This was changed some time ago (https://google.github.io/oss-fuzz/getting-started/new-project-guide/) but the build didn't fail as there is a fallback mechanism. The main advantage of the new approach is that for libFuzzer this produces more performant binaries (as `$LIB_FUZZING_ENGINE` expands into `-fsanitize=fuzzer`, which links libFuzzer from the compiler-rt, allowing better optimization tricks).
I'm also experimenting with dataflow (https://github.com/google/oss-fuzz/issues/1632) on your project, and the dataflow config doesn't have a fallback (as it's a new configuration), therefore I'm proposing a change to migrate from `-lFuzzingEngine` to `$LIB_FUZZING_ENGINE`.
There is currently a false positive ABI check failure between v2.3.1
and current. It disappears when removing the generated reports of v2.3.1
and recreating them. It is likely that some tooling has evolved since
the initial v2.3.1 report generation.
width/length dimensions read from bmp headers are not necessarily
valid. For instance they may have been maliciously set to very large
values with the intention to cause DoS (large memory allocation, stack
overflow). In these cases we want to detect the invalid size as early
as possible.
This commit introduces a counter which verifies that the number of
written bytes corresponds to the advertized width/length.
See commit 8ee335227b for details.
Signed-off-by: Young Xiao <YangX92@hotmail.com>
Fixes#1053 / CVE-2018-5727
Note: I don't consider this issue to be a security vulnerability, in
practice.
At least with gcc or clang compilers on x86_64 which generate the same
assembly code with or without that fix.
Previously the caller had to check whether each component data had
been decoded. This means duplicating the checking in every user of
openjpeg which is unnecessary. If the caller wantes to decode all
or a set of, or a specific component then openjpeg ought to error
out if it was unable to do so.
Fixes#1158.
width/length dimensions read from bmp headers are not necessarily
valid. For instance they may have been maliciously set to very large
values with the intention to cause DoS (large memory allocation, stack
overflow). In these cases we want to detect the invalid size as early
as possible.
This commit introduces a counter which verifies that the number of
written bytes corresponds to the advertized width/length.
Fixes#1059 (CVE-2018-6616).