This adds a opj_set_decoded_components(opj_codec_t *p_codec,
OPJ_UINT32 numcomps, const OPJ_UINT32* comps_indices) function,
and equivalent "opj_decompress -c compno[,compno]*" option.
When specified, neither the MCT transform nor JP2 channel transformations
will be applied.
Tests added for various combinations of whole image vs tiled-based decoding,
full or reduced resolution, use of decode area or not.
Instead of being the full tile size.
* Use a sparse array mechanism to store code-blocks and intermediate stages of
IDWT.
* IDWT, DC level shift and MCT stages are done just on that smaller array.
* Improve copy of tile component array to final image, by saving an intermediate
buffer.
* For full-tile decoding at reduced resolution, only allocate the tile buffer to
the reduced size, instead of the full-resolution size.
Currently we allocate at least 8192 bytes for each codeblock, and copy
the relevant parts of the codestream in that per-codeblock buffer as we
decode packets.
As the whole codestream for the tile is ingested in memory and alive
during the decoding, we can directly point to it instead of copying. But
to do that, we need an intermediate concept, a 'chunk' of code-stream segment,
given that segments may be made of data at different places in the code-stream
when quality layers are used.
With that change, the decoding of MAPA_005.jp2 goes down from the previous
improvement of 2.7 GB down to 1.9 GB.
New profile:
n4: 1885648469 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
n1: 1610689344 0x4E78287: opj_aligned_malloc (opj_malloc.c:61)
n1: 1610689344 0x4E71D7B: opj_alloc_tile_component_data (tcd.c:676)
n1: 1610689344 0x4E7272C: opj_tcd_init_decode_tile (tcd.c:816)
n1: 1610689344 0x4E4BDD9: opj_j2k_read_tile_header (j2k.c:8618)
n1: 1610689344 0x4E4C8A2: opj_j2k_decode_tiles (j2k.c:10349)
n1: 1610689344 0x4E4E36E: opj_j2k_decode (j2k.c:7847)
n1: 1610689344 0x4E52FA2: opj_jp2_decode (jp2.c:1564)
n0: 1610689344 0x40374E: main (opj_decompress.c:1459)
n1: 219232541 0x4E4BBF0: opj_j2k_read_tile_header (j2k.c:4685)
n1: 219232541 0x4E4C8A2: opj_j2k_decode_tiles (j2k.c:10349)
n1: 219232541 0x4E4E36E: opj_j2k_decode (j2k.c:7847)
n1: 219232541 0x4E52FA2: opj_jp2_decode (jp2.c:1564)
n0: 219232541 0x40374E: main (opj_decompress.c:1459)
n1: 39822000 0x4E727A9: opj_tcd_init_decode_tile (tcd.c:1219)
n1: 39822000 0x4E4BDD9: opj_j2k_read_tile_header (j2k.c:8618)
n1: 39822000 0x4E4C8A2: opj_j2k_decode_tiles (j2k.c:10349)
n1: 39822000 0x4E4E36E: opj_j2k_decode (j2k.c:7847)
n1: 39822000 0x4E52FA2: opj_jp2_decode (jp2.c:1564)
n0: 39822000 0x40374E: main (opj_decompress.c:1459)
n0: 15904584 in 52 places, all below massif's threshold (1.00%)
There are situations where, given a tile size, at a resolution level,
there are sub-bands with x0==x1 or y0==y1, that consequently don't have any
valid codeblocks, but the other sub-bands may be non-empty.
Given that we recycle the memory from one tile to another one, those
ghost codeblocks might be non-0 and thus candidate for packet inclusion.
The definition of bit-fields with type OPJ_UINT32 caused complilation errors
on IBM iSeries, because OPJ_UINT32 is defined as uint32_t, and
uint32_t is defined as unsigned long in <stdint.h>. The definition of
bit-fields with an integer type of a specific size doesn't make sense
anyway.
By default, only the main thread is used. If opj_codec_set_threads() is not used,
but the OPJ_NUM_THREADS environment variable is set, its value will be
used to initialize the number of threads. The value can be either an integer
number, or "ALL_CPUS". If OPJ_NUM_THREADS is set and this function is called,
this function will override the behaviour of the environment variable.