pcre2/src/sljit/sljitNativeRISCV_common.c

2522 lines
79 KiB
C

/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
return "RISC-V-32" SLJIT_CPUINFO;
#else /* !SLJIT_CONFIG_RISCV_32 */
return "RISC-V-64" SLJIT_CPUINFO;
#endif /* SLJIT_CONFIG_RISCV_32 */
}
/* Length of an instruction word
Both for riscv-32 and riscv-64 */
typedef sljit_u32 sljit_ins;
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_ZERO 0
/* Flags are kept in volatile registers. */
#define EQUAL_FLAG (SLJIT_NUMBER_OF_REGISTERS + 5)
#define RETURN_ADDR_REG TMP_REG2
#define OTHER_FLAG (SLJIT_NUMBER_OF_REGISTERS + 6)
#define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2)
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 7] = {
0, 10, 11, 12, 13, 14, 15, 16, 17, 29, 30, 31, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 9, 8, 2, 6, 1, 7, 5, 28
};
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = {
0, 10, 11, 12, 13, 14, 15, 16, 17, 2, 3, 4, 5, 6, 7, 28, 29, 30, 31, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 9, 8, 0, 1,
};
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define RD(rd) ((sljit_ins)reg_map[rd] << 7)
#define RS1(rs1) ((sljit_ins)reg_map[rs1] << 15)
#define RS2(rs2) ((sljit_ins)reg_map[rs2] << 20)
#define FRD(rd) ((sljit_ins)freg_map[rd] << 7)
#define FRS1(rs1) ((sljit_ins)freg_map[rs1] << 15)
#define FRS2(rs2) ((sljit_ins)freg_map[rs2] << 20)
#define IMM_I(imm) ((sljit_ins)(imm) << 20)
#define IMM_S(imm) ((((sljit_ins)(imm) & 0xfe0) << 20) | (((sljit_ins)(imm) & 0x1f) << 7))
/* Represents funct(i) parts of the instructions. */
#define OPC(o) ((sljit_ins)(o))
#define F3(f) ((sljit_ins)(f) << 12)
#define F12(f) ((sljit_ins)(f) << 20)
#define F7(f) ((sljit_ins)(f) << 25)
#define ADD (F7(0x0) | F3(0x0) | OPC(0x33))
#define ADDI (F3(0x0) | OPC(0x13))
#define AND (F7(0x0) | F3(0x7) | OPC(0x33))
#define ANDI (F3(0x7) | OPC(0x13))
#define AUIPC (OPC(0x17))
#define BEQ (F3(0x0) | OPC(0x63))
#define BNE (F3(0x1) | OPC(0x63))
#define BLT (F3(0x4) | OPC(0x63))
#define BGE (F3(0x5) | OPC(0x63))
#define BLTU (F3(0x6) | OPC(0x63))
#define BGEU (F3(0x7) | OPC(0x63))
#define DIV (F7(0x1) | F3(0x4) | OPC(0x33))
#define DIVU (F7(0x1) | F3(0x5) | OPC(0x33))
#define EBREAK (F12(0x1) | F3(0x0) | OPC(0x73))
#define FADD_S (F7(0x0) | F3(0x7) | OPC(0x53))
#define FDIV_S (F7(0xc) | F3(0x7) | OPC(0x53))
#define FEQ_S (F7(0x50) | F3(0x2) | OPC(0x53))
#define FLD (F3(0x3) | OPC(0x7))
#define FLE_S (F7(0x50) | F3(0x0) | OPC(0x53))
#define FLT_S (F7(0x50) | F3(0x1) | OPC(0x53))
#define FSD (F3(0x3) | OPC(0x27))
/* These conversion opcodes are partly defined. */
#define FCVT_S_D (F7(0x20) | OPC(0x53))
#define FCVT_S_W (F7(0x68) | OPC(0x53))
#define FCVT_W_S (F7(0x60) | F3(0x1) | OPC(0x53))
#define FMUL_S (F7(0x8) | F3(0x7) | OPC(0x53))
#define FSGNJ_S (F7(0x10) | F3(0x0) | OPC(0x53))
#define FSGNJN_S (F7(0x10) | F3(0x1) | OPC(0x53))
#define FSGNJX_S (F7(0x10) | F3(0x2) | OPC(0x53))
#define FSUB_S (F7(0x4) | F3(0x7) | OPC(0x53))
#define JAL (OPC(0x6f))
#define JALR (F3(0x0) | OPC(0x67))
#define LD (F3(0x3) | OPC(0x3))
#define LUI (OPC(0x37))
#define LW (F3(0x2) | OPC(0x3))
#define MUL (F7(0x1) | F3(0x0) | OPC(0x33))
#define MULH (F7(0x1) | F3(0x1) | OPC(0x33))
#define MULHU (F7(0x1) | F3(0x3) | OPC(0x33))
#define OR (F7(0x0) | F3(0x6) | OPC(0x33))
#define ORI (F3(0x6) | OPC(0x13))
#define REM (F7(0x1) | F3(0x6) | OPC(0x33))
#define REMU (F7(0x1) | F3(0x7) | OPC(0x33))
#define SD (F3(0x3) | OPC(0x23))
#define SLL (F7(0x0) | F3(0x1) | OPC(0x33))
#define SLLI (IMM_I(0x0) | F3(0x1) | OPC(0x13))
#define SLT (F7(0x0) | F3(0x2) | OPC(0x33))
#define SLTI (F3(0x2) | OPC(0x13))
#define SLTU (F7(0x0) | F3(0x3) | OPC(0x33))
#define SLTUI (F3(0x3) | OPC(0x13))
#define SRL (F7(0x0) | F3(0x5) | OPC(0x33))
#define SRLI (IMM_I(0x0) | F3(0x5) | OPC(0x13))
#define SRA (F7(0x20) | F3(0x5) | OPC(0x33))
#define SRAI (IMM_I(0x400) | F3(0x5) | OPC(0x13))
#define SUB (F7(0x20) | F3(0x0) | OPC(0x33))
#define SW (F3(0x2) | OPC(0x23))
#define XOR (F7(0x0) | F3(0x4) | OPC(0x33))
#define XORI (F3(0x4) | OPC(0x13))
#define SIMM_MAX (0x7ff)
#define SIMM_MIN (-0x800)
#define BRANCH_MAX (0xfff)
#define BRANCH_MIN (-0x1000)
#define JUMP_MAX (0xfffff)
#define JUMP_MIN (-0x100000)
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
#define S32_MAX (0x7ffff7ffl)
#define S32_MIN (-0x80000000l)
#define S44_MAX (0x7fffffff7ffl)
#define S52_MAX (0x7ffffffffffffl)
#endif
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
static sljit_s32 push_imm_s_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_sw imm)
{
return push_inst(compiler, ins | IMM_S(imm));
}
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code, sljit_sw executable_offset)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_ins *inst;
inst = (sljit_ins *)jump->addr;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
goto exit;
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size) + (sljit_uw)executable_offset;
}
diff = (sljit_sw)target_addr - (sljit_sw)inst - executable_offset;
if (jump->flags & IS_COND) {
inst--;
diff += SSIZE_OF(ins);
if (diff >= BRANCH_MIN && diff <= BRANCH_MAX) {
jump->flags |= PATCH_B;
inst[0] = (inst[0] & 0x1fff07f) ^ 0x1000;
jump->addr = (sljit_uw)inst;
return inst;
}
inst++;
diff -= SSIZE_OF(ins);
}
if (diff >= JUMP_MIN && diff <= JUMP_MAX) {
if (jump->flags & IS_COND) {
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
inst[-1] -= (sljit_ins)(1 * sizeof(sljit_ins)) << 7;
#else
inst[-1] -= (sljit_ins)(5 * sizeof(sljit_ins)) << 7;
#endif
}
jump->flags |= PATCH_J;
return inst;
}
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (diff >= S32_MIN && diff <= S32_MAX) {
if (jump->flags & IS_COND)
inst[-1] -= (sljit_ins)(4 * sizeof(sljit_ins)) << 7;
jump->flags |= PATCH_REL32;
inst[1] = inst[0];
return inst + 1;
}
if (target_addr <= (sljit_uw)S32_MAX) {
if (jump->flags & IS_COND)
inst[-1] -= (sljit_ins)(4 * sizeof(sljit_ins)) << 7;
jump->flags |= PATCH_ABS32;
inst[1] = inst[0];
return inst + 1;
}
if (target_addr <= S44_MAX) {
if (jump->flags & IS_COND)
inst[-1] -= (sljit_ins)(2 * sizeof(sljit_ins)) << 7;
jump->flags |= PATCH_ABS44;
inst[3] = inst[0];
return inst + 4;
}
if (target_addr <= S52_MAX) {
if (jump->flags & IS_COND)
inst[-1] -= (sljit_ins)(1 * sizeof(sljit_ins)) << 7;
jump->flags |= PATCH_ABS52;
inst[4] = inst[0];
return inst + 4;
}
#endif
exit:
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
inst[1] = inst[0];
return inst + 1;
#else
inst[5] = inst[0];
return inst + 5;
#endif
}
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
static SLJIT_INLINE sljit_sw put_label_get_length(struct sljit_put_label *put_label, sljit_uw max_label)
{
if (max_label <= (sljit_uw)S32_MAX) {
put_label->flags = PATCH_ABS32;
return 1;
}
if (max_label <= S44_MAX) {
put_label->flags = PATCH_ABS44;
return 3;
}
if (max_label <= S52_MAX) {
put_label->flags = PATCH_ABS52;
return 4;
}
put_label->flags = 0;
return 5;
}
#endif /* SLJIT_CONFIG_RISCV_64 */
static SLJIT_INLINE void load_addr_to_reg(void *dst, sljit_u32 reg)
{
struct sljit_jump *jump = NULL;
struct sljit_put_label *put_label;
sljit_uw flags;
sljit_ins *inst;
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
sljit_sw high;
#endif
sljit_uw addr;
if (reg != 0) {
jump = (struct sljit_jump*)dst;
flags = jump->flags;
inst = (sljit_ins*)jump->addr;
addr = (flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
} else {
put_label = (struct sljit_put_label*)dst;
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
flags = put_label->flags;
#endif
inst = (sljit_ins*)put_label->addr;
addr = put_label->label->addr;
reg = *inst;
}
if ((addr & 0x800) != 0)
addr += 0x1000;
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
inst[0] = LUI | RD(reg) | (sljit_ins)((sljit_sw)addr & ~0xfff);
#else /* !SLJIT_CONFIG_RISCV_32 */
if (flags & PATCH_ABS32) {
SLJIT_ASSERT(addr <= S32_MAX);
inst[0] = LUI | RD(reg) | (sljit_ins)((sljit_sw)addr & ~0xfff);
} else if (flags & PATCH_ABS44) {
high = (sljit_sw)addr >> 12;
SLJIT_ASSERT((sljit_uw)high <= 0x7fffffff);
if (high > S32_MAX) {
SLJIT_ASSERT((high & 0x800) != 0);
inst[0] = LUI | RD(reg) | (sljit_ins)0x80000000u;
inst[1] = XORI | RD(reg) | RS1(reg) | IMM_I(high);
} else {
if ((high & 0x800) != 0)
high += 0x1000;
inst[0] = LUI | RD(reg) | (sljit_ins)(high & ~0xfff);
inst[1] = ADDI | RD(reg) | RS1(reg) | IMM_I(high);
}
inst[2] = SLLI | RD(reg) | RS1(reg) | IMM_I(12);
inst += 2;
} else {
high = (sljit_sw)addr >> 32;
if ((addr & 0x80000000l) != 0)
high = ~high;
if ((high & 0x800) != 0)
high += 0x1000;
if (flags & PATCH_ABS52) {
SLJIT_ASSERT(addr <= S52_MAX);
inst[0] = LUI | RD(TMP_REG3) | (sljit_ins)(high << 12);
} else {
inst[0] = LUI | RD(TMP_REG3) | (sljit_ins)(high & ~0xfff);
inst[1] = ADDI | RD(TMP_REG3) | RS1(TMP_REG3) | IMM_I(high);
inst++;
}
inst[1] = LUI | RD(reg) | (sljit_ins)((sljit_sw)addr & ~0xfff);
inst[2] = SLLI | RD(TMP_REG3) | RS1(TMP_REG3) | IMM_I((flags & PATCH_ABS52) ? 20 : 32);
inst[3] = XOR | RD(reg) | RS1(reg) | RS2(TMP_REG3);
inst += 3;
}
#endif /* !SLJIT_CONFIG_RISCV_32 */
if (jump != NULL) {
SLJIT_ASSERT((inst[1] & 0x707f) == JALR);
inst[1] = (inst[1] & 0xfffff) | IMM_I(addr);
} else
inst[1] = ADDI | RD(reg) | RS1(reg) | IMM_I(addr);
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw next_addr;
sljit_sw executable_offset;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
struct sljit_put_label *put_label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins), compiler->exec_allocator_data);
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
next_addr = 0;
executable_offset = SLJIT_EXEC_OFFSET(code);
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
put_label = compiler->put_labels;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
if (next_addr == word_count) {
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
SLJIT_ASSERT(!put_label || put_label->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
label->size = (sljit_uw)(code_ptr - code);
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
word_count += 1;
#else
word_count += 5;
#endif
jump->addr = (sljit_uw)code_ptr;
code_ptr = detect_jump_type(jump, code, executable_offset);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
if (put_label && put_label->addr == word_count) {
SLJIT_ASSERT(put_label->label);
put_label->addr = (sljit_uw)code_ptr;
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
code_ptr += 1;
word_count += 1;
#else
code_ptr += put_label_get_length(put_label, (sljit_uw)(SLJIT_ADD_EXEC_OFFSET(code, executable_offset) + put_label->label->size));
word_count += 5;
#endif
put_label = put_label->next;
}
next_addr = compute_next_addr(label, jump, const_, put_label);
}
code_ptr++;
word_count++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = (sljit_uw)(code_ptr - code);
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(!put_label);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
if (!(jump->flags & (PATCH_B | PATCH_J | PATCH_REL32))) {
load_addr_to_reg(jump, TMP_REG1);
break;
}
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins *)jump->addr;
addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset);
if (jump->flags & PATCH_B) {
SLJIT_ASSERT((sljit_sw)addr >= BRANCH_MIN && (sljit_sw)addr <= BRANCH_MAX);
addr = ((addr & 0x800) >> 4) | ((addr & 0x1e) << 7) | ((addr & 0x7e0) << 20) | ((addr & 0x1000) << 19);
buf_ptr[0] |= (sljit_ins)addr;
break;
}
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (jump->flags & PATCH_REL32) {
SLJIT_ASSERT((sljit_sw)addr >= S32_MIN && (sljit_sw)addr <= S32_MAX);
if ((addr & 0x800) != 0)
addr += 0x1000;
buf_ptr[0] = AUIPC | RD(TMP_REG1) | (sljit_ins)((sljit_sw)addr & ~0xfff);
SLJIT_ASSERT((buf_ptr[1] & 0x707f) == JALR);
buf_ptr[1] |= IMM_I(addr);
break;
}
#endif
SLJIT_ASSERT((sljit_sw)addr >= JUMP_MIN && (sljit_sw)addr <= JUMP_MAX);
addr = (addr & 0xff000) | ((addr & 0x800) << 9) | ((addr & 0x7fe) << 20) | ((addr & 0x100000) << 11);
buf_ptr[0] = JAL | RD((jump->flags & IS_CALL) ? RETURN_ADDR_REG : TMP_ZERO) | (sljit_ins)addr;
} while (0);
jump = jump->next;
}
put_label = compiler->put_labels;
while (put_label) {
load_addr_to_reg(put_label, 0);
put_label = put_label->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_offset = executable_offset;
compiler->executable_size = (sljit_uw)(code_ptr - code) * sizeof(sljit_ins);
code = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
code_ptr = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
SLJIT_CACHE_FLUSH(code, code_ptr);
SLJIT_UPDATE_WX_FLAGS(code, code_ptr, 1);
return code;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
{
switch (feature_type) {
case SLJIT_HAS_FPU:
case SLJIT_HAS_ZERO_REGISTER:
return 1;
default:
return 0;
}
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type)
{
return (type >= SLJIT_ORDERED_EQUAL && type <= SLJIT_ORDERED_LESS_EQUAL);
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
/* Separates integer and floating point registers */
#define GPR_REG 0x0f
#define DOUBLE_DATA 0x10
#define SINGLE_DATA 0x12
#define MEM_MASK 0x1f
#define ARG_TEST 0x00020
#define ALT_KEEP_CACHE 0x00040
#define CUMULATIVE_OP 0x00080
#define IMM_OP 0x00100
#define MOVE_OP 0x00200
#define SRC2_IMM 0x00400
#define UNUSED_DEST 0x00800
#define REG_DEST 0x01000
#define REG1_SOURCE 0x02000
#define REG2_SOURCE 0x04000
#define SLOW_SRC1 0x08000
#define SLOW_SRC2 0x10000
#define SLOW_DEST 0x20000
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
#define STACK_STORE SW
#define STACK_LOAD LW
#else
#define STACK_STORE SD
#define STACK_LOAD LD
#endif
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
#include "sljitNativeRISCV_32.c"
#else
#include "sljitNativeRISCV_64.c"
#endif
#define STACK_MAX_DISTANCE (-SIMM_MIN)
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 i, tmp, offset;
sljit_s32 saved_arg_count = SLJIT_KEPT_SAVEDS_COUNT(options);
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds - saved_arg_count, 1);
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
if (fsaveds > 0 || fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) {
if ((local_size & SSIZE_OF(sw)) != 0)
local_size += SSIZE_OF(sw);
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sizeof(sljit_f64));
}
#else
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sizeof(sljit_f64));
#endif
local_size = (local_size + SLJIT_LOCALS_OFFSET + 15) & ~0xf;
compiler->local_size = local_size;
if (local_size <= STACK_MAX_DISTANCE) {
/* Frequent case. */
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RS1(SLJIT_SP) | IMM_I(-local_size)));
offset = local_size - SSIZE_OF(sw);
local_size = 0;
} else {
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RS1(SLJIT_SP) | IMM_I(STACK_MAX_DISTANCE)));
local_size -= STACK_MAX_DISTANCE;
if (local_size > STACK_MAX_DISTANCE)
FAIL_IF(load_immediate(compiler, TMP_REG1, local_size, TMP_REG3));
offset = STACK_MAX_DISTANCE - SSIZE_OF(sw);
}
FAIL_IF(push_imm_s_inst(compiler, STACK_STORE | RS1(SLJIT_SP) | RS2(RETURN_ADDR_REG), offset));
tmp = SLJIT_S0 - saveds;
for (i = SLJIT_S0 - saved_arg_count; i > tmp; i--) {
offset -= SSIZE_OF(sw);
FAIL_IF(push_imm_s_inst(compiler, STACK_STORE | RS1(SLJIT_SP) | RS2(i), offset));
}
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
offset -= SSIZE_OF(sw);
FAIL_IF(push_imm_s_inst(compiler, STACK_STORE | RS1(SLJIT_SP) | RS2(i), offset));
}
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
/* This alignment is valid because offset is not used after storing FPU regs. */
if ((offset & SSIZE_OF(sw)) != 0)
offset -= SSIZE_OF(sw);
#endif
tmp = SLJIT_FS0 - fsaveds;
for (i = SLJIT_FS0; i > tmp; i--) {
offset -= SSIZE_OF(f64);
FAIL_IF(push_imm_s_inst(compiler, FSD | RS1(SLJIT_SP) | FRS2(i), offset));
}
for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
offset -= SSIZE_OF(f64);
FAIL_IF(push_imm_s_inst(compiler, FSD | RS1(SLJIT_SP) | FRS2(i), offset));
}
if (local_size > STACK_MAX_DISTANCE)
FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RS1(SLJIT_SP) | RS2(TMP_REG1)));
else if (local_size > 0)
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RS1(SLJIT_SP) | IMM_I(-local_size)));
if (options & SLJIT_ENTER_REG_ARG)
return SLJIT_SUCCESS;
arg_types >>= SLJIT_ARG_SHIFT;
saved_arg_count = 0;
tmp = SLJIT_R0;
while (arg_types > 0) {
if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) {
if (!(arg_types & SLJIT_ARG_TYPE_SCRATCH_REG)) {
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_S0 - saved_arg_count) | RS1(tmp) | IMM_I(0)));
saved_arg_count++;
}
tmp++;
}
arg_types >>= SLJIT_ARG_SHIFT;
}
return SLJIT_SUCCESS;
}
#undef STACK_MAX_DISTANCE
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds - SLJIT_KEPT_SAVEDS_COUNT(options), 1);
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
if (fsaveds > 0 || fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) {
if ((local_size & SSIZE_OF(sw)) != 0)
local_size += SSIZE_OF(sw);
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sizeof(sljit_f64));
}
#else
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, sizeof(sljit_f64));
#endif
compiler->local_size = (local_size + SLJIT_LOCALS_OFFSET + 15) & ~0xf;
return SLJIT_SUCCESS;
}
#define STACK_MAX_DISTANCE (-SIMM_MIN - 16)
static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler)
{
sljit_s32 i, tmp, offset;
sljit_s32 local_size = compiler->local_size;
if (local_size > STACK_MAX_DISTANCE) {
local_size -= STACK_MAX_DISTANCE;
if (local_size > STACK_MAX_DISTANCE) {
FAIL_IF(load_immediate(compiler, TMP_REG2, local_size, TMP_REG3));
FAIL_IF(push_inst(compiler, ADD | RD(SLJIT_SP) | RS1(SLJIT_SP) | RS2(TMP_REG2)));
} else
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_SP) | RS1(SLJIT_SP) | IMM_I(local_size)));
local_size = STACK_MAX_DISTANCE;
}
SLJIT_ASSERT(local_size > 0);
offset = local_size - SSIZE_OF(sw);
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(RETURN_ADDR_REG) | RS1(SLJIT_SP) | IMM_I(offset)));
tmp = SLJIT_S0 - compiler->saveds;
for (i = SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options); i > tmp; i--) {
offset -= SSIZE_OF(sw);
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(i) | RS1(SLJIT_SP) | IMM_I(offset)));
}
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
offset -= SSIZE_OF(sw);
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(i) | RS1(SLJIT_SP) | IMM_I(offset)));
}
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
/* This alignment is valid because offset is not used after storing FPU regs. */
if ((offset & SSIZE_OF(sw)) != 0)
offset -= SSIZE_OF(sw);
#endif
tmp = SLJIT_FS0 - compiler->fsaveds;
for (i = SLJIT_FS0; i > tmp; i--) {
offset -= SSIZE_OF(f64);
FAIL_IF(push_inst(compiler, FLD | FRD(i) | RS1(SLJIT_SP) | IMM_I(offset)));
}
for (i = compiler->fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
offset -= SSIZE_OF(f64);
FAIL_IF(push_inst(compiler, FLD | FRD(i) | RS1(SLJIT_SP) | IMM_I(offset)));
}
return push_inst(compiler, ADDI | RD(SLJIT_SP) | RS1(SLJIT_SP) | IMM_I(local_size));
}
#undef STACK_MAX_DISTANCE
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler)
{
CHECK_ERROR();
CHECK(check_sljit_emit_return_void(compiler));
FAIL_IF(emit_stack_frame_release(compiler));
return push_inst(compiler, JALR | RD(TMP_ZERO) | RS1(RETURN_ADDR_REG) | IMM_I(0));
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
#define ARCH_32_64(a, b) a
#else
#define ARCH_32_64(a, b) b
#endif
static const sljit_ins data_transfer_insts[16 + 4] = {
/* u w s */ ARCH_32_64(F3(0x2) | OPC(0x23) /* sw */, F3(0x3) | OPC(0x23) /* sd */),
/* u w l */ ARCH_32_64(F3(0x2) | OPC(0x3) /* lw */, F3(0x3) | OPC(0x3) /* ld */),
/* u b s */ F3(0x0) | OPC(0x23) /* sb */,
/* u b l */ F3(0x4) | OPC(0x3) /* lbu */,
/* u h s */ F3(0x1) | OPC(0x23) /* sh */,
/* u h l */ F3(0x5) | OPC(0x3) /* lhu */,
/* u i s */ F3(0x2) | OPC(0x23) /* sw */,
/* u i l */ ARCH_32_64(F3(0x2) | OPC(0x3) /* lw */, F3(0x6) | OPC(0x3) /* lwu */),
/* s w s */ ARCH_32_64(F3(0x2) | OPC(0x23) /* sw */, F3(0x3) | OPC(0x23) /* sd */),
/* s w l */ ARCH_32_64(F3(0x2) | OPC(0x3) /* lw */, F3(0x3) | OPC(0x3) /* ld */),
/* s b s */ F3(0x0) | OPC(0x23) /* sb */,
/* s b l */ F3(0x0) | OPC(0x3) /* lb */,
/* s h s */ F3(0x1) | OPC(0x23) /* sh */,
/* s h l */ F3(0x1) | OPC(0x3) /* lh */,
/* s i s */ F3(0x2) | OPC(0x23) /* sw */,
/* s i l */ F3(0x2) | OPC(0x3) /* lw */,
/* d s */ F3(0x3) | OPC(0x27) /* fsd */,
/* d l */ F3(0x3) | OPC(0x7) /* fld */,
/* s s */ F3(0x2) | OPC(0x27) /* fsw */,
/* s l */ F3(0x2) | OPC(0x7) /* flw */,
};
#undef ARCH_32_64
static sljit_s32 push_mem_inst(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 base, sljit_sw offset)
{
sljit_ins ins;
SLJIT_ASSERT(FAST_IS_REG(base) && offset <= 0xfff && offset >= SIMM_MIN);
ins = data_transfer_insts[flags & MEM_MASK] | RS1(base);
if (flags & LOAD_DATA)
ins |= ((flags & MEM_MASK) <= GPR_REG ? RD(reg) : FRD(reg)) | IMM_I(offset);
else
ins |= ((flags & MEM_MASK) <= GPR_REG ? RS2(reg) : FRS2(reg)) | IMM_S(offset);
return push_inst(compiler, ins);
}
/* Can perform an operation using at most 1 instruction. */
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN) {
/* Works for both absoulte and relative addresses. */
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_mem_inst(compiler, flags, reg, arg & REG_MASK, argw));
return -1;
}
return 0;
}
#define TO_ARGW_HI(argw) (((argw) & ~0xfff) + (((argw) & 0x800) ? 0x1000 : 0))
/* See getput_arg below.
Note: can_cache is called only for binary operators. */
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
/* Simple operation except for updates. */
if (arg & OFFS_REG_MASK) {
argw &= 0x3;
next_argw &= 0x3;
if (argw && argw == next_argw && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
return 1;
return 0;
}
if (arg == next_arg) {
if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN)
|| TO_ARGW_HI(argw) == TO_ARGW_HI(next_argw))
return 1;
return 0;
}
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
sljit_s32 base = arg & REG_MASK;
sljit_s32 tmp_r = TMP_REG1;
sljit_sw offset, argw_hi;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
/* Since tmp can be the same as base or offset registers,
* these might be unavailable after modifying tmp. */
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
tmp_r = reg;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
/* Using the cache. */
if (argw == compiler->cache_argw) {
if (arg == compiler->cache_arg)
return push_mem_inst(compiler, flags, reg, TMP_REG3, 0);
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG3) | RS1(TMP_REG3) | RS2(base)));
return push_mem_inst(compiler, flags, reg, TMP_REG3, 0);
}
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(base) | RS2(TMP_REG3)));
return push_mem_inst(compiler, flags, reg, tmp_r, 0);
}
}
if (SLJIT_UNLIKELY(argw)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, SLLI | RD(TMP_REG3) | RS1(OFFS_REG(arg)) | IMM_I(argw)));
}
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG3) | RS1(base) | RS2(!argw ? OFFS_REG(arg) : TMP_REG3)));
tmp_r = TMP_REG3;
}
else
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(base) | RS2(!argw ? OFFS_REG(arg) : TMP_REG3)));
return push_mem_inst(compiler, flags, reg, tmp_r, 0);
}
if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN)
return push_mem_inst(compiler, flags, reg, TMP_REG3, argw - compiler->cache_argw);
if (compiler->cache_arg == SLJIT_MEM && (argw - compiler->cache_argw <= SIMM_MAX) && (argw - compiler->cache_argw >= SIMM_MIN)) {
offset = argw - compiler->cache_argw;
} else {
compiler->cache_arg = SLJIT_MEM;
argw_hi = TO_ARGW_HI(argw);
if (next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN && argw_hi != TO_ARGW_HI(next_argw)) {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw, tmp_r));
compiler->cache_argw = argw;
offset = 0;
} else {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw_hi, tmp_r));
compiler->cache_argw = argw_hi;
offset = argw & 0xfff;
argw = argw_hi;
}
}
if (!base)
return push_mem_inst(compiler, flags, reg, TMP_REG3, offset);
if (arg == next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN) {
compiler->cache_arg = arg;
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG3) | RS1(TMP_REG3) | RS2(base)));
return push_mem_inst(compiler, flags, reg, TMP_REG3, offset);
}
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(TMP_REG3) | RS2(base)));
return push_mem_inst(compiler, flags, reg, tmp_r, offset);
}
static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
{
sljit_s32 base = arg & REG_MASK;
sljit_s32 tmp_r = TMP_REG1;
if (getput_arg_fast(compiler, flags, reg, arg, argw))
return compiler->error;
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
tmp_r = reg;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if (SLJIT_UNLIKELY(argw)) {
FAIL_IF(push_inst(compiler, SLLI | RD(tmp_r) | RS1(OFFS_REG(arg)) | IMM_I(argw)));
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(base) | RS2(tmp_r)));
}
else
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(base) | RS2(OFFS_REG(arg))));
return push_mem_inst(compiler, flags, reg, tmp_r, 0);
}
FAIL_IF(load_immediate(compiler, tmp_r, TO_ARGW_HI(argw), TMP_REG3));
if (base != 0)
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RS1(base) | RS2(tmp_r)));
return push_mem_inst(compiler, flags, reg, tmp_r, argw & 0xfff);
}
#undef TO_ARGW_HI
static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
#define WORD 0
#define IMM_EXTEND(v) (IMM_I(v))
#else /* !SLJIT_CONFIG_RISCV_32 */
#define WORD word
#define IMM_EXTEND(v) (IMM_I((op & SLJIT_32) ? (v) : (32 + (v))))
#endif /* SLJIT_CONFIG_RISCV_32 */
#define EMIT_LOGICAL(op_imm, op_reg) \
if (flags & SRC2_IMM) { \
if (op & SLJIT_SET_Z) \
FAIL_IF(push_inst(compiler, op_imm | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(src2))); \
if (!(flags & UNUSED_DEST)) \
FAIL_IF(push_inst(compiler, op_imm | RD(dst) | RS1(src1) | IMM_I(src2))); \
} \
else { \
if (op & SLJIT_SET_Z) \
FAIL_IF(push_inst(compiler, op_reg | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2))); \
if (!(flags & UNUSED_DEST)) \
FAIL_IF(push_inst(compiler, op_reg | RD(dst) | RS1(src1) | RS2(src2))); \
}
#define EMIT_SHIFT(op_imm, op_reg) \
if (flags & SRC2_IMM) { \
if (op & SLJIT_SET_Z) \
FAIL_IF(push_inst(compiler, op_imm | WORD | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(src2))); \
if (!(flags & UNUSED_DEST)) \
FAIL_IF(push_inst(compiler, op_imm | WORD | RD(dst) | RS1(src1) | IMM_I(src2))); \
} \
else { \
if (op & SLJIT_SET_Z) \
FAIL_IF(push_inst(compiler, op_reg | WORD | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2))); \
if (!(flags & UNUSED_DEST)) \
FAIL_IF(push_inst(compiler, op_reg | WORD | RD(dst) | RS1(src1) | RS2(src2))); \
}
static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
{
sljit_s32 is_overflow, is_carry, carry_src_r, is_handled;
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
sljit_ins word = (op & SLJIT_32) >> 5;
SLJIT_ASSERT(word == 0 || word == 0x8);
#endif /* SLJIT_CONFIG_RISCV_64 */
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (dst != src2)
return push_inst(compiler, ADDI | RD(dst) | RS1(src2) | IMM_I(0));
return SLJIT_SUCCESS;
case SLJIT_MOV_U8:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
return push_inst(compiler, ANDI | RD(dst) | RS1(src2) | IMM_I(0xff));
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
case SLJIT_MOV_S8:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
FAIL_IF(push_inst(compiler, SLLI | WORD | RD(dst) | RS1(src2) | IMM_EXTEND(24)));
return push_inst(compiler, SRAI | WORD | RD(dst) | RS1(dst) | IMM_EXTEND(24));
}
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
case SLJIT_MOV_U16:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
FAIL_IF(push_inst(compiler, SLLI | WORD | RD(dst) | RS1(src2) | IMM_EXTEND(16)));
return push_inst(compiler, SRLI | WORD | RD(dst) | RS1(dst) | IMM_EXTEND(16));
}
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
case SLJIT_MOV_S16:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
FAIL_IF(push_inst(compiler, SLLI | WORD | RD(dst) | RS1(src2) | IMM_EXTEND(16)));
return push_inst(compiler, SRAI | WORD | RD(dst) | RS1(dst) | IMM_EXTEND(16));
}
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
case SLJIT_MOV_U32:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
FAIL_IF(push_inst(compiler, SLLI | RD(dst) | RS1(src2) | IMM_I(32)));
return push_inst(compiler, SRLI | RD(dst) | RS1(dst) | IMM_I(32));
}
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
case SLJIT_MOV_S32:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
return push_inst(compiler, ADDI | 0x8 | RD(dst) | RS1(src2) | IMM_I(0));
SLJIT_ASSERT(dst == src2);
return SLJIT_SUCCESS;
#endif /* SLJIT_CONFIG_RISCV_64 */
case SLJIT_CLZ:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
/* Nearly all instructions are unmovable in the following sequence. */
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(src2) | IMM_I(0)));
FAIL_IF(push_inst(compiler, ADDI | RD(dst) | RS1(TMP_ZERO) | IMM_I(32)));
#else /* !SLJIT_CONFIG_RISCV_32 */
if (op & SLJIT_32) {
FAIL_IF(push_inst(compiler, SLLI | RD(TMP_REG1) | RS1(src2) | IMM_I(32)));
FAIL_IF(push_inst(compiler, ADDI | RD(dst) | RS1(TMP_ZERO) | IMM_I(32)));
} else {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(src2) | IMM_I(0)));
FAIL_IF(push_inst(compiler, ADDI | RD(dst) | RS1(TMP_ZERO) | IMM_I(64)));
}
#endif /* SLJIT_CONFIG_RISCV_32 */
/* Check zero. */
FAIL_IF(push_inst(compiler, BEQ | RS1(TMP_REG1) | RS2(TMP_ZERO) | ((sljit_ins)(6 * SSIZE_OF(ins)) << 7)));
FAIL_IF(push_inst(compiler, ADDI | RD(dst) | RS1(TMP_ZERO) | IMM_I(0)));
FAIL_IF(push_inst(compiler, BLT | RS1(TMP_REG1) | RS2(TMP_ZERO) | ((sljit_ins)(4 * SSIZE_OF(ins)) << 7)));
/* Loop for searching the highest bit. */
FAIL_IF(push_inst(compiler, ADDI | RD(dst) | RS1(dst) | IMM_I(1)));
FAIL_IF(push_inst(compiler, SLLI | RD(TMP_REG1) | RS1(TMP_REG1) | IMM_I(1)));
FAIL_IF(push_inst(compiler, BGE | RS1(TMP_REG1) | RS2(TMP_ZERO) | ((sljit_ins)(0x1fc001d - 1 * SSIZE_OF(ins)) << 7)));
return SLJIT_SUCCESS;
case SLJIT_ADD:
/* Overflow computation (both add and sub): overflow = src1_sign ^ src2_sign ^ result_sign ^ carry_flag */
is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW;
carry_src_r = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);
if (flags & SRC2_IMM) {
if (is_overflow) {
if (src2 >= 0)
FAIL_IF(push_inst(compiler, ADDI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(0)));
else
FAIL_IF(push_inst(compiler, XORI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(-1)));
}
else if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(src2)));
/* Only the zero flag is needed. */
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(dst) | RS1(src1) | IMM_I(src2)));
}
else {
if (is_overflow)
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
else if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADD | WORD | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
if (is_overflow || carry_src_r != 0) {
if (src1 != dst)
carry_src_r = (sljit_s32)src1;
else if (src2 != dst)
carry_src_r = (sljit_s32)src2;
else {
FAIL_IF(push_inst(compiler, ADDI | RD(OTHER_FLAG) | RS1(src1) | IMM_I(0)));
carry_src_r = OTHER_FLAG;
}
}
/* Only the zero flag is needed. */
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
FAIL_IF(push_inst(compiler, ADD | WORD | RD(dst) | RS1(src1) | RS2(src2)));
}
/* Carry is zero if a + b >= a or a + b >= b, otherwise it is 1. */
if (is_overflow || carry_src_r != 0) {
if (flags & SRC2_IMM)
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RS1(dst) | IMM_I(src2)));
else
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RS1(dst) | RS2(carry_src_r)));
}
if (!is_overflow)
return SLJIT_SUCCESS;
FAIL_IF(push_inst(compiler, XOR | RD(TMP_REG1) | RS1(dst) | RS2(EQUAL_FLAG)));
if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADDI | RD(EQUAL_FLAG) | RS1(dst) | IMM_I(0)));
FAIL_IF(push_inst(compiler, SRLI | WORD | RD(TMP_REG1) | RS1(TMP_REG1) | IMM_EXTEND(31)));
return push_inst(compiler, XOR | RD(OTHER_FLAG) | RS1(TMP_REG1) | RS2(OTHER_FLAG));
case SLJIT_ADDC:
carry_src_r = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);
if (flags & SRC2_IMM) {
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(dst) | RS1(src1) | IMM_I(src2)));
} else {
if (carry_src_r != 0) {
if (src1 != dst)
carry_src_r = (sljit_s32)src1;
else if (src2 != dst)
carry_src_r = (sljit_s32)src2;
else {
FAIL_IF(push_inst(compiler, ADDI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(0)));
carry_src_r = EQUAL_FLAG;
}
}
FAIL_IF(push_inst(compiler, ADD | WORD | RD(dst) | RS1(src1) | RS2(src2)));
}
/* Carry is zero if a + b >= a or a + b >= b, otherwise it is 1. */
if (carry_src_r != 0) {
if (flags & SRC2_IMM)
FAIL_IF(push_inst(compiler, SLTUI | RD(EQUAL_FLAG) | RS1(dst) | IMM_I(src2)));
else
FAIL_IF(push_inst(compiler, SLTU | RD(EQUAL_FLAG) | RS1(dst) | RS2(carry_src_r)));
}
FAIL_IF(push_inst(compiler, ADD | WORD | RD(dst) | RS1(dst) | RS2(OTHER_FLAG)));
if (carry_src_r == 0)
return SLJIT_SUCCESS;
/* Set ULESS_FLAG (dst == 0) && (OTHER_FLAG == 1). */
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RS1(dst) | RS2(OTHER_FLAG)));
/* Set carry flag. */
return push_inst(compiler, OR | RD(OTHER_FLAG) | RS1(OTHER_FLAG) | RS2(EQUAL_FLAG));
case SLJIT_SUB:
if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG2) | RS1(TMP_ZERO) | IMM_I(src2)));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
is_handled = 0;
if (flags & SRC2_IMM) {
if (GET_FLAG_TYPE(op) == SLJIT_LESS || GET_FLAG_TYPE(op) == SLJIT_GREATER_EQUAL) {
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RS1(src1) | IMM_I(src2)));
is_handled = 1;
}
else if (GET_FLAG_TYPE(op) == SLJIT_SIG_LESS || GET_FLAG_TYPE(op) == SLJIT_SIG_GREATER_EQUAL) {
FAIL_IF(push_inst(compiler, SLTI | RD(OTHER_FLAG) | RS1(src1) | IMM_I(src2)));
is_handled = 1;
}
}
if (!is_handled && GET_FLAG_TYPE(op) >= SLJIT_LESS && GET_FLAG_TYPE(op) <= SLJIT_SIG_LESS_EQUAL) {
is_handled = 1;
if (flags & SRC2_IMM) {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG2) | RS1(TMP_ZERO) | IMM_I(src2)));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
switch (GET_FLAG_TYPE(op)) {
case SLJIT_LESS:
case SLJIT_GREATER_EQUAL:
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RS1(src1) | RS2(src2)));
break;
case SLJIT_GREATER:
case SLJIT_LESS_EQUAL:
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RS1(src2) | RS2(src1)));
break;
case SLJIT_SIG_LESS:
case SLJIT_SIG_GREATER_EQUAL:
FAIL_IF(push_inst(compiler, SLT | RD(OTHER_FLAG) | RS1(src1) | RS2(src2)));
break;
case SLJIT_SIG_GREATER:
case SLJIT_SIG_LESS_EQUAL:
FAIL_IF(push_inst(compiler, SLT | RD(OTHER_FLAG) | RS1(src2) | RS2(src1)));
break;
}
}
if (is_handled) {
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(-src2)));
if (!(flags & UNUSED_DEST))
return push_inst(compiler, ADDI | WORD | RD(dst) | RS1(src1) | IMM_I(-src2));
}
else {
if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, SUB | WORD | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
if (!(flags & UNUSED_DEST))
return push_inst(compiler, SUB | WORD | RD(dst) | RS1(src1) | RS2(src2));
}
return SLJIT_SUCCESS;
}
is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW;
is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);
if (flags & SRC2_IMM) {
if (is_overflow) {
if (src2 >= 0)
FAIL_IF(push_inst(compiler, ADDI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(0)));
else
FAIL_IF(push_inst(compiler, XORI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(-1)));
}
else if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(-src2)));
if (is_overflow || is_carry)
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RS1(src1) | IMM_I(src2)));
/* Only the zero flag is needed. */
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(dst) | RS1(src1) | IMM_I(-src2)));
}
else {
if (is_overflow)
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
else if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, SUB | WORD | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
if (is_overflow || is_carry)
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RS1(src1) | RS2(src2)));
/* Only the zero flag is needed. */
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
FAIL_IF(push_inst(compiler, SUB | WORD | RD(dst) | RS1(src1) | RS2(src2)));
}
if (!is_overflow)
return SLJIT_SUCCESS;
FAIL_IF(push_inst(compiler, XOR | RD(TMP_REG1) | RS1(dst) | RS2(EQUAL_FLAG)));
if (op & SLJIT_SET_Z)
FAIL_IF(push_inst(compiler, ADDI | RD(EQUAL_FLAG) | RS1(dst) | IMM_I(0)));
FAIL_IF(push_inst(compiler, SRLI | WORD | RD(TMP_REG1) | RS1(TMP_REG1) | IMM_EXTEND(31)));
return push_inst(compiler, XOR | RD(OTHER_FLAG) | RS1(TMP_REG1) | RS2(OTHER_FLAG));
case SLJIT_SUBC:
if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG2) | RS1(TMP_ZERO) | IMM_I(src2)));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);
if (flags & SRC2_IMM) {
if (is_carry)
FAIL_IF(push_inst(compiler, SLTUI | RD(EQUAL_FLAG) | RS1(src1) | IMM_I(src2)));
FAIL_IF(push_inst(compiler, ADDI | WORD | RD(dst) | RS1(src1) | IMM_I(-src2)));
}
else {
if (is_carry)
FAIL_IF(push_inst(compiler, SLTU | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
FAIL_IF(push_inst(compiler, SUB | WORD | RD(dst) | RS1(src1) | RS2(src2)));
}
if (is_carry)
FAIL_IF(push_inst(compiler, SLTU | RD(TMP_REG1) | RS1(dst) | RS2(OTHER_FLAG)));
FAIL_IF(push_inst(compiler, SUB | WORD | RD(dst) | RS1(dst) | RS2(OTHER_FLAG)));
if (!is_carry)
return SLJIT_SUCCESS;
return push_inst(compiler, OR | RD(OTHER_FLAG) | RS1(EQUAL_FLAG) | RS2(TMP_REG1));
case SLJIT_MUL:
SLJIT_ASSERT(!(flags & SRC2_IMM));
if (GET_FLAG_TYPE(op) != SLJIT_OVERFLOW)
return push_inst(compiler, MUL | WORD | RD(dst) | RS1(src1) | RS2(src2));
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (word) {
FAIL_IF(push_inst(compiler, MUL | RD(OTHER_FLAG) | RS1(src1) | RS2(src2)));
FAIL_IF(push_inst(compiler, MUL | 0x8 | RD(dst) | RS1(src1) | RS2(src2)));
return push_inst(compiler, SUB | RD(OTHER_FLAG) | RS1(dst) | RS2(OTHER_FLAG));
}
#endif /* SLJIT_CONFIG_RISCV_64 */
FAIL_IF(push_inst(compiler, MULH | RD(EQUAL_FLAG) | RS1(src1) | RS2(src2)));
FAIL_IF(push_inst(compiler, MUL | RD(dst) | RS1(src1) | RS2(src2)));
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
FAIL_IF(push_inst(compiler, SRAI | RD(OTHER_FLAG) | RS1(dst) | IMM_I(31)));
#else /* !SLJIT_CONFIG_RISCV_32 */
FAIL_IF(push_inst(compiler, SRAI | RD(OTHER_FLAG) | RS1(dst) | IMM_I(63)));
#endif /* SLJIT_CONFIG_RISCV_32 */
return push_inst(compiler, SUB | RD(OTHER_FLAG) | RS1(EQUAL_FLAG) | RS2(OTHER_FLAG));
case SLJIT_AND:
EMIT_LOGICAL(ANDI, AND);
return SLJIT_SUCCESS;
case SLJIT_OR:
EMIT_LOGICAL(ORI, OR);
return SLJIT_SUCCESS;
case SLJIT_XOR:
EMIT_LOGICAL(XORI, XOR);
return SLJIT_SUCCESS;
case SLJIT_SHL:
EMIT_SHIFT(SLLI, SLL);
return SLJIT_SUCCESS;
case SLJIT_LSHR:
EMIT_SHIFT(SRLI, SRL);
return SLJIT_SUCCESS;
case SLJIT_ASHR:
EMIT_SHIFT(SRAI, SRA);
return SLJIT_SUCCESS;
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
#undef IMM_EXTEND
static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_s32 dst_r = TMP_REG2;
sljit_s32 src1_r;
sljit_sw src2_r = 0;
sljit_s32 sugg_src2_r = TMP_REG2;
if (!(flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (dst == TMP_REG2) {
SLJIT_ASSERT(HAS_FLAGS(op));
flags |= UNUSED_DEST;
}
else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (flags & MOVE_OP)
sugg_src2_r = dst_r;
}
else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1, dst, dstw))
flags |= SLOW_DEST;
if (flags & IMM_OP) {
if ((src2 & SLJIT_IMM) && src2w != 0 && src2w <= SIMM_MAX && src2w >= SIMM_MIN) {
flags |= SRC2_IMM;
src2_r = src2w;
}
else if ((flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w != 0 && src1w <= SIMM_MAX && src1w >= SIMM_MIN) {
flags |= SRC2_IMM;
src2_r = src1w;
/* And swap arguments. */
src1 = src2;
src1w = src2w;
src2 = SLJIT_IMM;
/* src2w = src2_r unneeded. */
}
}
/* Source 1. */
if (FAST_IS_REG(src1)) {
src1_r = src1;
flags |= REG1_SOURCE;
}
else if (src1 & SLJIT_IMM) {
if (src1w) {
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w, TMP_REG3));
src1_r = TMP_REG1;
}
else
src1_r = TMP_ZERO;
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
src1_r = TMP_REG1;
}
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if ((flags & (REG_DEST | MOVE_OP)) == MOVE_OP)
dst_r = (sljit_s32)src2_r;
}
else if (src2 & SLJIT_IMM) {
if (!(flags & SRC2_IMM)) {
if (src2w) {
FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w, TMP_REG3));
src2_r = sugg_src2_r;
}
else {
src2_r = TMP_ZERO;
if (flags & MOVE_OP) {
if (dst & SLJIT_MEM)
dst_r = 0;
else
op = SLJIT_MOV;
}
}
}
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
src2_r = sugg_src2_r;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
SLJIT_ASSERT(src2_r == TMP_REG2);
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, flags, dst_r, dst, dstw);
return compiler->error;
}
return getput_arg(compiler, flags, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
sljit_ins word = (op & SLJIT_32) >> 5;
SLJIT_ASSERT(word == 0 || word == 0x8);
#endif /* SLJIT_CONFIG_RISCV_64 */
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
switch (GET_OPCODE(op)) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, EBREAK);
case SLJIT_NOP:
return push_inst(compiler, ADDI | RD(TMP_ZERO) | RS1(TMP_ZERO) | IMM_I(0));
case SLJIT_LMUL_UW:
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(SLJIT_R1) | IMM_I(0)));
FAIL_IF(push_inst(compiler, MULHU | RD(SLJIT_R1) | RS1(SLJIT_R0) | RS2(SLJIT_R1)));
return push_inst(compiler, MUL | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(TMP_REG1));
case SLJIT_LMUL_SW:
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(SLJIT_R1) | IMM_I(0)));
FAIL_IF(push_inst(compiler, MULH | RD(SLJIT_R1) | RS1(SLJIT_R0) | RS2(SLJIT_R1)));
return push_inst(compiler, MUL | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(TMP_REG1));
case SLJIT_DIVMOD_UW:
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(SLJIT_R0) | IMM_I(0)));
FAIL_IF(push_inst(compiler, DIVU | WORD | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(SLJIT_R1)));
return push_inst(compiler, REMU | WORD | RD(SLJIT_R1) | RS1(TMP_REG1) | RS2(SLJIT_R1));
case SLJIT_DIVMOD_SW:
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(SLJIT_R0) | IMM_I(0)));
FAIL_IF(push_inst(compiler, DIV | WORD | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(SLJIT_R1)));
return push_inst(compiler, REM | WORD | RD(SLJIT_R1) | RS1(TMP_REG1) | RS2(SLJIT_R1));
case SLJIT_DIV_UW:
return push_inst(compiler, DIVU | WORD | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(SLJIT_R1));
case SLJIT_DIV_SW:
return push_inst(compiler, DIV | WORD | RD(SLJIT_R0) | RS1(SLJIT_R0) | RS2(SLJIT_R1));
case SLJIT_ENDBR:
case SLJIT_SKIP_FRAMES_BEFORE_RETURN:
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
#undef WORD
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 flags = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (op & SLJIT_32)
flags = INT_DATA | SIGNED_DATA;
#endif
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
case SLJIT_MOV32:
#endif
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, srcw);
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
case SLJIT_MOV_U32:
return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u32)srcw : srcw);
case SLJIT_MOV_S32:
/* Logical operators have no W variant, so sign extended input is necessary for them. */
case SLJIT_MOV32:
return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s32)srcw : srcw);
#endif
case SLJIT_MOV_U8:
return emit_op(compiler, op, BYTE_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8)srcw : srcw);
case SLJIT_MOV_S8:
return emit_op(compiler, op, BYTE_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8)srcw : srcw);
case SLJIT_MOV_U16:
return emit_op(compiler, op, HALF_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16)srcw : srcw);
case SLJIT_MOV_S16:
return emit_op(compiler, op, HALF_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, SLJIT_XOR | (op & (SLJIT_32 | SLJIT_SET_Z)), flags, dst, dstw, src, srcw, SLJIT_IMM, -1);
case SLJIT_CLZ:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 flags = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (op & SLJIT_32) {
flags |= INT_DATA | SIGNED_DATA;
if (src1 & SLJIT_IMM)
src1w = (sljit_s32)src1w;
if (src2 & SLJIT_IMM)
src2w = (sljit_s32)src2w;
}
#endif
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD;
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
case SLJIT_SUBC:
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB;
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
compiler->status_flags_state = 0;
return emit_op(compiler, op, flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
if (src2 & SLJIT_IMM)
src2w &= 0x1f;
#else
if (src2 & SLJIT_IMM) {
if (op & SLJIT_32)
src2w &= 0x1f;
else
src2w &= 0x3f;
}
#endif
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 1, 0, 0, src1, src1w, src2, src2w));
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, op, TMP_REG2, 0, src1, src1w, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_src(compiler, op, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
switch (op) {
case SLJIT_FAST_RETURN:
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, ADDI | RD(RETURN_ADDR_REG) | RS1(src) | IMM_I(0)));
else
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RETURN_ADDR_REG, src, srcw));
return push_inst(compiler, JALR | RD(TMP_ZERO) | RS1(RETURN_ADDR_REG) | IMM_I(0));
case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN:
return SLJIT_SUCCESS;
case SLJIT_PREFETCH_L1:
case SLJIT_PREFETCH_L2:
case SLJIT_PREFETCH_L3:
case SLJIT_PREFETCH_ONCE:
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
return freg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_u32 size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return push_inst(compiler, *(sljit_ins*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_32) >> 7))
#define FMT(op) ((sljit_ins)((op & SLJIT_32) ^ SLJIT_32) << 17)
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
# define flags (sljit_u32)0
#else
sljit_u32 flags = ((sljit_u32)(GET_OPCODE(op) == SLJIT_CONV_SW_FROM_F64)) << 21;
#endif
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
src = TMP_FREG1;
}
FAIL_IF(push_inst(compiler, FCVT_W_S | FMT(op) | flags | RD(dst_r) | FRS1(src)));
/* Store the integer value from a VFP register. */
if (dst & SLJIT_MEM) {
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
return emit_op_mem2(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
#else
return emit_op_mem2(compiler, flags ? WORD_DATA : INT_DATA, TMP_REG2, dst, dstw, 0, 0);
#endif
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
# undef flags
#endif
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_ins inst;
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
sljit_u32 flags = ((sljit_u32)(GET_OPCODE(op) == SLJIT_CONV_F64_FROM_SW)) << 21;
#endif
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
FAIL_IF(emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
#else
FAIL_IF(emit_op_mem2(compiler, (flags ? WORD_DATA : INT_DATA) | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
#endif
src = TMP_REG1;
} else if (src & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_RISCV_64 && SLJIT_CONFIG_RISCV_64)
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32)
srcw = (sljit_s32)srcw;
#endif
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw, TMP_REG3));
src = TMP_REG1;
}
inst = FCVT_S_W | FMT(op) | FRD(dst_r) | RS1(src);
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
if (op & SLJIT_32)
inst |= F3(0x7);
#else
inst |= flags;
if (op != SLJIT_CONV_F64_FROM_S32)
inst |= F3(0x7);
#endif
FAIL_IF(push_inst(compiler, inst));
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_ins inst;
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
switch (GET_FLAG_TYPE(op)) {
case SLJIT_F_EQUAL:
case SLJIT_F_NOT_EQUAL:
case SLJIT_ORDERED_EQUAL:
case SLJIT_UNORDERED_OR_NOT_EQUAL:
inst = FEQ_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src1) | FRS2(src2);
break;
case SLJIT_F_LESS:
case SLJIT_F_GREATER_EQUAL:
case SLJIT_ORDERED_LESS:
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
inst = FLT_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src1) | FRS2(src2);
break;
case SLJIT_ORDERED_GREATER:
case SLJIT_UNORDERED_OR_LESS_EQUAL:
inst = FLT_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src2) | FRS2(src1);
break;
case SLJIT_F_GREATER:
case SLJIT_F_LESS_EQUAL:
case SLJIT_UNORDERED_OR_GREATER:
case SLJIT_ORDERED_LESS_EQUAL:
inst = FLE_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src1) | FRS2(src2);
break;
case SLJIT_UNORDERED_OR_LESS:
case SLJIT_ORDERED_GREATER_EQUAL:
inst = FLE_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src2) | FRS2(src1);
break;
case SLJIT_UNORDERED_OR_EQUAL: /* Not supported. */
case SLJIT_ORDERED_NOT_EQUAL: /* Not supported. */
FAIL_IF(push_inst(compiler, FLT_S | FMT(op) | RD(OTHER_FLAG) | FRS1(src1) | FRS2(src2)));
FAIL_IF(push_inst(compiler, FLT_S | FMT(op) | RD(TMP_REG1) | FRS1(src2) | FRS2(src1)));
inst = OR | RD(OTHER_FLAG) | RS1(OTHER_FLAG) | RS2(TMP_REG1);
break;
default: /* SLJIT_UNORDERED, SLJIT_ORDERED */
FAIL_IF(push_inst(compiler, FADD_S | FMT(op) | FRD(TMP_FREG1) | FRS1(src1) | FRS2(src2)));
inst = FEQ_S | FMT(op) | RD(OTHER_FLAG) | FRS1(TMP_FREG1) | FRS2(TMP_FREG1);
break;
}
return push_inst(compiler, inst);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r;
CHECK_ERROR();
compiler->cache_arg = 0;
compiler->cache_argw = 0;
SLJIT_COMPILE_ASSERT((SLJIT_32 == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32)
op ^= SLJIT_32;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOV_F64:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst(compiler, FSGNJ_S | FMT(op) | FRD(dst_r) | FRS1(src) | FRS2(src)));
else
dst_r = src;
}
break;
case SLJIT_NEG_F64:
FAIL_IF(push_inst(compiler, FSGNJN_S | FMT(op) | FRD(dst_r) | FRS1(src) | FRS2(src)));
break;
case SLJIT_ABS_F64:
FAIL_IF(push_inst(compiler, FSGNJX_S | FMT(op) | FRD(dst_r) | FRS1(src) | FRS2(src)));
break;
case SLJIT_CONV_F64_FROM_F32:
/* The SLJIT_32 bit is inverted because sljit_f32 needs to be loaded from the memory. */
FAIL_IF(push_inst(compiler, FCVT_S_D | ((op & SLJIT_32) ? (1 << 25) : ((1 << 20) | F3(7))) | FRD(dst_r) | FRS1(src)));
op ^= SLJIT_32;
break;
}
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r, flags = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1 = TMP_FREG1;
} else
flags |= SLOW_SRC1;
}
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
FAIL_IF(compiler->error);
src2 = TMP_FREG2;
} else
flags |= SLOW_SRC2;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
if (flags & SLOW_SRC1)
src1 = TMP_FREG1;
if (flags & SLOW_SRC2)
src2 = TMP_FREG2;
switch (GET_OPCODE(op)) {
case SLJIT_ADD_F64:
FAIL_IF(push_inst(compiler, FADD_S | FMT(op) | FRD(dst_r) | FRS1(src1) | FRS2(src2)));
break;
case SLJIT_SUB_F64:
FAIL_IF(push_inst(compiler, FSUB_S | FMT(op) | FRD(dst_r) | FRS1(src1) | FRS2(src2)));
break;
case SLJIT_MUL_F64:
FAIL_IF(push_inst(compiler, FMUL_S | FMT(op) | FRD(dst_r) | FRS1(src1) | FRS2(src2)));
break;
case SLJIT_DIV_F64:
FAIL_IF(push_inst(compiler, FDIV_S | FMT(op) | FRD(dst_r) | FRS1(src1) | FRS2(src2)));
break;
}
if (dst_r == TMP_FREG2)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
#undef FLOAT_DATA
#undef FMT
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
if (FAST_IS_REG(dst))
return push_inst(compiler, ADDI | RD(dst) | RS1(RETURN_ADDR_REG) | IMM_I(0));
/* Memory. */
return emit_op_mem(compiler, WORD_DATA, RETURN_ADDR_REG, dst, dstw);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
#define BRANCH_LENGTH ((sljit_ins)(3 * sizeof(sljit_ins)) << 7)
#else
#define BRANCH_LENGTH ((sljit_ins)(7 * sizeof(sljit_ins)) << 7)
#endif
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
struct sljit_jump *jump;
sljit_ins inst;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
switch (type) {
case SLJIT_EQUAL:
inst = BNE | RS1(EQUAL_FLAG) | RS2(TMP_ZERO) | BRANCH_LENGTH;
break;
case SLJIT_NOT_EQUAL:
inst = BEQ | RS1(EQUAL_FLAG) | RS2(TMP_ZERO) | BRANCH_LENGTH;
break;
case SLJIT_LESS:
case SLJIT_GREATER:
case SLJIT_SIG_LESS:
case SLJIT_SIG_GREATER:
case SLJIT_OVERFLOW:
case SLJIT_CARRY:
case SLJIT_F_EQUAL:
case SLJIT_ORDERED_EQUAL:
case SLJIT_ORDERED_NOT_EQUAL: /* Not supported. */
case SLJIT_F_LESS:
case SLJIT_ORDERED_LESS:
case SLJIT_ORDERED_GREATER:
case SLJIT_F_LESS_EQUAL:
case SLJIT_ORDERED_LESS_EQUAL:
case SLJIT_ORDERED_GREATER_EQUAL:
case SLJIT_ORDERED:
inst = BEQ | RS1(OTHER_FLAG) | RS2(TMP_ZERO) | BRANCH_LENGTH;
break;
case SLJIT_GREATER_EQUAL:
case SLJIT_LESS_EQUAL:
case SLJIT_SIG_GREATER_EQUAL:
case SLJIT_SIG_LESS_EQUAL:
case SLJIT_NOT_OVERFLOW:
case SLJIT_NOT_CARRY:
case SLJIT_F_NOT_EQUAL:
case SLJIT_UNORDERED_OR_NOT_EQUAL:
case SLJIT_UNORDERED_OR_EQUAL: /* Not supported. */
case SLJIT_F_GREATER_EQUAL:
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
case SLJIT_UNORDERED_OR_LESS_EQUAL:
case SLJIT_F_GREATER:
case SLJIT_UNORDERED_OR_GREATER:
case SLJIT_UNORDERED_OR_LESS:
case SLJIT_UNORDERED:
inst = BNE | RS1(OTHER_FLAG) | RS2(TMP_ZERO) | BRANCH_LENGTH;
break;
default:
/* Not conditional branch. */
inst = 0;
break;
}
if (inst != 0) {
PTR_FAIL_IF(push_inst(compiler, inst));
jump->flags |= IS_COND;
}
jump->addr = compiler->size;
inst = JALR | RS1(TMP_REG1) | IMM_I(0);
if (type >= SLJIT_FAST_CALL) {
jump->flags |= IS_CALL;
inst |= RD(RETURN_ADDR_REG);
}
PTR_FAIL_IF(push_inst(compiler, inst));
/* Maximum number of instructions required for generating a constant. */
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
compiler->size += 1;
#else
compiler->size += 5;
#endif
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types)
{
SLJIT_UNUSED_ARG(arg_types);
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types));
if (type & SLJIT_CALL_RETURN) {
PTR_FAIL_IF(emit_stack_frame_release(compiler));
type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP);
}
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_jump(compiler, type);
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
struct sljit_jump *jump;
sljit_s32 flags;
sljit_ins inst;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
flags = WORD_DATA | LOAD_DATA;
#else /* !SLJIT_CONFIG_RISCV_32 */
flags = ((type & SLJIT_32) ? INT_DATA : WORD_DATA) | LOAD_DATA;
#endif /* SLJIT_CONFIG_RISCV_32 */
if (src1 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, TMP_REG1, src1, src1w, src2, src2w));
src1 = TMP_REG1;
}
if (src2 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, TMP_REG2, src2, src2w, 0, 0));
src2 = TMP_REG2;
}
if (src1 & SLJIT_IMM) {
if (src1w != 0) {
PTR_FAIL_IF(load_immediate(compiler, TMP_REG1, src1w, TMP_REG3));
src1 = TMP_REG1;
}
else
src1 = TMP_ZERO;
}
if (src2 & SLJIT_IMM) {
if (src2w != 0) {
PTR_FAIL_IF(load_immediate(compiler, TMP_REG2, src2w, TMP_REG3));
src2 = TMP_REG2;
}
else
src2 = TMP_ZERO;
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, (sljit_u32)((type & SLJIT_REWRITABLE_JUMP) | IS_COND));
type &= 0xff;
switch (type) {
case SLJIT_EQUAL:
inst = BNE | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_NOT_EQUAL:
inst = BEQ | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_LESS:
inst = BGEU | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_GREATER_EQUAL:
inst = BLTU | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_GREATER:
inst = BGEU | RS1(src2) | RS2(src1) | BRANCH_LENGTH;
break;
case SLJIT_LESS_EQUAL:
inst = BLTU | RS1(src2) | RS2(src1) | BRANCH_LENGTH;
break;
case SLJIT_SIG_LESS:
inst = BGE | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_SIG_GREATER_EQUAL:
inst = BLT | RS1(src1) | RS2(src2) | BRANCH_LENGTH;
break;
case SLJIT_SIG_GREATER:
inst = BGE | RS1(src2) | RS2(src1) | BRANCH_LENGTH;
break;
case SLJIT_SIG_LESS_EQUAL:
inst = BLT | RS1(src2) | RS2(src1) | BRANCH_LENGTH;
break;
}
PTR_FAIL_IF(push_inst(compiler, inst));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, JALR | RD(TMP_ZERO) | RS1(TMP_REG1) | IMM_I(0)));
/* Maximum number of instructions required for generating a constant. */
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
compiler->size += 1;
#else
compiler->size += 5;
#endif
return jump;
}
#undef BRANCH_LENGTH
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (!(src & SLJIT_IMM)) {
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw));
src = TMP_REG1;
}
return push_inst(compiler, JALR | RD((type >= SLJIT_FAST_CALL) ? RETURN_ADDR_REG : TMP_ZERO) | RS1(src) | IMM_I(0));
}
/* These jumps are converted to jump/call instructions when possible. */
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_CALL : 0));
jump->u.target = (sljit_uw)srcw;
jump->addr = compiler->size;
FAIL_IF(push_inst(compiler, JALR | RD((type >= SLJIT_FAST_CALL) ? RETURN_ADDR_REG : TMP_ZERO) | RS1(TMP_REG1) | IMM_I(0)));
/* Maximum number of instructions required for generating a constant. */
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
compiler->size += 1;
#else
compiler->size += 5;
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types,
sljit_s32 src, sljit_sw srcw)
{
SLJIT_UNUSED_ARG(arg_types);
CHECK_ERROR();
CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw));
src = TMP_REG1;
}
if (type & SLJIT_CALL_RETURN) {
if (src >= SLJIT_FIRST_SAVED_REG && src <= SLJIT_S0) {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_REG1) | RS1(src) | IMM_I(0)));
src = TMP_REG1;
}
FAIL_IF(emit_stack_frame_release(compiler));
type = SLJIT_JUMP;
}
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_ijump(compiler, type, src, srcw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 type)
{
sljit_s32 src_r, dst_r, invert;
sljit_s32 saved_op = op;
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
sljit_s32 mem_type = WORD_DATA;
#else
sljit_s32 mem_type = ((op & SLJIT_32) || op == SLJIT_MOV32) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
op = GET_OPCODE(op);
dst_r = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (dst & SLJIT_MEM))
FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1, dst, dstw, dst, dstw));
if (type < SLJIT_F_EQUAL) {
src_r = OTHER_FLAG;
invert = type & 0x1;
switch (type) {
case SLJIT_EQUAL:
case SLJIT_NOT_EQUAL:
FAIL_IF(push_inst(compiler, SLTUI | RD(dst_r) | RS1(EQUAL_FLAG) | IMM_I(1)));
src_r = dst_r;
break;
case SLJIT_OVERFLOW:
case SLJIT_NOT_OVERFLOW:
if (compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB)) {
src_r = OTHER_FLAG;
break;
}
FAIL_IF(push_inst(compiler, SLTUI | RD(dst_r) | RS1(OTHER_FLAG) | IMM_I(1)));
src_r = dst_r;
invert ^= 0x1;
break;
}
} else {
invert = 0;
src_r = OTHER_FLAG;
switch (type) {
case SLJIT_F_NOT_EQUAL:
case SLJIT_UNORDERED_OR_NOT_EQUAL:
case SLJIT_UNORDERED_OR_EQUAL: /* Not supported. */
case SLJIT_F_GREATER_EQUAL:
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
case SLJIT_UNORDERED_OR_LESS_EQUAL:
case SLJIT_F_GREATER:
case SLJIT_UNORDERED_OR_GREATER:
case SLJIT_UNORDERED_OR_LESS:
case SLJIT_UNORDERED:
invert = 1;
break;
}
}
if (invert) {
FAIL_IF(push_inst(compiler, XORI | RD(dst_r) | RS1(src_r) | IMM_I(1)));
src_r = dst_r;
}
if (op < SLJIT_ADD) {
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_type, src_r, dst, dstw);
if (src_r != dst_r)
return push_inst(compiler, ADDI | RD(dst_r) | RS1(src_r) | IMM_I(0));
return SLJIT_SUCCESS;
}
mem_type |= CUMULATIVE_OP | IMM_OP | ALT_KEEP_CACHE;
if (dst & SLJIT_MEM)
return emit_op(compiler, saved_op, mem_type, dst, dstw, TMP_REG1, 0, src_r, 0);
return emit_op(compiler, saved_op, mem_type, dst, dstw, dst, dstw, src_r, 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw));
return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw);;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_s32 dst_r;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, dst_r, init_value, ADDI | RD(dst_r)));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
struct sljit_put_label *put_label;
sljit_s32 dst_r;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label));
PTR_FAIL_IF(!put_label);
set_put_label(put_label, compiler, 0);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(push_inst(compiler, (sljit_ins)dst_r));
#if (defined SLJIT_CONFIG_RISCV_32 && SLJIT_CONFIG_RISCV_32)
compiler->size += 1;
#else
compiler->size += 5;
#endif
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
return put_label;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
sljit_set_jump_addr(addr, (sljit_uw)new_constant, executable_offset);
}