | A(dst));
case SLJIT_ADD:
if (flags & ALT_FORM1) {
if (flags & ALT_SIGN_EXT) {
FAIL_IF(push_inst(compiler, RLDI(TMP_REG1, src1, 32, 31, 1)));
src1 = TMP_REG1;
FAIL_IF(push_inst(compiler, RLDI(TMP_REG2, src2, 32, 31, 1)));
src2 = TMP_REG2;
}
/* Setting XER SO is not enough, CR SO is also needed. */
FAIL_IF(push_inst(compiler, ADD | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2)));
if (flags & ALT_SIGN_EXT)
return push_inst(compiler, RLDI(dst, dst, 32, 32, 0));
return SLJIT_SUCCESS;
}
if (flags & ALT_FORM2) {
/* Flags does not set: BIN_IMM_EXTS unnecessary. */
SLJIT_ASSERT(src2 == TMP_REG2);
if (flags & ALT_FORM3)
return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
if (flags & ALT_FORM4) {
FAIL_IF(push_inst(compiler, ADDIS | D(dst) | A(src1) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1))));
src1 = dst;
}
return push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff));
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
BIN_IMM_EXTS();
return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
}
if (flags & ALT_FORM4) {
if (flags & ALT_FORM5)
FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm));
else
FAIL_IF(push_inst(compiler, ADD | D(dst) | A(src1) | B(src2)));
return push_inst(compiler, CMPI | A(dst) | 0);
}
if (!(flags & ALT_SET_FLAGS))
return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
BIN_EXTS();
if (flags & ALT_FORM5)
return push_inst(compiler, ADDC | RC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
return push_inst(compiler, ADD | RC(flags) | D(dst) | A(src1) | B(src2));
case SLJIT_ADDC:
BIN_EXTS();
return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
case SLJIT_SUB:
if (flags & ALT_FORM1) {
if (flags & ALT_FORM2) {
FAIL_IF(push_inst(compiler, CMPLI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
if (!(flags & ALT_FORM3))
return SLJIT_SUCCESS;
return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
}
FAIL_IF(push_inst(compiler, CMPL | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
if (!(flags & ALT_FORM3))
return SLJIT_SUCCESS;
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
if (flags & ALT_FORM2) {
if (flags & ALT_FORM3) {
FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
if (!(flags & ALT_FORM4))
return SLJIT_SUCCESS;
return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
}
FAIL_IF(push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
if (!(flags & ALT_FORM4))
return SLJIT_SUCCESS;
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
if (flags & ALT_FORM3) {
if (flags & ALT_SIGN_EXT) {
if (src1 != TMP_ZERO) {
FAIL_IF(push_inst(compiler, RLDI(TMP_REG1, src1, 32, 31, 1)));
src1 = TMP_REG1;
}
if (src2 != TMP_ZERO) {
FAIL_IF(push_inst(compiler, RLDI(TMP_REG2, src2, 32, 31, 1)));
src2 = TMP_REG2;
}
}
/* Setting XER SO is not enough, CR SO is also needed. */
if (src1 != TMP_ZERO)
FAIL_IF(push_inst(compiler, SUBF | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1)));
else
FAIL_IF(push_inst(compiler, NEG | OE(ALT_SET_FLAGS) | RC(ALT_SET_FLAGS) | D(dst) | A(src2)));
if (flags & ALT_SIGN_EXT)
return push_inst(compiler, RLDI(dst, dst, 32, 32, 0));
return SLJIT_SUCCESS;
}
if (flags & ALT_FORM4) {
/* Flags does not set: BIN_IMM_EXTS unnecessary. */
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
}
if (!(flags & ALT_SET_FLAGS)) {
SLJIT_ASSERT(src1 != TMP_ZERO);
return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
}
BIN_EXTS();
if (flags & ALT_FORM5)
return push_inst(compiler, SUBFC | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
if (src1 != TMP_ZERO)
return push_inst(compiler, SUBF | RC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
return push_inst(compiler, NEG | RC(ALT_SET_FLAGS) | D(dst) | A(src2));
case SLJIT_SUBC:
BIN_EXTS();
return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
case SLJIT_MUL:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
}
BIN_EXTS();
if (flags & ALT_FORM2)
return push_inst(compiler, MULLW | OE(flags) | RC(flags) | D(dst) | A(src2) | B(src1));
return push_inst(compiler, MULLD | OE(flags) | RC(flags) | D(dst) | A(src2) | B(src1));
case SLJIT_AND:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
}
return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_OR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
}
return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_XOR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM2) {
SLJIT_ASSERT(src2 == TMP_REG2);
return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
}
if (flags & ALT_FORM3) {
SLJIT_ASSERT(src2 == TMP_REG2);
FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
}
return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_SHL:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
if (flags & ALT_FORM2) {
compiler->imm &= 0x1f;
return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
}
compiler->imm &= 0x3f;
return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
}
return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_LSHR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
if (flags & ALT_FORM2) {
compiler->imm &= 0x1f;
return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
}
compiler->imm &= 0x3f;
return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
}
return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
case SLJIT_ASHR:
if (flags & ALT_FORM1) {
SLJIT_ASSERT(src2 == TMP_REG2);
if (flags & ALT_FORM2) {
compiler->imm &= 0x1f;
return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11));
}
compiler->imm &= 0x3f;
return push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4));
}
return push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2));
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src)
{
sljit_s32 arg_count = 0;
sljit_s32 word_arg_count = 0;
sljit_s32 types = 0;
sljit_s32 reg = 0;
if (src)
reg = *src & REG_MASK;
arg_types >>= SLJIT_ARG_SHIFT;
while (arg_types) {
types = (types << SLJIT_ARG_SHIFT) | (arg_types & SLJIT_ARG_MASK);
switch (arg_types & SLJIT_ARG_MASK) {
case SLJIT_ARG_TYPE_F64:
case SLJIT_ARG_TYPE_F32:
arg_count++;
break;
default:
arg_count++;
word_arg_count++;
if (arg_count != word_arg_count && arg_count == reg) {
FAIL_IF(push_inst(compiler, OR | S(reg) | A(TMP_CALL_REG) | B(reg)));
*src = TMP_CALL_REG;
}
break;
}
arg_types >>= SLJIT_ARG_SHIFT;
}
while (types) {
switch (types & SLJIT_ARG_MASK) {
case SLJIT_ARG_TYPE_F64:
case SLJIT_ARG_TYPE_F32:
arg_count--;
break;
default:
if (arg_count != word_arg_count)
FAIL_IF(push_inst(compiler, OR | S(word_arg_count) | A(arg_count) | B(word_arg_count)));
arg_count--;
word_arg_count--;
break;
}
types >>= SLJIT_ARG_SHIFT;
}
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
{
FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
FAIL_IF(PUSH_RLDICR(reg, 31));
FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
sljit_ins *inst = (sljit_ins*)addr;
SLJIT_UNUSED_ARG(executable_offset);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 5, 0);
inst[0] = (inst[0] & 0xffff0000u) | ((sljit_ins)(new_target >> 48) & 0xffff);
inst[1] = (inst[1] & 0xffff0000u) | ((sljit_ins)(new_target >> 32) & 0xffff);
inst[3] = (inst[3] & 0xffff0000u) | ((sljit_ins)(new_target >> 16) & 0xffff);
inst[4] = (inst[4] & 0xffff0000u) | ((sljit_ins)new_target & 0xffff);
SLJIT_UPDATE_WX_FLAGS(inst, inst + 5, 1);
inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 5);
}