Previously when the handle failed to be created (e.g. when
opj_calloc returned NULL due to low memory), the code still
assumed that the t1 handle pointer was valid and dereferenced
NULL, causing a crash. After this commit OpenJPEG will instead
error out under this condition.
This fixes issue #1255.
* -PLT switch added to opj_compress
* Add a opj_encoder_set_extra_options() function that
accepts a PLT=YES option, and could be expanded later
for other uses.
-------
Testing with a Sentinel2 10m band, T36JTT_20160914T074612_B02.jp2,
coming from S2A_MSIL1C_20160914T074612_N0204_R135_T36JTT_20160914T081456.SAFE
Decompress it to TIFF:
```
opj_uncompress -i T36JTT_20160914T074612_B02.jp2 -o T36JTT_20160914T074612_B02.tif
```
Recompress it with similar parameters as original:
```
opj_compress -n 5 -c [256,256],[256,256],[256,256],[256,256],[256,256] -t 1024,1024 -PLT -i T36JTT_20160914T074612_B02.tif -o T36JTT_20160914T074612_B02_PLT.jp2
```
Dump codestream detail with GDAL dump_jp2.py utility (https://github.com/OSGeo/gdal/blob/master/gdal/swig/python/samples/dump_jp2.py)
```
python dump_jp2.py T36JTT_20160914T074612_B02.jp2 > /tmp/dump_sentinel2_ori.txt
python dump_jp2.py T36JTT_20160914T074612_B02_PLT.jp2 > /tmp/dump_sentinel2_openjpeg_plt.txt
```
The diff between both show very similar structure, and identical number of packets in PLT markers
Now testing with Kakadu (KDU803_Demo_Apps_for_Linux-x86-64_200210)
Full file decompression:
```
kdu_expand -i T36JTT_20160914T074612_B02_PLT.jp2 -o tmp.tif
Consumed 121 tile-part(s) from a total of 121 tile(s).
Consumed 80,318,806 codestream bytes (excluding any file format) = 5.329697
bits/pel.
Processed using the multi-threaded environment, with
8 parallel threads of execution
```
Partial decompresson (presumably using PLT markers):
```
kdu_expand -i T36JTT_20160914T074612_B02.jp2 -o tmp.pgm -region "{0.5,0.5},{0.01,0.01}"
kdu_expand -i T36JTT_20160914T074612_B02_PLT.jp2 -o tmp2.pgm -region "{0.5,0.5},{0.01,0.01}"
diff tmp.pgm tmp2.pgm && echo "same !"
```
-------
Funded by ESA for S2-MPC project
Previously the multiple component transformation SGcod(C)
and wavelet transformation SPcod(H)/SPcoc(E) parameter
values were never checked, allowing for out of range values.
The lack of validation allowed the bit stream provided in
issue #1158 through. After this commit an error message
points to the marker segments' parameters as being out of
range.
input/nonregression/edf_c2_20.jp2 contains an SPcod(H) value
of 17, but according to Table A-20 of the specification only
values 0 and 1 are valid. input/nonregression/issue826.jp2
contains a SGcod(B) value of 2, but according to Table A-17
of the specification only values 0 and 1 are valid.
input/nonregression/oss-fuzz2785.jp2 contains a SGcod(B)
value of 32, but it is likewise limited to 0 or 1. These test
cases have been updated to consistently fail to parse the
headers since they contain out of bounds values.
This fixes issue #1210.
width/length dimensions read from bmp headers are not necessarily
valid. For instance they may have been maliciously set to very large
values with the intention to cause DoS (large memory allocation, stack
overflow). In these cases we want to detect the invalid size as early
as possible.
This commit introduces a counter which verifies that the number of
written bytes corresponds to the advertized width/length.
See commit 8ee335227b for details.
Signed-off-by: Young Xiao <YangX92@hotmail.com>
Fixes#1053 / CVE-2018-5727
Note: I don't consider this issue to be a security vulnerability, in
practice.
At least with gcc or clang compilers on x86_64 which generate the same
assembly code with or without that fix.
Previously the caller had to check whether each component data had
been decoded. This means duplicating the checking in every user of
openjpeg which is unnecessary. If the caller wantes to decode all
or a set of, or a specific component then openjpeg ought to error
out if it was unable to do so.
Fixes#1158.
width/length dimensions read from bmp headers are not necessarily
valid. For instance they may have been maliciously set to very large
values with the intention to cause DoS (large memory allocation, stack
overflow). In these cases we want to detect the invalid size as early
as possible.
This commit introduces a counter which verifies that the number of
written bytes corresponds to the advertized width/length.
Fixes#1059 (CVE-2018-6616).
When compressing a lot of slices (starting from 44 FullHD slices with 3 8bit components in our experiments) the rate values are high enough to cause an int overflow that leads to negative lengths and wrong results. The cast happens too late.
Tile components in a JP2 image might have null data pointer by defining a
zero component size (for example using large horizontal or vertical
sampling periods). This null data pointer leads to null image component
data pointer, causing crash when dereferenced without != null check in
imagetopnm.
Add != null check.
This commit addresses #1152 (CVE-2018-18088).