// BranchX86_2.c #include "BranchX86_2.h" #include "../../Alloc.h" #ifdef _LZMA_PROB32 #define CProb UInt32 #else #define CProb UInt16 #endif #define IsJcc(b0, b1) ((b0) == 0x0F && ((b1) & 0xF0) == 0x80) #define IsJ(b0, b1) ((b1 & 0xFE) == 0xE8 || IsJcc(b0, b1)) #define kNumTopBits 24 #define kTopValue ((UInt32)1 << kNumTopBits) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 #define RC_READ_BYTE (*Buffer++) #define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \ { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }} #define RC_TEST { if (Buffer == BufferLim) return BCJ2_RESULT_DATA_ERROR; } #define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2 #define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; } #define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound) #define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits; #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits; // #define UpdateBit0(p) Range = bound; *(p) = (CProb)(*(p) + ((kBitModelTotal - *(p)) >> kNumMoveBits)); // #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) = (CProb)(*(p) - (*(p) >> kNumMoveBits)); int x86_2_Decode( const Byte *buf0, SizeT size0, const Byte *buf1, SizeT size1, const Byte *buf2, SizeT size2, const Byte *buf3, SizeT size3, Byte *outBuf, SizeT outSize) { CProb p[256 + 2]; SizeT inPos = 0, outPos = 0; const Byte *Buffer, *BufferLim; UInt32 Range, Code; Byte prevByte = 0; unsigned int i; for (i = 0; i < sizeof(p) / sizeof(p[0]); i++) p[i] = kBitModelTotal >> 1; RC_INIT(buf3, size3); if (outSize == 0) return BCJ2_RESULT_OK; for (;;) { Byte b; CProb *prob; UInt32 bound; SizeT limit = size0 - inPos; if (outSize - outPos < limit) limit = outSize - outPos; while (limit != 0) { Byte b = buf0[inPos]; outBuf[outPos++] = b; if (IsJ(prevByte, b)) break; inPos++; prevByte = b; limit--; } if (limit == 0 || outPos == outSize) break; b = buf0[inPos++]; if (b == 0xE8) prob = p + prevByte; else if (b == 0xE9) prob = p + 256; else prob = p + 257; IfBit0(prob) { UpdateBit0(prob) prevByte = b; } else { UInt32 dest; const Byte *v; UpdateBit1(prob) if (b == 0xE8) { v = buf1; if (size1 < 4) return BCJ2_RESULT_DATA_ERROR; buf1 += 4; size1 -= 4; } else { v = buf2; if (size2 < 4) return BCJ2_RESULT_DATA_ERROR; buf2 += 4; size2 -= 4; } dest = (((UInt32)v[0] << 24) | ((UInt32)v[1] << 16) | ((UInt32)v[2] << 8) | ((UInt32)v[3])) - ((UInt32)outPos + 4); outBuf[outPos++] = (Byte)dest; if (outPos == outSize) break; outBuf[outPos++] = (Byte)(dest >> 8); if (outPos == outSize) break; outBuf[outPos++] = (Byte)(dest >> 16); if (outPos == outSize) break; outBuf[outPos++] = prevByte = (Byte)(dest >> 24); } } return (outPos == outSize) ? BCJ2_RESULT_OK : BCJ2_RESULT_DATA_ERROR; }